/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #undef LOG_TAG #define LOG_TAG "Layer" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "Layer.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "BufferLayer.h" #include "ColorLayer.h" #include "Colorizer.h" #include "DisplayDevice.h" #include "DisplayHardware/HWComposer.h" #include "LayerProtoHelper.h" #include "LayerRejecter.h" #include "MonitoredProducer.h" #include "SurfaceFlinger.h" #include "TimeStats/TimeStats.h" #define DEBUG_RESIZE 0 namespace android { using base::StringAppendF; std::atomic Layer::sSequence{1}; Layer::Layer(const LayerCreationArgs& args) : mFlinger(args.flinger), mName(args.name), mSystemName(args.systemname), mClientRef(args.client), mWindowType(args.metadata.getInt32(METADATA_WINDOW_TYPE, 0)) { mCurrentCrop.makeInvalid(); uint32_t layerFlags = 0; if (args.flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden; if (args.flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque; if (args.flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure; mTransactionName = String8("TX - ") + mName; mCurrentState.active_legacy.w = args.w; mCurrentState.active_legacy.h = args.h; mCurrentState.flags = layerFlags; mCurrentState.active_legacy.transform.set(0, 0); mCurrentState.crop_legacy.makeInvalid(); mCurrentState.requestedCrop_legacy = mCurrentState.crop_legacy; mCurrentState.z = 0; mCurrentState.color.a = 1.0f; mCurrentState.layerStack = 0; mCurrentState.sequence = 0; mCurrentState.requested_legacy = mCurrentState.active_legacy; mCurrentState.active.w = UINT32_MAX; mCurrentState.active.h = UINT32_MAX; mCurrentState.active.transform.set(0, 0); mCurrentState.transform = 0; mCurrentState.transformToDisplayInverse = false; mCurrentState.crop.makeInvalid(); mCurrentState.acquireFence = new Fence(-1); mCurrentState.dataspace = ui::Dataspace::UNKNOWN; mCurrentState.hdrMetadata.validTypes = 0; mCurrentState.surfaceDamageRegion.clear(); mCurrentState.cornerRadius = 0.0f; mCurrentState.api = -1; mCurrentState.hasColorTransform = false; mCurrentState.colorSpaceAgnostic = false; mCurrentState.metadata = args.metadata; // drawing state & current state are identical mDrawingState = mCurrentState; CompositorTiming compositorTiming; args.flinger->getCompositorTiming(&compositorTiming); mFrameEventHistory.initializeCompositorTiming(compositorTiming); mFrameTracker.setDisplayRefreshPeriod(compositorTiming.interval); mSchedulerLayerHandle = mFlinger->mScheduler->registerLayer(mName.c_str(), mWindowType); mFlinger->onLayerCreated(); } Layer::~Layer() { sp c(mClientRef.promote()); if (c != 0) { c->detachLayer(this); } mFrameTracker.logAndResetStats(mName); mFlinger->onLayerDestroyed(this); } // --------------------------------------------------------------------------- // callbacks // --------------------------------------------------------------------------- /* * onLayerDisplayed is only meaningful for BufferLayer, but, is called through * Layer. So, the implementation is done in BufferLayer. When called on a * ColorLayer object, it's essentially a NOP. */ void Layer::onLayerDisplayed(const sp& /*releaseFence*/) {} void Layer::removeRemoteSyncPoints() { for (auto& point : mRemoteSyncPoints) { point->setTransactionApplied(); } mRemoteSyncPoints.clear(); { Mutex::Autolock pendingStateLock(mPendingStateMutex); for (State pendingState : mPendingStates) { pendingState.barrierLayer_legacy = nullptr; } } } void Layer::removeRelativeZ(const std::vector& layersInTree) { if (mCurrentState.zOrderRelativeOf == nullptr) { return; } sp strongRelative = mCurrentState.zOrderRelativeOf.promote(); if (strongRelative == nullptr) { setZOrderRelativeOf(nullptr); return; } if (!std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) { strongRelative->removeZOrderRelative(this); mFlinger->setTransactionFlags(eTraversalNeeded); setZOrderRelativeOf(nullptr); } } void Layer::removeFromCurrentState() { mRemovedFromCurrentState = true; // Since we are no longer reachable from CurrentState SurfaceFlinger // will no longer invoke doTransaction for us, and so we will // never finish applying transactions. We signal the sync point // now so that another layer will not become indefinitely // blocked. removeRemoteSyncPoints(); { Mutex::Autolock syncLock(mLocalSyncPointMutex); for (auto& point : mLocalSyncPoints) { point->setFrameAvailable(); } mLocalSyncPoints.clear(); } mFlinger->markLayerPendingRemovalLocked(this); } void Layer::onRemovedFromCurrentState() { auto layersInTree = getLayersInTree(LayerVector::StateSet::Current); std::sort(layersInTree.begin(), layersInTree.end()); for (const auto& layer : layersInTree) { layer->removeFromCurrentState(); layer->removeRelativeZ(layersInTree); } } void Layer::addToCurrentState() { mRemovedFromCurrentState = false; for (const auto& child : mCurrentChildren) { child->addToCurrentState(); } } // --------------------------------------------------------------------------- // set-up // --------------------------------------------------------------------------- const String8& Layer::getName() const { return mName; } bool Layer::getPremultipledAlpha() const { return mPremultipliedAlpha; } sp Layer::getHandle() { Mutex::Autolock _l(mLock); if (mGetHandleCalled) { ALOGE("Get handle called twice" ); return nullptr; } mGetHandleCalled = true; return new Handle(mFlinger, this); } // --------------------------------------------------------------------------- // h/w composer set-up // --------------------------------------------------------------------------- bool Layer::hasHwcLayer(const sp& displayDevice) { auto outputLayer = findOutputLayerForDisplay(displayDevice); LOG_FATAL_IF(!outputLayer); return outputLayer->getState().hwc && (*outputLayer->getState().hwc).hwcLayer != nullptr; } HWC2::Layer* Layer::getHwcLayer(const sp& displayDevice) { auto outputLayer = findOutputLayerForDisplay(displayDevice); if (!outputLayer || !outputLayer->getState().hwc) { return nullptr; } return (*outputLayer->getState().hwc).hwcLayer.get(); } Rect Layer::getContentCrop() const { // this is the crop rectangle that applies to the buffer // itself (as opposed to the window) Rect crop; if (!mCurrentCrop.isEmpty()) { // if the buffer crop is defined, we use that crop = mCurrentCrop; } else if (mActiveBuffer != nullptr) { // otherwise we use the whole buffer crop = mActiveBuffer->getBounds(); } else { // if we don't have a buffer yet, we use an empty/invalid crop crop.makeInvalid(); } return crop; } static Rect reduce(const Rect& win, const Region& exclude) { if (CC_LIKELY(exclude.isEmpty())) { return win; } if (exclude.isRect()) { return win.reduce(exclude.getBounds()); } return Region(win).subtract(exclude).getBounds(); } static FloatRect reduce(const FloatRect& win, const Region& exclude) { if (CC_LIKELY(exclude.isEmpty())) { return win; } // Convert through Rect (by rounding) for lack of FloatRegion return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); } Rect Layer::getScreenBounds(bool reduceTransparentRegion) const { if (!reduceTransparentRegion) { return Rect{mScreenBounds}; } FloatRect bounds = getBounds(); ui::Transform t = getTransform(); // Transform to screen space. bounds = t.transform(bounds); return Rect{bounds}; } FloatRect Layer::getBounds() const { const State& s(getDrawingState()); return getBounds(getActiveTransparentRegion(s)); } FloatRect Layer::getBounds(const Region& activeTransparentRegion) const { // Subtract the transparent region and snap to the bounds. return reduce(mBounds, activeTransparentRegion); } ui::Transform Layer::getBufferScaleTransform() const { // If the layer is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g. // it isFixedSize) then there may be additional scaling not accounted // for in the layer transform. if (!isFixedSize() || !mActiveBuffer) { return {}; } // If the layer is a buffer state layer, the active width and height // could be infinite. In that case, return the effective transform. const uint32_t activeWidth = getActiveWidth(getDrawingState()); const uint32_t activeHeight = getActiveHeight(getDrawingState()); if (activeWidth >= UINT32_MAX && activeHeight >= UINT32_MAX) { return {}; } int bufferWidth = mActiveBuffer->getWidth(); int bufferHeight = mActiveBuffer->getHeight(); if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { std::swap(bufferWidth, bufferHeight); } float sx = activeWidth / static_cast(bufferWidth); float sy = activeHeight / static_cast(bufferHeight); ui::Transform extraParentScaling; extraParentScaling.set(sx, 0, 0, sy); return extraParentScaling; } ui::Transform Layer::getTransformWithScale(const ui::Transform& bufferScaleTransform) const { // We need to mirror this scaling to child surfaces or we will break the contract where WM can // treat child surfaces as pixels in the parent surface. if (!isFixedSize() || !mActiveBuffer) { return mEffectiveTransform; } return mEffectiveTransform * bufferScaleTransform; } FloatRect Layer::getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const { // We need the pre scaled layer bounds when computing child bounds to make sure the child is // cropped to its parent layer after any buffer transform scaling is applied. if (!isFixedSize() || !mActiveBuffer) { return mBounds; } return bufferScaleTransform.inverse().transform(mBounds); } void Layer::computeBounds(FloatRect parentBounds, ui::Transform parentTransform) { const State& s(getDrawingState()); // Calculate effective layer transform mEffectiveTransform = parentTransform * getActiveTransform(s); // Transform parent bounds to layer space parentBounds = getActiveTransform(s).inverse().transform(parentBounds); // Calculate source bounds mSourceBounds = computeSourceBounds(parentBounds); // Calculate bounds by croping diplay frame with layer crop and parent bounds FloatRect bounds = mSourceBounds; const Rect layerCrop = getCrop(s); if (!layerCrop.isEmpty()) { bounds = mSourceBounds.intersect(layerCrop.toFloatRect()); } bounds = bounds.intersect(parentBounds); mBounds = bounds; mScreenBounds = mEffectiveTransform.transform(mBounds); // Add any buffer scaling to the layer's children. ui::Transform bufferScaleTransform = getBufferScaleTransform(); for (const sp& child : mDrawingChildren) { child->computeBounds(getBoundsPreScaling(bufferScaleTransform), getTransformWithScale(bufferScaleTransform)); } } Rect Layer::getCroppedBufferSize(const State& s) const { Rect size = getBufferSize(s); Rect crop = getCrop(s); if (!crop.isEmpty() && size.isValid()) { size.intersect(crop, &size); } else if (!crop.isEmpty()) { size = crop; } return size; } void Layer::setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const { // Translate win by the rounded corners rect coordinates, to have all values in // layer coordinate space. win.left -= roundedCornersCrop.left; win.right -= roundedCornersCrop.left; win.top -= roundedCornersCrop.top; win.bottom -= roundedCornersCrop.top; } void Layer::latchGeometry(compositionengine::LayerFECompositionState& compositionState) const { const auto& drawingState{getDrawingState()}; auto alpha = static_cast(getAlpha()); auto blendMode = HWC2::BlendMode::None; if (!isOpaque(drawingState) || alpha != 1.0f) { blendMode = mPremultipliedAlpha ? HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage; } int type = drawingState.metadata.getInt32(METADATA_WINDOW_TYPE, 0); int appId = drawingState.metadata.getInt32(METADATA_OWNER_UID, 0); sp parent = mDrawingParent.promote(); if (parent.get()) { auto& parentState = parent->getDrawingState(); const int parentType = parentState.metadata.getInt32(METADATA_WINDOW_TYPE, 0); const int parentAppId = parentState.metadata.getInt32(METADATA_OWNER_UID, 0); if (parentType >= 0 || parentAppId >= 0) { type = parentType; appId = parentAppId; } } compositionState.geomLayerTransform = getTransform(); compositionState.geomInverseLayerTransform = compositionState.geomLayerTransform.inverse(); compositionState.geomBufferSize = getBufferSize(drawingState); compositionState.geomContentCrop = getContentCrop(); compositionState.geomCrop = getCrop(drawingState); compositionState.geomBufferTransform = mCurrentTransform; compositionState.geomBufferUsesDisplayInverseTransform = getTransformToDisplayInverse(); compositionState.geomActiveTransparentRegion = getActiveTransparentRegion(drawingState); compositionState.geomLayerBounds = mBounds; compositionState.geomUsesSourceCrop = usesSourceCrop(); compositionState.isSecure = isSecure(); compositionState.blendMode = static_cast(blendMode); compositionState.alpha = alpha; compositionState.type = type; compositionState.appId = appId; } void Layer::latchCompositionState(compositionengine::LayerFECompositionState& compositionState, bool includeGeometry) const { if (includeGeometry) { latchGeometry(compositionState); } } const char* Layer::getDebugName() const { return mName.string(); } void Layer::forceClientComposition(const sp& display) { const auto outputLayer = findOutputLayerForDisplay(display); LOG_FATAL_IF(!outputLayer); outputLayer->editState().forceClientComposition = true; } bool Layer::getForceClientComposition(const sp& display) { const auto outputLayer = findOutputLayerForDisplay(display); LOG_FATAL_IF(!outputLayer); return outputLayer->getState().forceClientComposition; } void Layer::updateCursorPosition(const sp& display) { const auto outputLayer = findOutputLayerForDisplay(display); LOG_FATAL_IF(!outputLayer); if (!outputLayer->getState().hwc || (*outputLayer->getState().hwc).hwcCompositionType != Hwc2::IComposerClient::Composition::CURSOR) { return; } // This gives us only the "orientation" component of the transform const State& s(getDrawingState()); // Apply the layer's transform, followed by the display's global transform // Here we're guaranteed that the layer's transform preserves rects Rect win = getCroppedBufferSize(s); // Subtract the transparent region and snap to the bounds Rect bounds = reduce(win, getActiveTransparentRegion(s)); Rect frame(getTransform().transform(bounds)); frame.intersect(display->getViewport(), &frame); auto& displayTransform = display->getTransform(); auto position = displayTransform.transform(frame); auto error = (*outputLayer->getState().hwc).hwcLayer->setCursorPosition(position.left, position.top); ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set cursor position " "to (%d, %d): %s (%d)", mName.string(), position.left, position.top, to_string(error).c_str(), static_cast(error)); } // --------------------------------------------------------------------------- // drawing... // --------------------------------------------------------------------------- bool Layer::prepareClientLayer(const RenderArea& renderArea, const Region& clip, Region& clearRegion, const bool supportProtectedContent, renderengine::LayerSettings& layer) { return prepareClientLayer(renderArea, clip, false, clearRegion, supportProtectedContent, layer); } bool Layer::prepareClientLayer(const RenderArea& renderArea, bool useIdentityTransform, Region& clearRegion, const bool supportProtectedContent, renderengine::LayerSettings& layer) { return prepareClientLayer(renderArea, Region(renderArea.getBounds()), useIdentityTransform, clearRegion, supportProtectedContent, layer); } bool Layer::prepareClientLayer(const RenderArea& /*renderArea*/, const Region& /*clip*/, bool useIdentityTransform, Region& /*clearRegion*/, const bool /*supportProtectedContent*/, renderengine::LayerSettings& layer) { FloatRect bounds = getBounds(); half alpha = getAlpha(); layer.geometry.boundaries = bounds; if (useIdentityTransform) { layer.geometry.positionTransform = mat4(); } else { const ui::Transform transform = getTransform(); mat4 m; m[0][0] = transform[0][0]; m[0][1] = transform[0][1]; m[0][3] = transform[0][2]; m[1][0] = transform[1][0]; m[1][1] = transform[1][1]; m[1][3] = transform[1][2]; m[3][0] = transform[2][0]; m[3][1] = transform[2][1]; m[3][3] = transform[2][2]; layer.geometry.positionTransform = m; } if (hasColorTransform()) { layer.colorTransform = getColorTransform(); } const auto roundedCornerState = getRoundedCornerState(); layer.geometry.roundedCornersRadius = roundedCornerState.radius; layer.geometry.roundedCornersCrop = roundedCornerState.cropRect; layer.alpha = alpha; layer.sourceDataspace = mCurrentDataSpace; return true; } void Layer::setCompositionType(const sp& display, Hwc2::IComposerClient::Composition type) { const auto outputLayer = findOutputLayerForDisplay(display); LOG_FATAL_IF(!outputLayer); LOG_FATAL_IF(!outputLayer->getState().hwc); auto& compositionState = outputLayer->editState(); ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", ((*compositionState.hwc).hwcLayer)->getId(), toString(type).c_str(), 1); if ((*compositionState.hwc).hwcCompositionType != type) { ALOGV(" actually setting"); (*compositionState.hwc).hwcCompositionType = type; auto error = (*compositionState.hwc) .hwcLayer->setCompositionType(static_cast(type)); ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set " "composition type %s: %s (%d)", mName.string(), toString(type).c_str(), to_string(error).c_str(), static_cast(error)); } } Hwc2::IComposerClient::Composition Layer::getCompositionType( const sp& display) const { const auto outputLayer = findOutputLayerForDisplay(display); LOG_FATAL_IF(!outputLayer); return outputLayer->getState().hwc ? (*outputLayer->getState().hwc).hwcCompositionType : Hwc2::IComposerClient::Composition::CLIENT; } bool Layer::getClearClientTarget(const sp& display) const { const auto outputLayer = findOutputLayerForDisplay(display); LOG_FATAL_IF(!outputLayer); return outputLayer->getState().clearClientTarget; } bool Layer::addSyncPoint(const std::shared_ptr& point) { if (point->getFrameNumber() <= mCurrentFrameNumber) { // Don't bother with a SyncPoint, since we've already latched the // relevant frame return false; } if (isRemovedFromCurrentState()) { return false; } Mutex::Autolock lock(mLocalSyncPointMutex); mLocalSyncPoints.push_back(point); return true; } // ---------------------------------------------------------------------------- // local state // ---------------------------------------------------------------------------- void Layer::computeGeometry(const RenderArea& renderArea, renderengine::Mesh& mesh, bool useIdentityTransform) const { const ui::Transform renderAreaTransform(renderArea.getTransform()); FloatRect win = getBounds(); vec2 lt = vec2(win.left, win.top); vec2 lb = vec2(win.left, win.bottom); vec2 rb = vec2(win.right, win.bottom); vec2 rt = vec2(win.right, win.top); ui::Transform layerTransform = getTransform(); if (!useIdentityTransform) { lt = layerTransform.transform(lt); lb = layerTransform.transform(lb); rb = layerTransform.transform(rb); rt = layerTransform.transform(rt); } renderengine::Mesh::VertexArray position(mesh.getPositionArray()); position[0] = renderAreaTransform.transform(lt); position[1] = renderAreaTransform.transform(lb); position[2] = renderAreaTransform.transform(rb); position[3] = renderAreaTransform.transform(rt); } bool Layer::isSecure() const { const State& s(mDrawingState); return (s.flags & layer_state_t::eLayerSecure); } void Layer::setVisibleRegion(const Region& visibleRegion) { // always called from main thread this->visibleRegion = visibleRegion; } void Layer::setCoveredRegion(const Region& coveredRegion) { // always called from main thread this->coveredRegion = coveredRegion; } void Layer::setVisibleNonTransparentRegion(const Region& setVisibleNonTransparentRegion) { // always called from main thread this->visibleNonTransparentRegion = setVisibleNonTransparentRegion; } void Layer::clearVisibilityRegions() { visibleRegion.clear(); visibleNonTransparentRegion.clear(); coveredRegion.clear(); } // ---------------------------------------------------------------------------- // transaction // ---------------------------------------------------------------------------- void Layer::pushPendingState() { if (!mCurrentState.modified) { return; } ATRACE_CALL(); // If this transaction is waiting on the receipt of a frame, generate a sync // point and send it to the remote layer. // We don't allow installing sync points after we are removed from the current state // as we won't be able to signal our end. if (mCurrentState.barrierLayer_legacy != nullptr && !isRemovedFromCurrentState()) { sp barrierLayer = mCurrentState.barrierLayer_legacy.promote(); if (barrierLayer == nullptr) { ALOGE("[%s] Unable to promote barrier Layer.", mName.string()); // If we can't promote the layer we are intended to wait on, // then it is expired or otherwise invalid. Allow this transaction // to be applied as per normal (no synchronization). mCurrentState.barrierLayer_legacy = nullptr; } else { auto syncPoint = std::make_shared(mCurrentState.frameNumber_legacy, this); if (barrierLayer->addSyncPoint(syncPoint)) { std::stringstream ss; ss << "Adding sync point " << mCurrentState.frameNumber_legacy; ATRACE_NAME(ss.str().c_str()); mRemoteSyncPoints.push_back(std::move(syncPoint)); } else { // We already missed the frame we're supposed to synchronize // on, so go ahead and apply the state update mCurrentState.barrierLayer_legacy = nullptr; } } // Wake us up to check if the frame has been received setTransactionFlags(eTransactionNeeded); mFlinger->setTransactionFlags(eTraversalNeeded); } mPendingStates.push_back(mCurrentState); ATRACE_INT(mTransactionName.string(), mPendingStates.size()); } void Layer::popPendingState(State* stateToCommit) { ATRACE_CALL(); *stateToCommit = mPendingStates[0]; mPendingStates.removeAt(0); ATRACE_INT(mTransactionName.string(), mPendingStates.size()); } bool Layer::applyPendingStates(State* stateToCommit) { bool stateUpdateAvailable = false; while (!mPendingStates.empty()) { if (mPendingStates[0].barrierLayer_legacy != nullptr) { if (mRemoteSyncPoints.empty()) { // If we don't have a sync point for this, apply it anyway. It // will be visually wrong, but it should keep us from getting // into too much trouble. ALOGE("[%s] No local sync point found", mName.string()); popPendingState(stateToCommit); stateUpdateAvailable = true; continue; } if (mRemoteSyncPoints.front()->getFrameNumber() != mPendingStates[0].frameNumber_legacy) { ALOGE("[%s] Unexpected sync point frame number found", mName.string()); // Signal our end of the sync point and then dispose of it mRemoteSyncPoints.front()->setTransactionApplied(); mRemoteSyncPoints.pop_front(); continue; } if (mRemoteSyncPoints.front()->frameIsAvailable()) { ATRACE_NAME("frameIsAvailable"); // Apply the state update popPendingState(stateToCommit); stateUpdateAvailable = true; // Signal our end of the sync point and then dispose of it mRemoteSyncPoints.front()->setTransactionApplied(); mRemoteSyncPoints.pop_front(); } else { ATRACE_NAME("!frameIsAvailable"); break; } } else { popPendingState(stateToCommit); stateUpdateAvailable = true; } } // If we still have pending updates, wake SurfaceFlinger back up and point // it at this layer so we can process them if (!mPendingStates.empty()) { setTransactionFlags(eTransactionNeeded); mFlinger->setTransactionFlags(eTraversalNeeded); } mCurrentState.modified = false; return stateUpdateAvailable; } uint32_t Layer::doTransactionResize(uint32_t flags, State* stateToCommit) { const State& s(getDrawingState()); const bool sizeChanged = (stateToCommit->requested_legacy.w != s.requested_legacy.w) || (stateToCommit->requested_legacy.h != s.requested_legacy.h); if (sizeChanged) { // the size changed, we need to ask our client to request a new buffer ALOGD_IF(DEBUG_RESIZE, "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n" " current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" " requested={ wh={%4u,%4u} }}\n" " drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" " requested={ wh={%4u,%4u} }}\n", this, getName().string(), mCurrentTransform, getEffectiveScalingMode(), stateToCommit->active_legacy.w, stateToCommit->active_legacy.h, stateToCommit->crop_legacy.left, stateToCommit->crop_legacy.top, stateToCommit->crop_legacy.right, stateToCommit->crop_legacy.bottom, stateToCommit->crop_legacy.getWidth(), stateToCommit->crop_legacy.getHeight(), stateToCommit->requested_legacy.w, stateToCommit->requested_legacy.h, s.active_legacy.w, s.active_legacy.h, s.crop_legacy.left, s.crop_legacy.top, s.crop_legacy.right, s.crop_legacy.bottom, s.crop_legacy.getWidth(), s.crop_legacy.getHeight(), s.requested_legacy.w, s.requested_legacy.h); } // Don't let Layer::doTransaction update the drawing state // if we have a pending resize, unless we are in fixed-size mode. // the drawing state will be updated only once we receive a buffer // with the correct size. // // In particular, we want to make sure the clip (which is part // of the geometry state) is latched together with the size but is // latched immediately when no resizing is involved. // // If a sideband stream is attached, however, we want to skip this // optimization so that transactions aren't missed when a buffer // never arrives // // In the case that we don't have a buffer we ignore other factors // and avoid entering the resizePending state. At a high level the // resizePending state is to avoid applying the state of the new buffer // to the old buffer. However in the state where we don't have an old buffer // there is no such concern but we may still be being used as a parent layer. const bool resizePending = ((stateToCommit->requested_legacy.w != stateToCommit->active_legacy.w) || (stateToCommit->requested_legacy.h != stateToCommit->active_legacy.h)) && (mActiveBuffer != nullptr); if (!isFixedSize()) { if (resizePending && mSidebandStream == nullptr) { flags |= eDontUpdateGeometryState; } } // Here we apply various requested geometry states, depending on our // latching configuration. See Layer.h for a detailed discussion of // how geometry latching is controlled. if (!(flags & eDontUpdateGeometryState)) { State& editCurrentState(getCurrentState()); // If mFreezeGeometryUpdates is true we are in the setGeometryAppliesWithResize // mode, which causes attributes which normally latch regardless of scaling mode, // to be delayed. We copy the requested state to the active state making sure // to respect these rules (again see Layer.h for a detailed discussion). // // There is an awkward asymmetry in the handling of the crop states in the position // states, as can be seen below. Largely this arises from position and transform // being stored in the same data structure while having different latching rules. // b/38182305 // // Careful that "stateToCommit" and editCurrentState may not begin as equivalent due to // applyPendingStates in the presence of deferred transactions. if (mFreezeGeometryUpdates) { float tx = stateToCommit->active_legacy.transform.tx(); float ty = stateToCommit->active_legacy.transform.ty(); stateToCommit->active_legacy = stateToCommit->requested_legacy; stateToCommit->active_legacy.transform.set(tx, ty); editCurrentState.active_legacy = stateToCommit->active_legacy; } else { editCurrentState.active_legacy = editCurrentState.requested_legacy; stateToCommit->active_legacy = stateToCommit->requested_legacy; } } return flags; } uint32_t Layer::doTransaction(uint32_t flags) { ATRACE_CALL(); if (mLayerDetached) { return flags; } if (mChildrenChanged) { flags |= eVisibleRegion; mChildrenChanged = false; } pushPendingState(); State c = getCurrentState(); if (!applyPendingStates(&c)) { return flags; } flags = doTransactionResize(flags, &c); const State& s(getDrawingState()); if (getActiveGeometry(c) != getActiveGeometry(s)) { // invalidate and recompute the visible regions if needed flags |= Layer::eVisibleRegion; } if (c.sequence != s.sequence) { // invalidate and recompute the visible regions if needed flags |= eVisibleRegion; this->contentDirty = true; // we may use linear filtering, if the matrix scales us const uint8_t type = getActiveTransform(c).getType(); mNeedsFiltering = (!getActiveTransform(c).preserveRects() || type >= ui::Transform::SCALE); } if (mCurrentState.inputInfoChanged) { flags |= eInputInfoChanged; mCurrentState.inputInfoChanged = false; } // Commit the transaction commitTransaction(c); mCurrentState.callbackHandles = {}; return flags; } void Layer::commitTransaction(const State& stateToCommit) { mDrawingState = stateToCommit; } uint32_t Layer::getTransactionFlags(uint32_t flags) { return mTransactionFlags.fetch_and(~flags) & flags; } uint32_t Layer::setTransactionFlags(uint32_t flags) { return mTransactionFlags.fetch_or(flags); } bool Layer::setPosition(float x, float y, bool immediate) { if (mCurrentState.requested_legacy.transform.tx() == x && mCurrentState.requested_legacy.transform.ty() == y) return false; mCurrentState.sequence++; // We update the requested and active position simultaneously because // we want to apply the position portion of the transform matrix immediately, // but still delay scaling when resizing a SCALING_MODE_FREEZE layer. mCurrentState.requested_legacy.transform.set(x, y); if (immediate && !mFreezeGeometryUpdates) { // Here we directly update the active state // unlike other setters, because we store it within // the transform, but use different latching rules. // b/38182305 mCurrentState.active_legacy.transform.set(x, y); } mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setChildLayer(const sp& childLayer, int32_t z) { ssize_t idx = mCurrentChildren.indexOf(childLayer); if (idx < 0) { return false; } if (childLayer->setLayer(z)) { mCurrentChildren.removeAt(idx); mCurrentChildren.add(childLayer); return true; } return false; } bool Layer::setChildRelativeLayer(const sp& childLayer, const sp& relativeToHandle, int32_t relativeZ) { ssize_t idx = mCurrentChildren.indexOf(childLayer); if (idx < 0) { return false; } if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) { mCurrentChildren.removeAt(idx); mCurrentChildren.add(childLayer); return true; } return false; } bool Layer::setLayer(int32_t z) { if (mCurrentState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false; mCurrentState.sequence++; mCurrentState.z = z; mCurrentState.modified = true; // Discard all relative layering. if (mCurrentState.zOrderRelativeOf != nullptr) { sp strongRelative = mCurrentState.zOrderRelativeOf.promote(); if (strongRelative != nullptr) { strongRelative->removeZOrderRelative(this); } setZOrderRelativeOf(nullptr); } setTransactionFlags(eTransactionNeeded); return true; } void Layer::removeZOrderRelative(const wp& relative) { mCurrentState.zOrderRelatives.remove(relative); mCurrentState.sequence++; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); } void Layer::addZOrderRelative(const wp& relative) { mCurrentState.zOrderRelatives.add(relative); mCurrentState.modified = true; mCurrentState.sequence++; setTransactionFlags(eTransactionNeeded); } void Layer::setZOrderRelativeOf(const wp& relativeOf) { mCurrentState.zOrderRelativeOf = relativeOf; mCurrentState.sequence++; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); } bool Layer::setRelativeLayer(const sp& relativeToHandle, int32_t relativeZ) { sp handle = static_cast(relativeToHandle.get()); if (handle == nullptr) { return false; } sp relative = handle->owner.promote(); if (relative == nullptr) { return false; } if (mCurrentState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) && mCurrentState.zOrderRelativeOf == relative) { return false; } mCurrentState.sequence++; mCurrentState.modified = true; mCurrentState.z = relativeZ; auto oldZOrderRelativeOf = mCurrentState.zOrderRelativeOf.promote(); if (oldZOrderRelativeOf != nullptr) { oldZOrderRelativeOf->removeZOrderRelative(this); } setZOrderRelativeOf(relative); relative->addZOrderRelative(this); setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setSize(uint32_t w, uint32_t h) { if (mCurrentState.requested_legacy.w == w && mCurrentState.requested_legacy.h == h) return false; mCurrentState.requested_legacy.w = w; mCurrentState.requested_legacy.h = h; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); // record the new size, from this point on, when the client request // a buffer, it'll get the new size. setDefaultBufferSize(mCurrentState.requested_legacy.w, mCurrentState.requested_legacy.h); return true; } bool Layer::setAlpha(float alpha) { if (mCurrentState.color.a == alpha) return false; mCurrentState.sequence++; mCurrentState.color.a = alpha; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace) { if (!mCurrentState.bgColorLayer && alpha == 0) { return false; } mCurrentState.sequence++; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); if (!mCurrentState.bgColorLayer && alpha != 0) { // create background color layer if one does not yet exist uint32_t flags = ISurfaceComposerClient::eFXSurfaceColor; const String8& name = mName + "BackgroundColorLayer"; mCurrentState.bgColorLayer = new ColorLayer( LayerCreationArgs(mFlinger.get(), nullptr, name, mSystemName, 0, 0, flags, LayerMetadata())); // add to child list addChild(mCurrentState.bgColorLayer); mFlinger->mLayersAdded = true; // set up SF to handle added color layer if (isRemovedFromCurrentState()) { mCurrentState.bgColorLayer->onRemovedFromCurrentState(); } mFlinger->setTransactionFlags(eTransactionNeeded); } else if (mCurrentState.bgColorLayer && alpha == 0) { mCurrentState.bgColorLayer->reparent(nullptr); mCurrentState.bgColorLayer = nullptr; return true; } mCurrentState.bgColorLayer->setColor(color); mCurrentState.bgColorLayer->setLayer(std::numeric_limits::min()); mCurrentState.bgColorLayer->setAlpha(alpha); mCurrentState.bgColorLayer->setDataspace(dataspace); return true; } bool Layer::setCornerRadius(float cornerRadius) { if (mCurrentState.cornerRadius == cornerRadius) return false; mCurrentState.sequence++; mCurrentState.cornerRadius = cornerRadius; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix, bool allowNonRectPreservingTransforms) { ui::Transform t; t.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy); if (!allowNonRectPreservingTransforms && !t.preserveRects()) { ALOGW("Attempt to set rotation matrix without permission ACCESS_SURFACE_FLINGER ignored"); return false; } mCurrentState.sequence++; mCurrentState.requested_legacy.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy); mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setTransparentRegionHint(const Region& transparent) { mCurrentState.requestedTransparentRegion_legacy = transparent; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setFlags(uint8_t flags, uint8_t mask) { const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask); if (mCurrentState.flags == newFlags) return false; mCurrentState.sequence++; mCurrentState.flags = newFlags; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setCrop_legacy(const Rect& crop, bool immediate) { if (mCurrentState.requestedCrop_legacy == crop) return false; mCurrentState.sequence++; mCurrentState.requestedCrop_legacy = crop; if (immediate && !mFreezeGeometryUpdates) { mCurrentState.crop_legacy = crop; } mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setOverrideScalingMode(int32_t scalingMode) { if (scalingMode == mOverrideScalingMode) return false; mOverrideScalingMode = scalingMode; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setMetadata(const LayerMetadata& data) { if (!mCurrentState.metadata.merge(data, true /* eraseEmpty */)) return false; mCurrentState.sequence++; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setLayerStack(uint32_t layerStack) { if (mCurrentState.layerStack == layerStack) return false; mCurrentState.sequence++; mCurrentState.layerStack = layerStack; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setColorSpaceAgnostic(const bool agnostic) { if (mCurrentState.colorSpaceAgnostic == agnostic) { return false; } mCurrentState.sequence++; mCurrentState.colorSpaceAgnostic = agnostic; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } uint32_t Layer::getLayerStack() const { auto p = mDrawingParent.promote(); if (p == nullptr) { return getDrawingState().layerStack; } return p->getLayerStack(); } void Layer::deferTransactionUntil_legacy(const sp& barrierLayer, uint64_t frameNumber) { ATRACE_CALL(); mCurrentState.barrierLayer_legacy = barrierLayer; mCurrentState.frameNumber_legacy = frameNumber; // We don't set eTransactionNeeded, because just receiving a deferral // request without any other state updates shouldn't actually induce a delay mCurrentState.modified = true; pushPendingState(); mCurrentState.barrierLayer_legacy = nullptr; mCurrentState.frameNumber_legacy = 0; mCurrentState.modified = false; } void Layer::deferTransactionUntil_legacy(const sp& barrierHandle, uint64_t frameNumber) { sp handle = static_cast(barrierHandle.get()); deferTransactionUntil_legacy(handle->owner.promote(), frameNumber); } // ---------------------------------------------------------------------------- // pageflip handling... // ---------------------------------------------------------------------------- bool Layer::isHiddenByPolicy() const { const State& s(mDrawingState); const auto& parent = mDrawingParent.promote(); if (parent != nullptr && parent->isHiddenByPolicy()) { return true; } if (usingRelativeZ(LayerVector::StateSet::Drawing)) { auto zOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote(); if (zOrderRelativeOf != nullptr) { if (zOrderRelativeOf->isHiddenByPolicy()) { return true; } } } return s.flags & layer_state_t::eLayerHidden; } uint32_t Layer::getEffectiveUsage(uint32_t usage) const { // TODO: should we do something special if mSecure is set? if (mProtectedByApp) { // need a hardware-protected path to external video sink usage |= GraphicBuffer::USAGE_PROTECTED; } if (mPotentialCursor) { usage |= GraphicBuffer::USAGE_CURSOR; } usage |= GraphicBuffer::USAGE_HW_COMPOSER; return usage; } void Layer::updateTransformHint(const sp& display) const { uint32_t orientation = 0; // Disable setting transform hint if the debug flag is set. if (!mFlinger->mDebugDisableTransformHint) { // The transform hint is used to improve performance, but we can // only have a single transform hint, it cannot // apply to all displays. const ui::Transform& planeTransform = display->getTransform(); orientation = planeTransform.getOrientation(); if (orientation & ui::Transform::ROT_INVALID) { orientation = 0; } } setTransformHint(orientation); } // ---------------------------------------------------------------------------- // debugging // ---------------------------------------------------------------------------- // TODO(marissaw): add new layer state info to layer debugging LayerDebugInfo Layer::getLayerDebugInfo() const { LayerDebugInfo info; const State& ds = getDrawingState(); info.mName = getName(); sp parent = getParent(); info.mParentName = (parent == nullptr ? std::string("none") : parent->getName().string()); info.mType = std::string(getTypeId()); info.mTransparentRegion = ds.activeTransparentRegion_legacy; info.mVisibleRegion = visibleRegion; info.mSurfaceDamageRegion = surfaceDamageRegion; info.mLayerStack = getLayerStack(); info.mX = ds.active_legacy.transform.tx(); info.mY = ds.active_legacy.transform.ty(); info.mZ = ds.z; info.mWidth = ds.active_legacy.w; info.mHeight = ds.active_legacy.h; info.mCrop = ds.crop_legacy; info.mColor = ds.color; info.mFlags = ds.flags; info.mPixelFormat = getPixelFormat(); info.mDataSpace = static_cast(mCurrentDataSpace); info.mMatrix[0][0] = ds.active_legacy.transform[0][0]; info.mMatrix[0][1] = ds.active_legacy.transform[0][1]; info.mMatrix[1][0] = ds.active_legacy.transform[1][0]; info.mMatrix[1][1] = ds.active_legacy.transform[1][1]; { sp buffer = mActiveBuffer; if (buffer != 0) { info.mActiveBufferWidth = buffer->getWidth(); info.mActiveBufferHeight = buffer->getHeight(); info.mActiveBufferStride = buffer->getStride(); info.mActiveBufferFormat = buffer->format; } else { info.mActiveBufferWidth = 0; info.mActiveBufferHeight = 0; info.mActiveBufferStride = 0; info.mActiveBufferFormat = 0; } } info.mNumQueuedFrames = getQueuedFrameCount(); info.mRefreshPending = isBufferLatched(); info.mIsOpaque = isOpaque(ds); info.mContentDirty = contentDirty; return info; } void Layer::miniDumpHeader(std::string& result) { result.append("-------------------------------"); result.append("-------------------------------"); result.append("-----------------------------\n"); result.append(" Layer name\n"); result.append(" System name\n"); result.append(" Z | "); result.append(" Window Type | "); result.append(" Comp Type | "); result.append(" Transform | "); result.append(" Disp Frame (LTRB) | "); result.append(" Source Crop (LTRB)\n"); result.append("-------------------------------"); result.append("-------------------------------"); result.append("-----------------------------\n"); } void Layer::miniDump(std::string& result, const sp& displayDevice) const { auto outputLayer = findOutputLayerForDisplay(displayDevice); if (!outputLayer) { return; } std::string name; if (mName.length() > 77) { std::string shortened; shortened.append(mName.string(), 36); shortened.append("[...]"); shortened.append(mName.string() + (mName.length() - 36), 36); name = shortened; } else { name = std::string(mName.string(), mName.size()); } StringAppendF(&result, " %s\n", name.c_str()); StringAppendF(&result, " %s\n", mSystemName.c_str()); const State& layerState(getDrawingState()); const auto& compositionState = outputLayer->getState(); if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) { StringAppendF(&result, " rel %6d | ", layerState.z); } else { StringAppendF(&result, " %10d | ", layerState.z); } StringAppendF(&result, " %10d | ", mWindowType); StringAppendF(&result, "%10s | ", toString(getCompositionType(displayDevice)).c_str()); StringAppendF(&result, "%10s | ", toString(getCompositionLayer() ? compositionState.bufferTransform : static_cast(0)) .c_str()); const Rect& frame = compositionState.displayFrame; StringAppendF(&result, "%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom); const FloatRect& crop = compositionState.sourceCrop; StringAppendF(&result, "%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top, crop.right, crop.bottom); result.append("- - - - - - - - - - - - - - - -"); result.append("- - - - - - - - - - - - - - - -"); result.append("- - - - - - - - - - - - - - -\n"); } void Layer::dumpFrameStats(std::string& result) const { mFrameTracker.dumpStats(result); } void Layer::clearFrameStats() { mFrameTracker.clearStats(); } void Layer::logFrameStats() { mFrameTracker.logAndResetStats(mName); } void Layer::getFrameStats(FrameStats* outStats) const { mFrameTracker.getStats(outStats); } const char* Layer::systemName() const{ return mSystemName.string(); } const String8& Layer::getSystemName() const{ return mSystemName; } void Layer::dumpFrameEvents(std::string& result) { StringAppendF(&result, "- Layer %s (%s, %p)\n", getName().string(), getTypeId(), this); Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.checkFencesForCompletion(); mFrameEventHistory.dump(result); } void Layer::onDisconnect() { Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.onDisconnect(); mFlinger->mTimeStats->onDestroy(getSequence()); } void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps, FrameEventHistoryDelta* outDelta) { if (newTimestamps) { mFlinger->mTimeStats->setPostTime(getSequence(), newTimestamps->frameNumber, getName().c_str(), newTimestamps->postedTime); } Mutex::Autolock lock(mFrameEventHistoryMutex); if (newTimestamps) { // If there are any unsignaled fences in the aquire timeline at this // point, the previously queued frame hasn't been latched yet. Go ahead // and try to get the signal time here so the syscall is taken out of // the main thread's critical path. mAcquireTimeline.updateSignalTimes(); // Push the new fence after updating since it's likely still pending. mAcquireTimeline.push(newTimestamps->acquireFence); mFrameEventHistory.addQueue(*newTimestamps); } if (outDelta) { mFrameEventHistory.getAndResetDelta(outDelta); } } size_t Layer::getChildrenCount() const { size_t count = 0; for (const sp& child : mCurrentChildren) { count += 1 + child->getChildrenCount(); } return count; } void Layer::addChild(const sp& layer) { mChildrenChanged = true; setTransactionFlags(eTransactionNeeded); mCurrentChildren.add(layer); layer->setParent(this); } ssize_t Layer::removeChild(const sp& layer) { mChildrenChanged = true; setTransactionFlags(eTransactionNeeded); layer->setParent(nullptr); return mCurrentChildren.remove(layer); } bool Layer::reparentChildren(const sp& newParentHandle) { sp handle = nullptr; sp newParent = nullptr; if (newParentHandle == nullptr) { return false; } handle = static_cast(newParentHandle.get()); newParent = handle->owner.promote(); if (newParent == nullptr) { ALOGE("Unable to promote Layer handle"); return false; } if (attachChildren()) { setTransactionFlags(eTransactionNeeded); } for (const sp& child : mCurrentChildren) { newParent->addChild(child); } mCurrentChildren.clear(); return true; } void Layer::setChildrenDrawingParent(const sp& newParent) { for (const sp& child : mDrawingChildren) { child->mDrawingParent = newParent; child->computeBounds(newParent->mBounds, newParent->getTransformWithScale( newParent->getBufferScaleTransform())); } } bool Layer::reparent(const sp& newParentHandle) { bool callSetTransactionFlags = false; // While layers are detached, we allow most operations // and simply halt performing the actual transaction. However // for reparent != null we would enter the mRemovedFromCurrentState // state, regardless of whether doTransaction was called, and // so we need to prevent the update here. if (mLayerDetached && newParentHandle == nullptr) { return false; } sp newParent; if (newParentHandle != nullptr) { auto handle = static_cast(newParentHandle.get()); newParent = handle->owner.promote(); if (newParent == nullptr) { ALOGE("Unable to promote Layer handle"); return false; } if (newParent == this) { ALOGE("Invalid attempt to reparent Layer (%s) to itself", getName().c_str()); return false; } } sp parent = getParent(); if (parent != nullptr) { parent->removeChild(this); } if (newParentHandle != nullptr) { newParent->addChild(this); if (!newParent->isRemovedFromCurrentState()) { addToCurrentState(); } else { onRemovedFromCurrentState(); } if (mLayerDetached) { mLayerDetached = false; callSetTransactionFlags = true; } } else { onRemovedFromCurrentState(); } if (callSetTransactionFlags || attachChildren()) { setTransactionFlags(eTransactionNeeded); } return true; } bool Layer::detachChildren() { for (const sp& child : mCurrentChildren) { sp parentClient = mClientRef.promote(); sp client(child->mClientRef.promote()); if (client != nullptr && parentClient != client) { child->mLayerDetached = true; child->detachChildren(); child->removeRemoteSyncPoints(); } } return true; } bool Layer::attachChildren() { bool changed = false; for (const sp& child : mCurrentChildren) { sp parentClient = mClientRef.promote(); sp client(child->mClientRef.promote()); if (client != nullptr && parentClient != client) { if (child->mLayerDetached) { child->mLayerDetached = false; changed = true; } changed |= child->attachChildren(); } } return changed; } bool Layer::setColorTransform(const mat4& matrix) { static const mat4 identityMatrix = mat4(); if (mCurrentState.colorTransform == matrix) { return false; } ++mCurrentState.sequence; mCurrentState.colorTransform = matrix; mCurrentState.hasColorTransform = matrix != identityMatrix; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } mat4 Layer::getColorTransform() const { mat4 colorTransform = mat4(getDrawingState().colorTransform); if (sp parent = mDrawingParent.promote(); parent != nullptr) { colorTransform = parent->getColorTransform() * colorTransform; } return colorTransform; } bool Layer::hasColorTransform() const { bool hasColorTransform = getDrawingState().hasColorTransform; if (sp parent = mDrawingParent.promote(); parent != nullptr) { hasColorTransform = hasColorTransform || parent->hasColorTransform(); } return hasColorTransform; } bool Layer::isLegacyDataSpace() const { // return true when no higher bits are set return !(mCurrentDataSpace & (ui::Dataspace::STANDARD_MASK | ui::Dataspace::TRANSFER_MASK | ui::Dataspace::RANGE_MASK)); } void Layer::setParent(const sp& layer) { mCurrentParent = layer; } int32_t Layer::getZ() const { return mDrawingState.z; } bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) const { const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const State& state = useDrawing ? mDrawingState : mCurrentState; return state.zOrderRelativeOf != nullptr; } __attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList( LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) { LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, "makeTraversalList received invalid stateSet"); const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; const State& state = useDrawing ? mDrawingState : mCurrentState; if (state.zOrderRelatives.size() == 0) { *outSkipRelativeZUsers = true; return children; } LayerVector traverse(stateSet); for (const wp& weakRelative : state.zOrderRelatives) { sp strongRelative = weakRelative.promote(); if (strongRelative != nullptr) { traverse.add(strongRelative); } } for (const sp& child : children) { const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState; if (childState.zOrderRelativeOf != nullptr) { continue; } traverse.add(child); } return traverse; } /** * Negatively signed relatives are before 'this' in Z-order. */ void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { // In the case we have other layers who are using a relative Z to us, makeTraversalList will // produce a new list for traversing, including our relatives, and not including our children // who are relatives of another surface. In the case that there are no relative Z, // makeTraversalList returns our children directly to avoid significant overhead. // However in this case we need to take the responsibility for filtering children which // are relatives of another surface here. bool skipRelativeZUsers = false; const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); size_t i = 0; for (; i < list.size(); i++) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } if (relative->getZ() >= 0) { break; } relative->traverseInZOrder(stateSet, visitor); } visitor(this); for (; i < list.size(); i++) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } relative->traverseInZOrder(stateSet, visitor); } } /** * Positively signed relatives are before 'this' in reverse Z-order. */ void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { // See traverseInZOrder for documentation. bool skipRelativeZUsers = false; LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); int32_t i = 0; for (i = int32_t(list.size()) - 1; i >= 0; i--) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } if (relative->getZ() < 0) { break; } relative->traverseInReverseZOrder(stateSet, visitor); } visitor(this); for (; i >= 0; i--) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } relative->traverseInReverseZOrder(stateSet, visitor); } } LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet, const std::vector& layersInTree) { LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, "makeTraversalList received invalid stateSet"); const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; const State& state = useDrawing ? mDrawingState : mCurrentState; LayerVector traverse(stateSet); for (const wp& weakRelative : state.zOrderRelatives) { sp strongRelative = weakRelative.promote(); // Only add relative layers that are also descendents of the top most parent of the tree. // If a relative layer is not a descendent, then it should be ignored. if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) { traverse.add(strongRelative); } } for (const sp& child : children) { const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState; // If a layer has a relativeOf layer, only ignore if the layer it's relative to is a // descendent of the top most parent of the tree. If it's not a descendent, then just add // the child here since it won't be added later as a relative. if (std::binary_search(layersInTree.begin(), layersInTree.end(), childState.zOrderRelativeOf.promote().get())) { continue; } traverse.add(child); } return traverse; } void Layer::traverseChildrenInZOrderInner(const std::vector& layersInTree, LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree); size_t i = 0; for (; i < list.size(); i++) { const auto& relative = list[i]; if (relative->getZ() >= 0) { break; } relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); } visitor(this); for (; i < list.size(); i++) { const auto& relative = list[i]; relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); } } std::vector Layer::getLayersInTree(LayerVector::StateSet stateSet) { const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; std::vector layersInTree = {this}; for (size_t i = 0; i < children.size(); i++) { const auto& child = children[i]; std::vector childLayers = child->getLayersInTree(stateSet); layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend()); } return layersInTree; } void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { std::vector layersInTree = getLayersInTree(stateSet); std::sort(layersInTree.begin(), layersInTree.end()); traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); } ui::Transform Layer::getTransform() const { return mEffectiveTransform; } half Layer::getAlpha() const { const auto& p = mDrawingParent.promote(); half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf; return parentAlpha * getDrawingState().color.a; } half4 Layer::getColor() const { const half4 color(getDrawingState().color); return half4(color.r, color.g, color.b, getAlpha()); } Layer::RoundedCornerState Layer::getRoundedCornerState() const { const auto& p = mDrawingParent.promote(); if (p != nullptr) { RoundedCornerState parentState = p->getRoundedCornerState(); if (parentState.radius > 0) { ui::Transform t = getActiveTransform(getDrawingState()); t = t.inverse(); parentState.cropRect = t.transform(parentState.cropRect); // The rounded corners shader only accepts 1 corner radius for performance reasons, // but a transform matrix can define horizontal and vertical scales. // Let's take the average between both of them and pass into the shader, practically we // never do this type of transformation on windows anyway. parentState.radius *= (t[0][0] + t[1][1]) / 2.0f; return parentState; } } const float radius = getDrawingState().cornerRadius; return radius > 0 && getCrop(getDrawingState()).isValid() ? RoundedCornerState(getCrop(getDrawingState()).toFloatRect(), radius) : RoundedCornerState(); } void Layer::commitChildList() { for (size_t i = 0; i < mCurrentChildren.size(); i++) { const auto& child = mCurrentChildren[i]; child->commitChildList(); } mDrawingChildren = mCurrentChildren; mDrawingParent = mCurrentParent; } static wp extractLayerFromBinder(const wp& weakBinderHandle) { if (weakBinderHandle == nullptr) { return nullptr; } sp binderHandle = weakBinderHandle.promote(); if (binderHandle == nullptr) { return nullptr; } sp handle = static_cast(binderHandle.get()); if (handle == nullptr) { return nullptr; } return handle->owner; } void Layer::setInputInfo(const InputWindowInfo& info) { mCurrentState.inputInfo = info; mCurrentState.touchableRegionCrop = extractLayerFromBinder(info.touchableRegionCropHandle); mCurrentState.modified = true; mCurrentState.inputInfoChanged = true; setTransactionFlags(eTransactionNeeded); } void Layer::writeToProto(LayerProto* layerInfo, LayerVector::StateSet stateSet, uint32_t traceFlags) { const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; const State& state = useDrawing ? mDrawingState : mCurrentState; ui::Transform requestedTransform = state.active_legacy.transform; ui::Transform transform = getTransform(); if (traceFlags & SurfaceTracing::TRACE_CRITICAL) { layerInfo->set_id(sequence); layerInfo->set_name(getName().c_str()); layerInfo->set_type(String8(getTypeId())); for (const auto& child : children) { layerInfo->add_children(child->sequence); } for (const wp& weakRelative : state.zOrderRelatives) { sp strongRelative = weakRelative.promote(); if (strongRelative != nullptr) { layerInfo->add_relatives(strongRelative->sequence); } } LayerProtoHelper::writeToProto(state.activeTransparentRegion_legacy, [&]() { return layerInfo->mutable_transparent_region(); }); LayerProtoHelper::writeToProto(visibleRegion, [&]() { return layerInfo->mutable_visible_region(); }); LayerProtoHelper::writeToProto(surfaceDamageRegion, [&]() { return layerInfo->mutable_damage_region(); }); layerInfo->set_layer_stack(getLayerStack()); layerInfo->set_z(state.z); LayerProtoHelper::writePositionToProto(transform.tx(), transform.ty(), [&]() { return layerInfo->mutable_position(); }); LayerProtoHelper::writePositionToProto(requestedTransform.tx(), requestedTransform.ty(), [&]() { return layerInfo->mutable_requested_position(); }); LayerProtoHelper::writeSizeToProto(state.active_legacy.w, state.active_legacy.h, [&]() { return layerInfo->mutable_size(); }); LayerProtoHelper::writeToProto(state.crop_legacy, [&]() { return layerInfo->mutable_crop(); }); layerInfo->set_corner_radius(getRoundedCornerState().radius); layerInfo->set_is_opaque(isOpaque(state)); layerInfo->set_invalidate(contentDirty); layerInfo->set_is_protected(isProtected()); // XXX (b/79210409) mCurrentDataSpace is not protected layerInfo->set_dataspace( dataspaceDetails(static_cast(mCurrentDataSpace))); layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat())); LayerProtoHelper::writeToProto(getColor(), [&]() { return layerInfo->mutable_color(); }); LayerProtoHelper::writeToProto(state.color, [&]() { return layerInfo->mutable_requested_color(); }); layerInfo->set_flags(state.flags); LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform()); LayerProtoHelper::writeToProto(requestedTransform, layerInfo->mutable_requested_transform()); auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote(); if (parent != nullptr) { layerInfo->set_parent(parent->sequence); } else { layerInfo->set_parent(-1); } auto zOrderRelativeOf = state.zOrderRelativeOf.promote(); if (zOrderRelativeOf != nullptr) { layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence); } else { layerInfo->set_z_order_relative_of(-1); } auto buffer = mActiveBuffer; if (buffer != nullptr) { LayerProtoHelper::writeToProto(buffer, [&]() { return layerInfo->mutable_active_buffer(); }); LayerProtoHelper::writeToProto(ui::Transform(mCurrentTransform), layerInfo->mutable_buffer_transform()); } layerInfo->set_queued_frames(getQueuedFrameCount()); layerInfo->set_refresh_pending(isBufferLatched()); layerInfo->set_curr_frame(mCurrentFrameNumber); layerInfo->set_effective_scaling_mode(getEffectiveScalingMode()); for (const auto& pendingState : mPendingStates) { auto barrierLayer = pendingState.barrierLayer_legacy.promote(); if (barrierLayer != nullptr) { BarrierLayerProto* barrierLayerProto = layerInfo->add_barrier_layer(); barrierLayerProto->set_id(barrierLayer->sequence); barrierLayerProto->set_frame_number(pendingState.frameNumber_legacy); } } LayerProtoHelper::writeToProto(mBounds, [&]() { return layerInfo->mutable_bounds(); }); } if (traceFlags & SurfaceTracing::TRACE_INPUT) { LayerProtoHelper::writeToProto(state.inputInfo, state.touchableRegionCrop, [&]() { return layerInfo->mutable_input_window_info(); }); } if (traceFlags & SurfaceTracing::TRACE_EXTRA) { auto protoMap = layerInfo->mutable_metadata(); for (const auto& entry : state.metadata.mMap) { (*protoMap)[entry.first] = std::string(entry.second.cbegin(), entry.second.cend()); } LayerProtoHelper::writeToProto(mEffectiveTransform, layerInfo->mutable_effective_transform()); LayerProtoHelper::writeToProto(mSourceBounds, [&]() { return layerInfo->mutable_source_bounds(); }); LayerProtoHelper::writeToProto(mScreenBounds, [&]() { return layerInfo->mutable_screen_bounds(); }); } } void Layer::writeToProto(LayerProto* layerInfo, const sp& displayDevice, uint32_t traceFlags) { auto outputLayer = findOutputLayerForDisplay(displayDevice); if (!outputLayer) { return; } writeToProto(layerInfo, LayerVector::StateSet::Drawing, traceFlags); const auto& compositionState = outputLayer->getState(); const Rect& frame = compositionState.displayFrame; LayerProtoHelper::writeToProto(frame, [&]() { return layerInfo->mutable_hwc_frame(); }); const FloatRect& crop = compositionState.sourceCrop; LayerProtoHelper::writeToProto(crop, [&]() { return layerInfo->mutable_hwc_crop(); }); const int32_t transform = getCompositionLayer() ? static_cast(compositionState.bufferTransform) : 0; layerInfo->set_hwc_transform(transform); const int32_t compositionType = static_cast(compositionState.hwc ? (*compositionState.hwc).hwcCompositionType : Hwc2::IComposerClient::Composition::CLIENT); layerInfo->set_hwc_composition_type(compositionType); if (std::strcmp(getTypeId(), "BufferLayer") == 0 && static_cast(this)->isProtected()) { layerInfo->set_is_protected(true); } else { layerInfo->set_is_protected(false); } } bool Layer::isRemovedFromCurrentState() const { return mRemovedFromCurrentState; } // Debug helper for b/137560795 #define INT32_MIGHT_OVERFLOW(n) (((n) >= INT32_MAX / 2) || ((n) <= INT32_MIN / 2)) #define RECT_BOUNDS_INVALID(rect) \ (INT32_MIGHT_OVERFLOW((rect).left) || INT32_MIGHT_OVERFLOW((rect).right) || \ INT32_MIGHT_OVERFLOW((rect).bottom) || INT32_MIGHT_OVERFLOW((rect).top)) InputWindowInfo Layer::fillInputInfo() { InputWindowInfo info = mDrawingState.inputInfo; if (info.displayId == ADISPLAY_ID_NONE) { info.displayId = getLayerStack(); } ui::Transform t = getTransform(); const float xScale = t.sx(); const float yScale = t.sy(); float xSurfaceInset = info.surfaceInset; float ySurfaceInset = info.surfaceInset; if (xScale != 1.0f || yScale != 1.0f) { info.windowXScale *= 1.0f / xScale; info.windowYScale *= 1.0f / yScale; info.touchableRegion.scaleSelf(xScale, yScale); xSurfaceInset *= xScale; ySurfaceInset *= yScale; } // Transform layer size to screen space and inset it by surface insets. // If this is a portal window, set the touchableRegion to the layerBounds. Rect layerBounds = info.portalToDisplayId == ADISPLAY_ID_NONE ? getBufferSize(getDrawingState()) : info.touchableRegion.getBounds(); if (!layerBounds.isValid()) { layerBounds = getCroppedBufferSize(getDrawingState()); } layerBounds = t.transform(layerBounds); // debug check for b/137560795 { if (RECT_BOUNDS_INVALID(layerBounds)) { ALOGE("layer %s bounds are invalid (%" PRIi32 ", %" PRIi32 ", %" PRIi32 ", %" PRIi32 ")", mName.c_str(), layerBounds.left, layerBounds.top, layerBounds.right, layerBounds.bottom); std::string out; getTransform().dump(out, "Transform"); ALOGE("%s", out.c_str()); layerBounds.left = layerBounds.top = layerBounds.right = layerBounds.bottom = 0; } if (INT32_MIGHT_OVERFLOW(xSurfaceInset) || INT32_MIGHT_OVERFLOW(ySurfaceInset)) { ALOGE("layer %s surface inset are invalid (%" PRIi32 ", %" PRIi32 ")", mName.c_str(), int32_t(xSurfaceInset), int32_t(ySurfaceInset)); xSurfaceInset = ySurfaceInset = 0; } } layerBounds.inset(xSurfaceInset, ySurfaceInset, xSurfaceInset, ySurfaceInset); // Input coordinate should match the layer bounds. info.frameLeft = layerBounds.left; info.frameTop = layerBounds.top; info.frameRight = layerBounds.right; info.frameBottom = layerBounds.bottom; // Position the touchable region relative to frame screen location and restrict it to frame // bounds. info.touchableRegion = info.touchableRegion.translate(info.frameLeft, info.frameTop); info.visible = canReceiveInput(); auto cropLayer = mDrawingState.touchableRegionCrop.promote(); if (info.replaceTouchableRegionWithCrop) { if (cropLayer == nullptr) { info.touchableRegion = Region(Rect{mScreenBounds}); } else { info.touchableRegion = Region(Rect{cropLayer->mScreenBounds}); } } else if (cropLayer != nullptr) { info.touchableRegion = info.touchableRegion.intersect(Rect{cropLayer->mScreenBounds}); } return info; } bool Layer::hasInput() const { return mDrawingState.inputInfo.token != nullptr; } std::shared_ptr Layer::getCompositionLayer() const { return nullptr; } bool Layer::canReceiveInput() const { return !isHiddenByPolicy(); } compositionengine::OutputLayer* Layer::findOutputLayerForDisplay( const sp& display) const { return display->getCompositionDisplay()->getOutputLayerForLayer(getCompositionLayer().get()); } // --------------------------------------------------------------------------- }; // namespace android #if defined(__gl_h_) #error "don't include gl/gl.h in this file" #endif #if defined(__gl2_h_) #error "don't include gl2/gl2.h in this file" #endif