/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_ML_NN_COMMON_OPERATIONS_H #define ANDROID_ML_NN_COMMON_OPERATIONS_H #include "operations/BidirectionalSequenceLSTM.h" #include "operations/Cast.h" #include "operations/EmbeddingLookup.h" #include "operations/ExpandDims.h" #include "operations/HashtableLookup.h" #include "operations/LSHProjection.h" #include "operations/LSTM.h" #include "operations/MaximumMinimum.h" #include "operations/Multinomial.h" #include "operations/Pow.h" #include "operations/QuantizedLSTM.h" #include "operations/RNN.h" #include "operations/SVDF.h" #include "operations/Tile.h" #include "operations/TopK_V2.h" #include #include #include namespace android { namespace nn { struct Shape; bool floorFloat16(const _Float16* inputData, _Float16* outputData, const Shape& shape); bool floorFloat32(const float* inputData, float* outputData, const Shape& shape); bool depthwiseConvFloat16(const _Float16* inputData, const Shape& inputShape, const _Float16* filterData, const Shape& filterShape, const _Float16* biasData, const Shape& biasShape, int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom, int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor, int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, _Float16* outputData, const Shape& outputShape); bool depthwiseConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, const Shape& filterShape, const float* biasData, const Shape& biasShape, int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom, int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor, int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, float* outputData, const Shape& outputShape); bool depthwiseConvQuant8(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, const Shape& filterShape, const int32_t* biasData, const Shape& biasShape, int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom, int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor, int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, uint8_t* outputData, const Shape& outputShape); bool depthwiseConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape, const int8_t* filterData, const Shape& filterShape, const float* filterScales, const int32_t* biasData, const Shape& biasShape, int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom, int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor, int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, uint8_t* outputData, const Shape& outputShape); bool localResponseNormFloat16(const _Float16* inputData, const Shape& inputShape, int32_t radius, float bias, float alpha, float beta, int32_t axis, _Float16* outputData, const Shape& outputShape); bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius, float bias, float alpha, float beta, int32_t axis, float* outputData, const Shape& outputShape); bool copyData(const void* inputData, const Shape& inputShape, void* outputData, const Shape& outputShape); template bool depthToSpaceGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, T* outputData, const Shape& outputShape); template bool spaceToDepthGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, T* outputData, const Shape& outputShape); template bool padGeneric(const T* inputData, const Shape& inputShape, const int32_t* paddings, T pad_value, T* outputData, const Shape& outputShape); template bool batchToSpaceGeneric(const T* inputData, const Shape& inputShape, const int32_t* blockSize, T* outputData, const Shape& outputShape); template bool spaceToBatchGeneric(const T* inputData, const Shape& inputShape, const int32_t* blockSize, const int32_t* padding, const Shape& paddingShape, T* outputData, const Shape& outputShape); bool meanFloat16(_Float16* inputData, const Shape& inputShape, const int32_t* axis, const Shape& axisShape, bool keepDims, _Float16* outputData, const Shape& outputShape); template bool meanGeneric(T* inputData, const Shape& inputShape, const int32_t* axis, const Shape& axisShape, bool keepDims, T* outputData, const Shape& outputShape); bool stridedSliceGeneric(const uint8_t* inputData, const Shape& inputShape, const int32_t* beginData, const int32_t* endData, const int32_t* stridesData, int32_t beginMask, int32_t endMask, int32_t shrinkAxisMask, uint8_t* outputData, const Shape& outputShape); bool argMinMaxGeneric(const uint8_t* inputData, const Shape& inputShape, int32_t axis, bool isArgMin, uint8_t* outputData, const Shape& outputShape); bool splitFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, const std::vector<_Float16*>* outputDataPtrs, const std::vector& outputShapes); bool splitFloat32(const float* inputData, const Shape& inputShape, const int32_t axis, const std::vector* outputDataPtrs, const std::vector& outputShapes); bool splitInt32(const int32_t* inputData, const Shape& inputShape, const int32_t axis, const std::vector* outputDataPtrs, const std::vector& outputShapes); bool splitQuant8(const uint8_t* inputData, const Shape& inputShape, const int32_t axis, const std::vector* outputDataPtrs, const std::vector& outputShapes); bool groupedConvFloat16(const _Float16* inputData, const Shape& inputShape, const _Float16* filterData, const Shape& filterShape, const _Float16* biasData, const Shape& biasShape, int32_t numGroups, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t activation, _Float16* outputData, const Shape& outputShape); bool groupedConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, const Shape& filterShape, const float* biasData, const Shape& biasShape, int32_t numGroups, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t activation, float* outputData, const Shape& outputShape); bool groupedConvQuant8(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, const Shape& filterShape, const int32_t* biasData, const Shape& biasShape, int32_t numGroups, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t activation, uint8_t* outputData, const Shape& outputShape); bool groupedConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape, const int8_t* filterData, const Shape& filterShape, const float* filterScales, const int32_t* biasData, const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t numGroups, int32_t activation, uint8_t* outputData, const Shape& outputShape); bool channelShuffleGeneric(const uint8_t* inputData, const Shape& inputShape, int32_t numGroups, int32_t axis, uint8_t* outputData, const Shape& outputShape); } // namespace nn } // namespace android #endif // ANDROID_ML_NN_COMMON_OPERATIONS_H