/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "BufferGenerator.h" namespace android { namespace { struct Color { uint8_t r; uint8_t g; uint8_t b; uint8_t a; static const Color RED; static const Color GREEN; static const Color BLUE; static const Color WHITE; static const Color BLACK; static const Color TRANSPARENT; }; const Color Color::RED{255, 0, 0, 255}; const Color Color::GREEN{0, 255, 0, 255}; const Color Color::BLUE{0, 0, 255, 255}; const Color Color::WHITE{255, 255, 255, 255}; const Color Color::BLACK{0, 0, 0, 255}; const Color Color::TRANSPARENT{0, 0, 0, 0}; using android::hardware::graphics::common::V1_1::BufferUsage; using namespace std::chrono_literals; std::ostream& operator<<(std::ostream& os, const Color& color) { os << int(color.r) << ", " << int(color.g) << ", " << int(color.b) << ", " << int(color.a); return os; } // Fill a region with the specified color. void fillANativeWindowBufferColor(const ANativeWindow_Buffer& buffer, const Rect& rect, const Color& color) { Rect r(0, 0, buffer.width, buffer.height); if (!r.intersect(rect, &r)) { return; } int32_t width = r.right - r.left; int32_t height = r.bottom - r.top; for (int32_t row = 0; row < height; row++) { uint8_t* dst = static_cast(buffer.bits) + (buffer.stride * (r.top + row) + r.left) * 4; for (int32_t column = 0; column < width; column++) { dst[0] = color.r; dst[1] = color.g; dst[2] = color.b; dst[3] = color.a; dst += 4; } } } // Fill a region with the specified color. void fillGraphicBufferColor(const sp& buffer, const Rect& rect, const Color& color) { Rect r(0, 0, buffer->width, buffer->height); if (!r.intersect(rect, &r)) { return; } int32_t width = r.right - r.left; int32_t height = r.bottom - r.top; uint8_t* pixels; buffer->lock(GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN, reinterpret_cast(&pixels)); for (int32_t row = 0; row < height; row++) { uint8_t* dst = pixels + (buffer->getStride() * (r.top + row) + r.left) * 4; for (int32_t column = 0; column < width; column++) { dst[0] = color.r; dst[1] = color.g; dst[2] = color.b; dst[3] = color.a; dst += 4; } } buffer->unlock(); } // Check if a region has the specified color. void expectBufferColor(const sp& outBuffer, uint8_t* pixels, const Rect& rect, const Color& color, uint8_t tolerance) { int32_t x = rect.left; int32_t y = rect.top; int32_t width = rect.right - rect.left; int32_t height = rect.bottom - rect.top; int32_t bufferWidth = int32_t(outBuffer->getWidth()); int32_t bufferHeight = int32_t(outBuffer->getHeight()); if (x + width > bufferWidth) { x = std::min(x, bufferWidth); width = bufferWidth - x; } if (y + height > bufferHeight) { y = std::min(y, bufferHeight); height = bufferHeight - y; } auto colorCompare = [tolerance](uint8_t a, uint8_t b) { uint8_t tmp = a >= b ? a - b : b - a; return tmp <= tolerance; }; for (int32_t j = 0; j < height; j++) { const uint8_t* src = pixels + (outBuffer->getStride() * (y + j) + x) * 4; for (int32_t i = 0; i < width; i++) { const uint8_t expected[4] = {color.r, color.g, color.b, color.a}; EXPECT_TRUE(std::equal(src, src + 4, expected, colorCompare)) << "pixel @ (" << x + i << ", " << y + j << "): " << "expected (" << color << "), " << "got (" << Color{src[0], src[1], src[2], src[3]} << ")"; src += 4; } } } } // anonymous namespace using Transaction = SurfaceComposerClient::Transaction; // Fill an RGBA_8888 formatted surface with a single color. static void fillSurfaceRGBA8(const sp& sc, uint8_t r, uint8_t g, uint8_t b, bool unlock = true) { ANativeWindow_Buffer outBuffer; sp s = sc->getSurface(); ASSERT_TRUE(s != nullptr); ASSERT_EQ(NO_ERROR, s->lock(&outBuffer, nullptr)); uint8_t* img = reinterpret_cast(outBuffer.bits); for (int y = 0; y < outBuffer.height; y++) { for (int x = 0; x < outBuffer.width; x++) { uint8_t* pixel = img + (4 * (y * outBuffer.stride + x)); pixel[0] = r; pixel[1] = g; pixel[2] = b; pixel[3] = 255; } } if (unlock) { ASSERT_EQ(NO_ERROR, s->unlockAndPost()); } } // A ScreenCapture is a screenshot from SurfaceFlinger that can be used to check // individual pixel values for testing purposes. class ScreenCapture : public RefBase { public: static void captureScreen(std::unique_ptr* sc) { captureScreen(sc, SurfaceComposerClient::getInternalDisplayToken()); } static void captureScreen(std::unique_ptr* sc, sp displayToken) { const auto sf = ComposerService::getComposerService(); SurfaceComposerClient::Transaction().apply(true); sp outBuffer; ASSERT_EQ(NO_ERROR, sf->captureScreen(displayToken, &outBuffer, Rect(), 0, 0, false)); *sc = std::make_unique(outBuffer); } static void captureLayers(std::unique_ptr* sc, sp& parentHandle, Rect crop = Rect::EMPTY_RECT, float frameScale = 1.0) { sp sf(ComposerService::getComposerService()); SurfaceComposerClient::Transaction().apply(true); sp outBuffer; ASSERT_EQ(NO_ERROR, sf->captureLayers(parentHandle, &outBuffer, crop, frameScale)); *sc = std::make_unique(outBuffer); } static void captureChildLayers(std::unique_ptr* sc, sp& parentHandle, Rect crop = Rect::EMPTY_RECT, float frameScale = 1.0) { sp sf(ComposerService::getComposerService()); SurfaceComposerClient::Transaction().apply(true); sp outBuffer; ASSERT_EQ(NO_ERROR, sf->captureLayers(parentHandle, &outBuffer, crop, frameScale, true)); *sc = std::make_unique(outBuffer); } static void captureChildLayersExcluding( std::unique_ptr* sc, sp& parentHandle, std::unordered_set, ISurfaceComposer::SpHash> excludeLayers) { sp sf(ComposerService::getComposerService()); SurfaceComposerClient::Transaction().apply(true); sp outBuffer; ASSERT_EQ(NO_ERROR, sf->captureLayers(parentHandle, &outBuffer, ui::Dataspace::V0_SRGB, ui::PixelFormat::RGBA_8888, Rect::EMPTY_RECT, excludeLayers, 1.0f, true)); *sc = std::make_unique(outBuffer); } void expectColor(const Rect& rect, const Color& color, uint8_t tolerance = 0) { ASSERT_EQ(HAL_PIXEL_FORMAT_RGBA_8888, mOutBuffer->getPixelFormat()); expectBufferColor(mOutBuffer, mPixels, rect, color, tolerance); } void expectBorder(const Rect& rect, const Color& color, uint8_t tolerance = 0) { ASSERT_EQ(HAL_PIXEL_FORMAT_RGBA_8888, mOutBuffer->getPixelFormat()); const bool leftBorder = rect.left > 0; const bool topBorder = rect.top > 0; const bool rightBorder = rect.right < int32_t(mOutBuffer->getWidth()); const bool bottomBorder = rect.bottom < int32_t(mOutBuffer->getHeight()); if (topBorder) { Rect top(rect.left, rect.top - 1, rect.right, rect.top); if (leftBorder) { top.left -= 1; } if (rightBorder) { top.right += 1; } expectColor(top, color, tolerance); } if (leftBorder) { Rect left(rect.left - 1, rect.top, rect.left, rect.bottom); expectColor(left, color, tolerance); } if (rightBorder) { Rect right(rect.right, rect.top, rect.right + 1, rect.bottom); expectColor(right, color, tolerance); } if (bottomBorder) { Rect bottom(rect.left, rect.bottom, rect.right, rect.bottom + 1); if (leftBorder) { bottom.left -= 1; } if (rightBorder) { bottom.right += 1; } expectColor(bottom, color, tolerance); } } void expectQuadrant(const Rect& rect, const Color& topLeft, const Color& topRight, const Color& bottomLeft, const Color& bottomRight, bool filtered = false, uint8_t tolerance = 0) { ASSERT_TRUE((rect.right - rect.left) % 2 == 0 && (rect.bottom - rect.top) % 2 == 0); const int32_t centerX = rect.left + (rect.right - rect.left) / 2; const int32_t centerY = rect.top + (rect.bottom - rect.top) / 2; // avoid checking borders due to unspecified filtering behavior const int32_t offsetX = filtered ? 2 : 0; const int32_t offsetY = filtered ? 2 : 0; expectColor(Rect(rect.left, rect.top, centerX - offsetX, centerY - offsetY), topLeft, tolerance); expectColor(Rect(centerX + offsetX, rect.top, rect.right, centerY - offsetY), topRight, tolerance); expectColor(Rect(rect.left, centerY + offsetY, centerX - offsetX, rect.bottom), bottomLeft, tolerance); expectColor(Rect(centerX + offsetX, centerY + offsetY, rect.right, rect.bottom), bottomRight, tolerance); } void checkPixel(uint32_t x, uint32_t y, uint8_t r, uint8_t g, uint8_t b) { ASSERT_EQ(HAL_PIXEL_FORMAT_RGBA_8888, mOutBuffer->getPixelFormat()); const uint8_t* pixel = mPixels + (4 * (y * mOutBuffer->getStride() + x)); if (r != pixel[0] || g != pixel[1] || b != pixel[2]) { String8 err(String8::format("pixel @ (%3d, %3d): " "expected [%3d, %3d, %3d], got [%3d, %3d, %3d]", x, y, r, g, b, pixel[0], pixel[1], pixel[2])); EXPECT_EQ(String8(), err) << err.string(); } } void expectFGColor(uint32_t x, uint32_t y) { checkPixel(x, y, 195, 63, 63); } void expectBGColor(uint32_t x, uint32_t y) { checkPixel(x, y, 63, 63, 195); } void expectChildColor(uint32_t x, uint32_t y) { checkPixel(x, y, 200, 200, 200); } explicit ScreenCapture(const sp& outBuffer) : mOutBuffer(outBuffer) { mOutBuffer->lock(GRALLOC_USAGE_SW_READ_OFTEN, reinterpret_cast(&mPixels)); } ~ScreenCapture() { mOutBuffer->unlock(); } private: sp mOutBuffer; uint8_t* mPixels = nullptr; }; class LayerTransactionTest : public ::testing::Test { protected: void SetUp() override { mClient = new SurfaceComposerClient; ASSERT_EQ(NO_ERROR, mClient->initCheck()) << "failed to create SurfaceComposerClient"; ASSERT_NO_FATAL_FAILURE(SetUpDisplay()); sp sf(ComposerService::getComposerService()); ASSERT_NO_FATAL_FAILURE(sf->getColorManagement(&mColorManagementUsed)); } virtual void TearDown() { mBlackBgSurface = 0; mClient->dispose(); mClient = 0; } virtual sp createLayer(const sp& client, const char* name, uint32_t width, uint32_t height, uint32_t flags = 0, SurfaceControl* parent = nullptr) { auto layer = createSurface(client, name, width, height, PIXEL_FORMAT_RGBA_8888, flags, parent); Transaction t; t.setLayerStack(layer, mDisplayLayerStack).setLayer(layer, mLayerZBase); status_t error = t.apply(); if (error != NO_ERROR) { ADD_FAILURE() << "failed to initialize SurfaceControl"; layer.clear(); } return layer; } virtual sp createSurface(const sp& client, const char* name, uint32_t width, uint32_t height, PixelFormat format, uint32_t flags, SurfaceControl* parent = nullptr) { auto layer = client->createSurface(String8(name), width, height, format, flags, parent); EXPECT_NE(nullptr, layer.get()) << "failed to create SurfaceControl"; return layer; } virtual sp createLayer(const char* name, uint32_t width, uint32_t height, uint32_t flags = 0, SurfaceControl* parent = nullptr) { return createLayer(mClient, name, width, height, flags, parent); } sp createColorLayer(const char* name, const Color& color, SurfaceControl* parent = nullptr) { auto colorLayer = createSurface(mClient, name, 0 /* buffer width */, 0 /* buffer height */, PIXEL_FORMAT_RGBA_8888, ISurfaceComposerClient::eFXSurfaceColor, parent); asTransaction([&](Transaction& t) { t.setColor(colorLayer, half3{color.r / 255.0f, color.g / 255.0f, color.b / 255.0f}); t.setAlpha(colorLayer, color.a / 255.0f); }); return colorLayer; } ANativeWindow_Buffer getBufferQueueLayerBuffer(const sp& layer) { // wait for previous transactions (such as setSize) to complete Transaction().apply(true); ANativeWindow_Buffer buffer = {}; EXPECT_EQ(NO_ERROR, layer->getSurface()->lock(&buffer, nullptr)); return buffer; } void postBufferQueueLayerBuffer(const sp& layer) { ASSERT_EQ(NO_ERROR, layer->getSurface()->unlockAndPost()); // wait for the newly posted buffer to be latched waitForLayerBuffers(); } virtual void fillBufferQueueLayerColor(const sp& layer, const Color& color, int32_t bufferWidth, int32_t bufferHeight) { ANativeWindow_Buffer buffer; ASSERT_NO_FATAL_FAILURE(buffer = getBufferQueueLayerBuffer(layer)); fillANativeWindowBufferColor(buffer, Rect(0, 0, bufferWidth, bufferHeight), color); postBufferQueueLayerBuffer(layer); } virtual void fillBufferStateLayerColor(const sp& layer, const Color& color, int32_t bufferWidth, int32_t bufferHeight) { sp buffer = new GraphicBuffer(bufferWidth, bufferHeight, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); fillGraphicBufferColor(buffer, Rect(0, 0, bufferWidth, bufferHeight), color); Transaction().setBuffer(layer, buffer).apply(); } void fillLayerColor(uint32_t mLayerType, const sp& layer, const Color& color, int32_t bufferWidth, int32_t bufferHeight) { switch (mLayerType) { case ISurfaceComposerClient::eFXSurfaceBufferQueue: fillBufferQueueLayerColor(layer, color, bufferWidth, bufferHeight); break; case ISurfaceComposerClient::eFXSurfaceBufferState: fillBufferStateLayerColor(layer, color, bufferWidth, bufferHeight); break; default: ASSERT_TRUE(false) << "unsupported layer type: " << mLayerType; } } void fillLayerQuadrant(uint32_t mLayerType, const sp& layer, int32_t bufferWidth, int32_t bufferHeight, const Color& topLeft, const Color& topRight, const Color& bottomLeft, const Color& bottomRight) { switch (mLayerType) { case ISurfaceComposerClient::eFXSurfaceBufferQueue: fillBufferQueueLayerQuadrant(layer, bufferWidth, bufferHeight, topLeft, topRight, bottomLeft, bottomRight); break; case ISurfaceComposerClient::eFXSurfaceBufferState: fillBufferStateLayerQuadrant(layer, bufferWidth, bufferHeight, topLeft, topRight, bottomLeft, bottomRight); break; default: ASSERT_TRUE(false) << "unsupported layer type: " << mLayerType; } } virtual void fillBufferQueueLayerQuadrant(const sp& layer, int32_t bufferWidth, int32_t bufferHeight, const Color& topLeft, const Color& topRight, const Color& bottomLeft, const Color& bottomRight) { ANativeWindow_Buffer buffer; ASSERT_NO_FATAL_FAILURE(buffer = getBufferQueueLayerBuffer(layer)); ASSERT_TRUE(bufferWidth % 2 == 0 && bufferHeight % 2 == 0); const int32_t halfW = bufferWidth / 2; const int32_t halfH = bufferHeight / 2; fillANativeWindowBufferColor(buffer, Rect(0, 0, halfW, halfH), topLeft); fillANativeWindowBufferColor(buffer, Rect(halfW, 0, bufferWidth, halfH), topRight); fillANativeWindowBufferColor(buffer, Rect(0, halfH, halfW, bufferHeight), bottomLeft); fillANativeWindowBufferColor(buffer, Rect(halfW, halfH, bufferWidth, bufferHeight), bottomRight); postBufferQueueLayerBuffer(layer); } virtual void fillBufferStateLayerQuadrant(const sp& layer, int32_t bufferWidth, int32_t bufferHeight, const Color& topLeft, const Color& topRight, const Color& bottomLeft, const Color& bottomRight) { sp buffer = new GraphicBuffer(bufferWidth, bufferHeight, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); ASSERT_TRUE(bufferWidth % 2 == 0 && bufferHeight % 2 == 0); const int32_t halfW = bufferWidth / 2; const int32_t halfH = bufferHeight / 2; fillGraphicBufferColor(buffer, Rect(0, 0, halfW, halfH), topLeft); fillGraphicBufferColor(buffer, Rect(halfW, 0, bufferWidth, halfH), topRight); fillGraphicBufferColor(buffer, Rect(0, halfH, halfW, bufferHeight), bottomLeft); fillGraphicBufferColor(buffer, Rect(halfW, halfH, bufferWidth, bufferHeight), bottomRight); Transaction().setBuffer(layer, buffer).setSize(layer, bufferWidth, bufferHeight).apply(); } std::unique_ptr screenshot() { std::unique_ptr screenshot; ScreenCapture::captureScreen(&screenshot); return screenshot; } void asTransaction(const std::function& exec) { Transaction t; exec(t); t.apply(true); } static status_t getBuffer(sp* outBuffer, sp* outFence) { static BufferGenerator bufferGenerator; return bufferGenerator.get(outBuffer, outFence); } sp mClient; sp mDisplay; uint32_t mDisplayWidth; uint32_t mDisplayHeight; uint32_t mDisplayLayerStack; Rect mDisplayRect = Rect::INVALID_RECT; // leave room for ~256 layers const int32_t mLayerZBase = std::numeric_limits::max() - 256; sp mBlackBgSurface; bool mColorManagementUsed; private: void SetUpDisplay() { mDisplay = mClient->getInternalDisplayToken(); ASSERT_FALSE(mDisplay == nullptr) << "failed to get display"; // get display width/height DisplayInfo info; ASSERT_EQ(NO_ERROR, SurfaceComposerClient::getDisplayInfo(mDisplay, &info)); mDisplayWidth = info.w; mDisplayHeight = info.h; mDisplayRect = Rect(static_cast(mDisplayWidth), static_cast(mDisplayHeight)); // After a new buffer is queued, SurfaceFlinger is notified and will // latch the new buffer on next vsync. Let's heuristically wait for 3 // vsyncs. mBufferPostDelay = int32_t(1e6 / info.fps) * 3; mDisplayLayerStack = 0; mBlackBgSurface = createSurface(mClient, "BaseSurface", 0 /* buffer width */, 0 /* buffer height */, PIXEL_FORMAT_RGBA_8888, ISurfaceComposerClient::eFXSurfaceColor); // set layer stack (b/68888219) Transaction t; t.setDisplayLayerStack(mDisplay, mDisplayLayerStack); t.setCrop_legacy(mBlackBgSurface, Rect(0, 0, mDisplayWidth, mDisplayHeight)); t.setLayerStack(mBlackBgSurface, mDisplayLayerStack); t.setColor(mBlackBgSurface, half3{0, 0, 0}); t.setLayer(mBlackBgSurface, mLayerZBase); t.apply(); } void waitForLayerBuffers() { // Request an empty transaction to get applied synchronously to ensure the buffer is // latched. Transaction().apply(true); usleep(mBufferPostDelay); } int32_t mBufferPostDelay; friend class LayerRenderPathTestHarness; }; enum class RenderPath { SCREENSHOT, VIRTUAL_DISPLAY }; class LayerRenderPathTestHarness { public: LayerRenderPathTestHarness(LayerTransactionTest* delegate, RenderPath renderPath) : mDelegate(delegate), mRenderPath(renderPath) {} std::unique_ptr getScreenCapture() { switch (mRenderPath) { case RenderPath::SCREENSHOT: return mDelegate->screenshot(); case RenderPath::VIRTUAL_DISPLAY: const auto mainDisplay = SurfaceComposerClient::getInternalDisplayToken(); DisplayInfo mainDisplayInfo; SurfaceComposerClient::getDisplayInfo(mainDisplay, &mainDisplayInfo); sp vDisplay; sp producer; sp consumer; sp itemConsumer; BufferQueue::createBufferQueue(&producer, &consumer); consumer->setConsumerName(String8("Virtual disp consumer")); consumer->setDefaultBufferSize(mainDisplayInfo.w, mainDisplayInfo.h); itemConsumer = new BufferItemConsumer(consumer, // Sample usage bits from screenrecord GRALLOC_USAGE_HW_VIDEO_ENCODER | GRALLOC_USAGE_SW_READ_OFTEN); vDisplay = SurfaceComposerClient::createDisplay(String8("VirtualDisplay"), false /*secure*/); SurfaceComposerClient::Transaction t; t.setDisplaySurface(vDisplay, producer); t.setDisplayLayerStack(vDisplay, 0); t.setDisplayProjection(vDisplay, mainDisplayInfo.orientation, Rect(mainDisplayInfo.viewportW, mainDisplayInfo.viewportH), Rect(mainDisplayInfo.w, mainDisplayInfo.h)); t.apply(); SurfaceComposerClient::Transaction().apply(true); BufferItem item; itemConsumer->acquireBuffer(&item, 0, true); auto sc = std::make_unique(item.mGraphicBuffer); itemConsumer->releaseBuffer(item); SurfaceComposerClient::destroyDisplay(vDisplay); return sc; } } protected: LayerTransactionTest* mDelegate; RenderPath mRenderPath; }; class LayerTypeTransactionHarness : public LayerTransactionTest { public: LayerTypeTransactionHarness(uint32_t layerType) : mLayerType(layerType) {} sp createLayer(const char* name, uint32_t width, uint32_t height, uint32_t flags = 0, SurfaceControl* parent = nullptr) { // if the flags already have a layer type specified, return an error if (flags & ISurfaceComposerClient::eFXSurfaceMask) { return nullptr; } return LayerTransactionTest::createLayer(name, width, height, flags | mLayerType, parent); } void fillLayerColor(const sp& layer, const Color& color, int32_t bufferWidth, int32_t bufferHeight) { ASSERT_NO_FATAL_FAILURE(LayerTransactionTest::fillLayerColor(mLayerType, layer, color, bufferWidth, bufferHeight)); } void fillLayerQuadrant(const sp& layer, int32_t bufferWidth, int32_t bufferHeight, const Color& topLeft, const Color& topRight, const Color& bottomLeft, const Color& bottomRight) { ASSERT_NO_FATAL_FAILURE(LayerTransactionTest::fillLayerQuadrant(mLayerType, layer, bufferWidth, bufferHeight, topLeft, topRight, bottomLeft, bottomRight)); } protected: uint32_t mLayerType; }; class LayerTypeTransactionTest : public LayerTypeTransactionHarness, public ::testing::WithParamInterface { public: LayerTypeTransactionTest() : LayerTypeTransactionHarness(GetParam()) {} }; class LayerTypeAndRenderTypeTransactionTest : public LayerTypeTransactionHarness, public ::testing::WithParamInterface> { public: LayerTypeAndRenderTypeTransactionTest() : LayerTypeTransactionHarness(std::get<0>(GetParam())), mRenderPathHarness(LayerRenderPathTestHarness(this, std::get<1>(GetParam()))) {} std::unique_ptr getScreenCapture() { return mRenderPathHarness.getScreenCapture(); } protected: LayerRenderPathTestHarness mRenderPathHarness; }; // Environment for starting up binder threads. This is required for testing // virtual displays, as BufferQueue parameters may be queried over binder. class BinderEnvironment : public ::testing::Environment { public: void SetUp() override { ProcessState::self()->startThreadPool(); } }; ::testing::Environment* const binderEnv = ::testing::AddGlobalTestEnvironment(new BinderEnvironment()); class LayerRenderTypeTransactionTest : public LayerTransactionTest, public ::testing::WithParamInterface { public: LayerRenderTypeTransactionTest() : mHarness(LayerRenderPathTestHarness(this, GetParam())) {} std::unique_ptr getScreenCapture() { return mHarness.getScreenCapture(); } void setRelativeZBasicHelper(uint32_t layerType); void setRelativeZGroupHelper(uint32_t layerType); void setAlphaBasicHelper(uint32_t layerType); void setBackgroundColorHelper(uint32_t layerType, bool priorColor, bool bufferFill, float alpha, Color finalColor); protected: LayerRenderPathTestHarness mHarness; }; INSTANTIATE_TEST_CASE_P( LayerTypeAndRenderTypeTransactionTests, LayerTypeAndRenderTypeTransactionTest, ::testing::Combine( ::testing::Values( static_cast(ISurfaceComposerClient::eFXSurfaceBufferQueue), static_cast(ISurfaceComposerClient::eFXSurfaceBufferState)), ::testing::Values(RenderPath::VIRTUAL_DISPLAY, RenderPath::SCREENSHOT))); INSTANTIATE_TEST_CASE_P(LayerRenderTypeTransactionTests, LayerRenderTypeTransactionTest, ::testing::Values(RenderPath::VIRTUAL_DISPLAY, RenderPath::SCREENSHOT)); INSTANTIATE_TEST_CASE_P( LayerTypeTransactionTests, LayerTypeTransactionTest, ::testing::Values(static_cast(ISurfaceComposerClient::eFXSurfaceBufferQueue), static_cast(ISurfaceComposerClient::eFXSurfaceBufferState))); TEST_P(LayerRenderTypeTransactionTest, SetPositionBasic_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); { SCOPED_TRACE("default position"); const Rect rect(0, 0, 32, 32); auto shot = getScreenCapture(); shot->expectColor(rect, Color::RED); shot->expectBorder(rect, Color::BLACK); } Transaction().setPosition(layer, 5, 10).apply(); { SCOPED_TRACE("new position"); const Rect rect(5, 10, 37, 42); auto shot = getScreenCapture(); shot->expectColor(rect, Color::RED); shot->expectBorder(rect, Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetPositionRounding_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // GLES requires only 4 bits of subpixel precision during rasterization // XXX GLES composition does not match HWC composition due to precision // loss (b/69315223) const float epsilon = 1.0f / 16.0f; Transaction().setPosition(layer, 0.5f - epsilon, 0.5f - epsilon).apply(); { SCOPED_TRACE("rounding down"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } Transaction().setPosition(layer, 0.5f + epsilon, 0.5f + epsilon).apply(); { SCOPED_TRACE("rounding up"); getScreenCapture()->expectColor(Rect(1, 1, 33, 33), Color::RED); } } TEST_P(LayerRenderTypeTransactionTest, SetPositionOutOfBounds_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); Transaction().setPosition(layer, -32, -32).apply(); { SCOPED_TRACE("negative coordinates"); getScreenCapture()->expectColor(mDisplayRect, Color::BLACK); } Transaction().setPosition(layer, mDisplayWidth, mDisplayHeight).apply(); { SCOPED_TRACE("positive coordinates"); getScreenCapture()->expectColor(mDisplayRect, Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetPositionPartiallyOutOfBounds_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // partially out of bounds Transaction().setPosition(layer, -30, -30).apply(); { SCOPED_TRACE("negative coordinates"); getScreenCapture()->expectColor(Rect(0, 0, 2, 2), Color::RED); } Transaction().setPosition(layer, mDisplayWidth - 2, mDisplayHeight - 2).apply(); { SCOPED_TRACE("positive coordinates"); getScreenCapture()->expectColor(Rect(mDisplayWidth - 2, mDisplayHeight - 2, mDisplayWidth, mDisplayHeight), Color::RED); } } TEST_P(LayerRenderTypeTransactionTest, SetPositionWithResize_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // setPosition is applied immediately by default, with or without resize // pending Transaction().setPosition(layer, 5, 10).setSize(layer, 64, 64).apply(); { SCOPED_TRACE("resize pending"); auto shot = getScreenCapture(); const Rect rect(5, 10, 37, 42); shot->expectColor(rect, Color::RED); shot->expectBorder(rect, Color::BLACK); } ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 64, 64)); { SCOPED_TRACE("resize applied"); getScreenCapture()->expectColor(Rect(5, 10, 69, 74), Color::RED); } } TEST_P(LayerRenderTypeTransactionTest, SetPositionWithNextResize_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // request setPosition to be applied with the next resize Transaction().setPosition(layer, 5, 10).setGeometryAppliesWithResize(layer).apply(); { SCOPED_TRACE("new position pending"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } Transaction().setPosition(layer, 15, 20).apply(); { SCOPED_TRACE("pending new position modified"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } Transaction().setSize(layer, 64, 64).apply(); { SCOPED_TRACE("resize pending"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } // finally resize and latch the buffer ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 64, 64)); { SCOPED_TRACE("new position applied"); getScreenCapture()->expectColor(Rect(15, 20, 79, 84), Color::RED); } } TEST_P(LayerRenderTypeTransactionTest, SetPositionWithNextResizeScaleToWindow_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // setPosition is not immediate even with SCALE_TO_WINDOW override Transaction() .setPosition(layer, 5, 10) .setSize(layer, 64, 64) .setOverrideScalingMode(layer, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW) .setGeometryAppliesWithResize(layer) .apply(); { SCOPED_TRACE("new position pending"); getScreenCapture()->expectColor(Rect(0, 0, 64, 64), Color::RED); } ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 64, 64)); { SCOPED_TRACE("new position applied"); getScreenCapture()->expectColor(Rect(5, 10, 69, 74), Color::RED); } } TEST_P(LayerRenderTypeTransactionTest, SetSizeBasic_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); Transaction().setSize(layer, 64, 64).apply(); { SCOPED_TRACE("resize pending"); auto shot = getScreenCapture(); const Rect rect(0, 0, 32, 32); shot->expectColor(rect, Color::RED); shot->expectBorder(rect, Color::BLACK); } ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 64, 64)); { SCOPED_TRACE("resize applied"); auto shot = getScreenCapture(); const Rect rect(0, 0, 64, 64); shot->expectColor(rect, Color::RED); shot->expectBorder(rect, Color::BLACK); } } TEST_P(LayerTypeAndRenderTypeTransactionTest, SetSizeInvalid) { // cannot test robustness against invalid sizes (zero or really huge) } TEST_P(LayerRenderTypeTransactionTest, SetSizeWithScaleToWindow_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // setSize is immediate with SCALE_TO_WINDOW, unlike setPosition Transaction() .setSize(layer, 64, 64) .setOverrideScalingMode(layer, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW) .apply(); getScreenCapture()->expectColor(Rect(0, 0, 64, 64), Color::RED); } TEST_P(LayerTypeAndRenderTypeTransactionTest, SetZBasic) { sp layerR; sp layerG; ASSERT_NO_FATAL_FAILURE(layerR = createLayer("test R", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerR, Color::RED, 32, 32)); ASSERT_NO_FATAL_FAILURE(layerG = createLayer("test G", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerG, Color::GREEN, 32, 32)); Transaction().setLayer(layerR, mLayerZBase + 1).apply(); { SCOPED_TRACE("layerR"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } Transaction().setLayer(layerG, mLayerZBase + 2).apply(); { SCOPED_TRACE("layerG"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::GREEN); } } TEST_P(LayerTypeAndRenderTypeTransactionTest, SetZNegative) { sp parent = LayerTransactionTest::createLayer("Parent", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceContainer); Transaction().setCrop_legacy(parent, Rect(0, 0, mDisplayWidth, mDisplayHeight)).apply(); sp layerR; sp layerG; ASSERT_NO_FATAL_FAILURE(layerR = createLayer("test R", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerR, Color::RED, 32, 32)); ASSERT_NO_FATAL_FAILURE(layerG = createLayer("test G", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerG, Color::GREEN, 32, 32)); Transaction() .reparent(layerR, parent->getHandle()) .reparent(layerG, parent->getHandle()) .apply(); Transaction().setLayer(layerR, -1).setLayer(layerG, -2).apply(); { SCOPED_TRACE("layerR"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 32), Color::RED); } Transaction().setLayer(layerR, -3).apply(); { SCOPED_TRACE("layerG"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 32), Color::GREEN); } } void LayerRenderTypeTransactionTest::setRelativeZBasicHelper(uint32_t layerType) { sp layerR; sp layerG; ASSERT_NO_FATAL_FAILURE(layerR = createLayer("test R", 32, 32, layerType)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerType, layerR, Color::RED, 32, 32)); ASSERT_NO_FATAL_FAILURE(layerG = createLayer("test G", 32, 32, layerType)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerType, layerG, Color::GREEN, 32, 32)); switch (layerType) { case ISurfaceComposerClient::eFXSurfaceBufferQueue: Transaction() .setPosition(layerG, 16, 16) .setRelativeLayer(layerG, layerR->getHandle(), 1) .apply(); break; case ISurfaceComposerClient::eFXSurfaceBufferState: Transaction() .setFrame(layerR, Rect(0, 0, 32, 32)) .setFrame(layerG, Rect(16, 16, 48, 48)) .setRelativeLayer(layerG, layerR->getHandle(), 1) .apply(); break; default: ASSERT_FALSE(true) << "Unsupported layer type"; } { SCOPED_TRACE("layerG above"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 16, 16), Color::RED); shot->expectColor(Rect(16, 16, 48, 48), Color::GREEN); } Transaction().setRelativeLayer(layerG, layerR->getHandle(), -1).apply(); { SCOPED_TRACE("layerG below"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 32), Color::RED); shot->expectColor(Rect(32, 32, 48, 48), Color::GREEN); } } TEST_P(LayerRenderTypeTransactionTest, SetRelativeZBasic_BufferQueue) { ASSERT_NO_FATAL_FAILURE(setRelativeZBasicHelper(ISurfaceComposerClient::eFXSurfaceBufferQueue)); } TEST_P(LayerRenderTypeTransactionTest, SetRelativeZBasic_BufferState) { ASSERT_NO_FATAL_FAILURE(setRelativeZBasicHelper(ISurfaceComposerClient::eFXSurfaceBufferState)); } TEST_P(LayerTypeTransactionTest, SetRelativeZNegative) { sp parent = LayerTransactionTest::createLayer("Parent", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceContainer); Transaction().setCrop_legacy(parent, Rect(0, 0, mDisplayWidth, mDisplayHeight)).apply(); sp layerR; sp layerG; sp layerB; ASSERT_NO_FATAL_FAILURE(layerR = createLayer("test R", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerR, Color::RED, 32, 32)); ASSERT_NO_FATAL_FAILURE(layerG = createLayer("test G", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerG, Color::GREEN, 32, 32)); ASSERT_NO_FATAL_FAILURE(layerB = createLayer("test B", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerB, Color::BLUE, 32, 32)); Transaction() .reparent(layerB, parent->getHandle()) .apply(); // layerR = mLayerZBase, layerG = layerR - 1, layerB = -2 Transaction().setRelativeLayer(layerG, layerR->getHandle(), -1).setLayer(layerB, -2).apply(); std::unique_ptr screenshot; // only layerB is in this range sp parentHandle = parent->getHandle(); ScreenCapture::captureLayers(&screenshot, parentHandle, Rect(0, 0, 32, 32)); screenshot->expectColor(Rect(0, 0, 32, 32), Color::BLUE); } TEST_P(LayerTypeTransactionTest, SetLayerAndRelative) { sp parent = LayerTransactionTest::createLayer("Parent", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor); sp childLayer; ASSERT_NO_FATAL_FAILURE( childLayer = LayerTransactionTest::createLayer("childLayer", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor, parent.get())); Transaction() .setColor(childLayer, half3{1.0f, 0.0f, 0.0f}) .setColor(parent, half3{0.0f, 0.0f, 0.0f}) .show(childLayer) .show(parent) .setCrop_legacy(parent, Rect(0, 0, mDisplayWidth, mDisplayHeight)) .setCrop_legacy(childLayer, Rect(0, 0, 20, 30)) .apply(); Transaction() .setRelativeLayer(childLayer, parent->getHandle(), -1) .setLayer(childLayer, 1) .apply(); { SCOPED_TRACE("setLayer above"); // Set layer should get applied and place the child above. std::unique_ptr screenshot; ScreenCapture::captureScreen(&screenshot); screenshot->expectColor(Rect(0, 0, 20, 30), Color::RED); } Transaction() .setLayer(childLayer, 1) .setRelativeLayer(childLayer, parent->getHandle(), -1) .apply(); { SCOPED_TRACE("setRelative below"); // Set relative layer should get applied and place the child below. std::unique_ptr screenshot; ScreenCapture::captureScreen(&screenshot); screenshot->expectColor(Rect(0, 0, 20, 30), Color::BLACK); } } TEST_P(LayerTypeTransactionTest, HideRelativeParentHidesLayer) { sp parent = LayerTransactionTest::createLayer("Parent", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor); sp relativeParent = LayerTransactionTest::createLayer("RelativeParent", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor); sp childLayer; ASSERT_NO_FATAL_FAILURE( childLayer = LayerTransactionTest::createLayer("childLayer", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor, parent.get())); Transaction() .setColor(childLayer, half3{1.0f, 0.0f, 0.0f}) .setColor(parent, half3{0.0f, 0.0f, 0.0f}) .setColor(relativeParent, half3{0.0f, 1.0f, 0.0f}) .show(childLayer) .show(parent) .show(relativeParent) .setLayer(parent, mLayerZBase - 1) .setLayer(relativeParent, mLayerZBase) .apply(); Transaction() .setRelativeLayer(childLayer, relativeParent->getHandle(), 1) .apply(); { SCOPED_TRACE("setLayer above"); // Set layer should get applied and place the child above. std::unique_ptr screenshot; ScreenCapture::captureScreen(&screenshot); screenshot->expectColor(Rect(0, 0, 20, 30), Color::RED); } Transaction() .hide(relativeParent) .apply(); { SCOPED_TRACE("hide relative parent"); // The relative should no longer be visible. std::unique_ptr screenshot; ScreenCapture::captureScreen(&screenshot); screenshot->expectColor(Rect(0, 0, 20, 30), Color::BLACK); } } void LayerRenderTypeTransactionTest::setRelativeZGroupHelper(uint32_t layerType) { sp layerR; sp layerG; sp layerB; ASSERT_NO_FATAL_FAILURE(layerR = createLayer("test", 32, 32, layerType)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerType, layerR, Color::RED, 32, 32)); ASSERT_NO_FATAL_FAILURE(layerG = createLayer("test", 32, 32, layerType)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerType, layerG, Color::GREEN, 32, 32)); ASSERT_NO_FATAL_FAILURE(layerB = createLayer("test", 32, 32, layerType)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerType, layerB, Color::BLUE, 32, 32)); // layerR = 0, layerG = layerR + 3, layerB = 2 switch (layerType) { case ISurfaceComposerClient::eFXSurfaceBufferQueue: Transaction() .setPosition(layerG, 8, 8) .setRelativeLayer(layerG, layerR->getHandle(), 3) .setPosition(layerB, 16, 16) .setLayer(layerB, mLayerZBase + 2) .apply(); break; case ISurfaceComposerClient::eFXSurfaceBufferState: Transaction() .setFrame(layerR, Rect(0, 0, 32, 32)) .setFrame(layerG, Rect(8, 8, 40, 40)) .setRelativeLayer(layerG, layerR->getHandle(), 3) .setFrame(layerB, Rect(16, 16, 48, 48)) .setLayer(layerB, mLayerZBase + 2) .apply(); break; default: ASSERT_FALSE(true) << "Unsupported layer type"; } { SCOPED_TRACE("(layerR < layerG) < layerB"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 8, 8), Color::RED); shot->expectColor(Rect(8, 8, 16, 16), Color::GREEN); shot->expectColor(Rect(16, 16, 48, 48), Color::BLUE); } // layerR = 4, layerG = layerR + 3, layerB = 2 Transaction().setLayer(layerR, mLayerZBase + 4).apply(); { SCOPED_TRACE("layerB < (layerR < layerG)"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 8, 8), Color::RED); shot->expectColor(Rect(8, 8, 40, 40), Color::GREEN); shot->expectColor(Rect(40, 40, 48, 48), Color::BLUE); } // layerR = 4, layerG = layerR - 3, layerB = 2 Transaction().setRelativeLayer(layerG, layerR->getHandle(), -3).apply(); { SCOPED_TRACE("layerB < (layerG < layerR)"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 32), Color::RED); shot->expectColor(Rect(32, 32, 40, 40), Color::GREEN); shot->expectColor(Rect(40, 40, 48, 48), Color::BLUE); } // restore to absolute z // layerR = 4, layerG = 0, layerB = 2 Transaction().setLayer(layerG, mLayerZBase).apply(); { SCOPED_TRACE("layerG < layerB < layerR"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 32), Color::RED); shot->expectColor(Rect(32, 32, 48, 48), Color::BLUE); } // layerR should not affect layerG anymore // layerR = 1, layerG = 0, layerB = 2 Transaction().setLayer(layerR, mLayerZBase + 1).apply(); { SCOPED_TRACE("layerG < layerR < layerB"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 16, 16), Color::RED); shot->expectColor(Rect(16, 16, 48, 48), Color::BLUE); } } TEST_P(LayerRenderTypeTransactionTest, SetRelativeZGroup_BufferQueue) { ASSERT_NO_FATAL_FAILURE(setRelativeZGroupHelper(ISurfaceComposerClient::eFXSurfaceBufferQueue)); } TEST_P(LayerRenderTypeTransactionTest, SetRelativeZGroup_BufferState) { ASSERT_NO_FATAL_FAILURE(setRelativeZGroupHelper(ISurfaceComposerClient::eFXSurfaceBufferState)); } TEST_P(LayerTypeAndRenderTypeTransactionTest, SetRelativeZBug64572777) { sp layerR; sp layerG; ASSERT_NO_FATAL_FAILURE(layerR = createLayer("test R", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerR, Color::RED, 32, 32)); ASSERT_NO_FATAL_FAILURE(layerG = createLayer("test G", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerG, Color::GREEN, 32, 32)); Transaction() .setPosition(layerG, 16, 16) .setRelativeLayer(layerG, layerR->getHandle(), 1) .apply(); layerG.clear(); // layerG should have been removed getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } TEST_P(LayerTypeAndRenderTypeTransactionTest, SetFlagsHidden) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layer, Color::RED, 32, 32)); Transaction().setFlags(layer, layer_state_t::eLayerHidden, layer_state_t::eLayerHidden).apply(); { SCOPED_TRACE("layer hidden"); getScreenCapture()->expectColor(mDisplayRect, Color::BLACK); } Transaction().setFlags(layer, 0, layer_state_t::eLayerHidden).apply(); { SCOPED_TRACE("layer shown"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } } TEST_P(LayerTypeAndRenderTypeTransactionTest, SetFlagsOpaque) { const Color translucentRed = {100, 0, 0, 100}; sp layerR; sp layerG; ASSERT_NO_FATAL_FAILURE(layerR = createLayer("test R", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerR, translucentRed, 32, 32)); ASSERT_NO_FATAL_FAILURE(layerG = createLayer("test G", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerG, Color::GREEN, 32, 32)); Transaction() .setLayer(layerR, mLayerZBase + 1) .setFlags(layerR, layer_state_t::eLayerOpaque, layer_state_t::eLayerOpaque) .apply(); { SCOPED_TRACE("layerR opaque"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), {100, 0, 0, 255}); } Transaction().setFlags(layerR, 0, layer_state_t::eLayerOpaque).apply(); { SCOPED_TRACE("layerR translucent"); const uint8_t g = uint8_t(255 - translucentRed.a); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), {100, g, 0, 255}); } } TEST_P(LayerTypeTransactionTest, SetFlagsSecure) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layer, Color::RED, 32, 32)); sp composer = ComposerService::getComposerService(); sp outBuffer; Transaction() .setFlags(layer, layer_state_t::eLayerSecure, layer_state_t::eLayerSecure) .apply(true); ASSERT_EQ(PERMISSION_DENIED, composer->captureScreen(mDisplay, &outBuffer, Rect(), 0, 0, false)); Transaction().setFlags(layer, 0, layer_state_t::eLayerSecure).apply(true); ASSERT_EQ(NO_ERROR, composer->captureScreen(mDisplay, &outBuffer, Rect(), 0, 0, false)); } /** RAII Wrapper around get/seteuid */ class UIDFaker { uid_t oldId; public: UIDFaker(uid_t uid) { oldId = geteuid(); seteuid(uid); } ~UIDFaker() { seteuid(oldId); } }; TEST_F(LayerTransactionTest, SetFlagsSecureEUidSystem) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); sp composer = ComposerService::getComposerService(); sp outBuffer; Transaction() .setFlags(layer, layer_state_t::eLayerSecure, layer_state_t::eLayerSecure) .apply(true); ASSERT_EQ(PERMISSION_DENIED, composer->captureScreen(mDisplay, &outBuffer, Rect(), 0, 0, false)); UIDFaker f(AID_SYSTEM); // By default the system can capture screenshots with secure layers but they // will be blacked out ASSERT_EQ(NO_ERROR, composer->captureScreen(mDisplay, &outBuffer, Rect(), 0, 0, false)); { SCOPED_TRACE("as system"); auto shot = screenshot(); shot->expectColor(Rect(0, 0, 32, 32), Color::BLACK); } // Here we pass captureSecureLayers = true and since we are AID_SYSTEM we should be able // to receive them...we are expected to take care with the results. bool outCapturedSecureLayers; ASSERT_EQ(NO_ERROR, composer->captureScreen(mDisplay, &outBuffer, outCapturedSecureLayers, ui::Dataspace::V0_SRGB, ui::PixelFormat::RGBA_8888, Rect(), 0, 0, false, ISurfaceComposer::eRotateNone, true)); ASSERT_EQ(true, outCapturedSecureLayers); ScreenCapture sc(outBuffer); sc.expectColor(Rect(0, 0, 32, 32), Color::RED); } TEST_P(LayerRenderTypeTransactionTest, SetTransparentRegionHintBasic_BufferQueue) { const Rect top(0, 0, 32, 16); const Rect bottom(0, 16, 32, 32); sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ANativeWindow_Buffer buffer; ASSERT_NO_FATAL_FAILURE(buffer = getBufferQueueLayerBuffer(layer)); ASSERT_NO_FATAL_FAILURE(fillANativeWindowBufferColor(buffer, top, Color::TRANSPARENT)); ASSERT_NO_FATAL_FAILURE(fillANativeWindowBufferColor(buffer, bottom, Color::RED)); // setTransparentRegionHint always applies to the following buffer Transaction().setTransparentRegionHint(layer, Region(top)).apply(); ASSERT_NO_FATAL_FAILURE(postBufferQueueLayerBuffer(layer)); { SCOPED_TRACE("top transparent"); auto shot = getScreenCapture(); shot->expectColor(top, Color::BLACK); shot->expectColor(bottom, Color::RED); } Transaction().setTransparentRegionHint(layer, Region(bottom)).apply(); { SCOPED_TRACE("transparent region hint pending"); auto shot = getScreenCapture(); shot->expectColor(top, Color::BLACK); shot->expectColor(bottom, Color::RED); } ASSERT_NO_FATAL_FAILURE(buffer = getBufferQueueLayerBuffer(layer)); ASSERT_NO_FATAL_FAILURE(fillANativeWindowBufferColor(buffer, top, Color::RED)); ASSERT_NO_FATAL_FAILURE(fillANativeWindowBufferColor(buffer, bottom, Color::TRANSPARENT)); ASSERT_NO_FATAL_FAILURE(postBufferQueueLayerBuffer(layer)); { SCOPED_TRACE("bottom transparent"); auto shot = getScreenCapture(); shot->expectColor(top, Color::RED); shot->expectColor(bottom, Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetTransparentRegionHintBasic_BufferState) { const Rect top(0, 0, 32, 16); const Rect bottom(0, 16, 32, 32); sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); sp buffer = new GraphicBuffer(32, 32, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); ASSERT_NO_FATAL_FAILURE(fillGraphicBufferColor(buffer, top, Color::TRANSPARENT)); ASSERT_NO_FATAL_FAILURE(fillGraphicBufferColor(buffer, bottom, Color::RED)); Transaction() .setTransparentRegionHint(layer, Region(top)) .setBuffer(layer, buffer) .setFrame(layer, Rect(0, 0, 32, 32)) .apply(); { SCOPED_TRACE("top transparent"); auto shot = getScreenCapture(); shot->expectColor(top, Color::BLACK); shot->expectColor(bottom, Color::RED); } Transaction().setTransparentRegionHint(layer, Region(bottom)).apply(); { SCOPED_TRACE("transparent region hint intermediate"); auto shot = getScreenCapture(); shot->expectColor(top, Color::BLACK); shot->expectColor(bottom, Color::BLACK); } buffer = new GraphicBuffer(32, 32, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); ASSERT_NO_FATAL_FAILURE(fillGraphicBufferColor(buffer, top, Color::RED)); ASSERT_NO_FATAL_FAILURE(fillGraphicBufferColor(buffer, bottom, Color::TRANSPARENT)); Transaction().setBuffer(layer, buffer).apply(); { SCOPED_TRACE("bottom transparent"); auto shot = getScreenCapture(); shot->expectColor(top, Color::RED); shot->expectColor(bottom, Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetTransparentRegionHintOutOfBounds_BufferQueue) { sp layerTransparent; sp layerR; ASSERT_NO_FATAL_FAILURE(layerTransparent = createLayer("test transparent", 32, 32)); ASSERT_NO_FATAL_FAILURE(layerR = createLayer("test R", 32, 32)); // check that transparent region hint is bound by the layer size Transaction() .setTransparentRegionHint(layerTransparent, Region(mDisplayRect)) .setPosition(layerR, 16, 16) .setLayer(layerR, mLayerZBase + 1) .apply(); ASSERT_NO_FATAL_FAILURE( fillBufferQueueLayerColor(layerTransparent, Color::TRANSPARENT, 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layerR, Color::RED, 32, 32)); getScreenCapture()->expectColor(Rect(16, 16, 48, 48), Color::RED); } TEST_P(LayerRenderTypeTransactionTest, SetTransparentRegionHintOutOfBounds_BufferState) { sp layerTransparent; sp layerR; ASSERT_NO_FATAL_FAILURE(layerTransparent = createLayer("test transparent", 32, 32)); ASSERT_NO_FATAL_FAILURE( layerR = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); // check that transparent region hint is bound by the layer size Transaction() .setTransparentRegionHint(layerTransparent, Region(mDisplayRect)) .setFrame(layerR, Rect(16, 16, 48, 48)) .setLayer(layerR, mLayerZBase + 1) .apply(); ASSERT_NO_FATAL_FAILURE( fillBufferQueueLayerColor(layerTransparent, Color::TRANSPARENT, 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layerR, Color::RED, 32, 32)); getScreenCapture()->expectColor(Rect(16, 16, 48, 48), Color::RED); } void LayerRenderTypeTransactionTest::setAlphaBasicHelper(uint32_t layerType) { sp layer1; sp layer2; ASSERT_NO_FATAL_FAILURE(layer1 = createLayer("test 1", 32, 32, layerType)); ASSERT_NO_FATAL_FAILURE(layer2 = createLayer("test 2", 32, 32, layerType)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerType, layer1, {64, 0, 0, 255}, 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layerType, layer2, {0, 64, 0, 255}, 32, 32)); switch (layerType) { case ISurfaceComposerClient::eFXSurfaceBufferQueue: Transaction() .setAlpha(layer1, 0.25f) .setAlpha(layer2, 0.75f) .setPosition(layer2, 16, 0) .setLayer(layer2, mLayerZBase + 1) .apply(); break; case ISurfaceComposerClient::eFXSurfaceBufferState: Transaction() .setAlpha(layer1, 0.25f) .setAlpha(layer2, 0.75f) .setFrame(layer1, Rect(0, 0, 32, 32)) .setFrame(layer2, Rect(16, 0, 48, 32)) .setLayer(layer2, mLayerZBase + 1) .apply(); break; default: ASSERT_FALSE(true) << "Unsupported layer type"; } { auto shot = getScreenCapture(); uint8_t r = 16; // 64 * 0.25f uint8_t g = 48; // 64 * 0.75f shot->expectColor(Rect(0, 0, 16, 32), {r, 0, 0, 255}); shot->expectColor(Rect(32, 0, 48, 32), {0, g, 0, 255}); r /= 4; // r * (1.0f - 0.75f) shot->expectColor(Rect(16, 0, 32, 32), {r, g, 0, 255}); } } TEST_P(LayerRenderTypeTransactionTest, SetAlphaBasic_BufferQueue) { ASSERT_NO_FATAL_FAILURE(setAlphaBasicHelper(ISurfaceComposerClient::eFXSurfaceBufferQueue)); } TEST_P(LayerRenderTypeTransactionTest, SetAlphaBasic_BufferState) { ASSERT_NO_FATAL_FAILURE(setAlphaBasicHelper(ISurfaceComposerClient::eFXSurfaceBufferState)); } TEST_P(LayerTypeAndRenderTypeTransactionTest, SetAlphaClamped) { const Color color = {64, 0, 0, 255}; sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layer, color, 32, 32)); Transaction().setAlpha(layer, 2.0f).apply(); { SCOPED_TRACE("clamped to 1.0f"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), color); } Transaction().setAlpha(layer, -1.0f).apply(); { SCOPED_TRACE("clamped to 0.0f"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::BLACK); } } TEST_P(LayerTypeAndRenderTypeTransactionTest, SetCornerRadius) { sp layer; const uint8_t size = 64; const uint8_t testArea = 4; const float cornerRadius = 20.0f; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", size, size)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layer, Color::RED, size, size)); Transaction() .setCornerRadius(layer, cornerRadius) .apply(); { const uint8_t bottom = size - 1; const uint8_t right = size - 1; auto shot = getScreenCapture(); // Transparent corners shot->expectColor(Rect(0, 0, testArea, testArea), Color::BLACK); shot->expectColor(Rect(size - testArea, 0, right, testArea), Color::BLACK); shot->expectColor(Rect(0, bottom - testArea, testArea, bottom), Color::BLACK); shot->expectColor(Rect(size - testArea, bottom - testArea, right, bottom), Color::BLACK); } } TEST_P(LayerTypeAndRenderTypeTransactionTest, SetCornerRadiusChildCrop) { sp parent; sp child; const uint8_t size = 64; const uint8_t testArea = 4; const float cornerRadius = 20.0f; ASSERT_NO_FATAL_FAILURE(parent = createLayer("parent", size, size)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(parent, Color::RED, size, size)); ASSERT_NO_FATAL_FAILURE(child = createLayer("child", size, size / 2)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(child, Color::GREEN, size, size / 2)); Transaction() .setCornerRadius(parent, cornerRadius) .reparent(child, parent->getHandle()) .setPosition(child, 0, size / 2) .apply(); { const uint8_t bottom = size - 1; const uint8_t right = size - 1; auto shot = getScreenCapture(); // Top edge of child should not have rounded corners because it's translated in the parent shot->expectColor(Rect(0, size / 2, right, static_cast(bottom - cornerRadius)), Color::GREEN); // But bottom edges should have been clipped according to parent bounds shot->expectColor(Rect(0, bottom - testArea, testArea, bottom), Color::BLACK); shot->expectColor(Rect(right - testArea, bottom - testArea, right, bottom), Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetColorBasic) { sp bufferLayer; sp colorLayer; ASSERT_NO_FATAL_FAILURE(bufferLayer = createLayer("test bg", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(bufferLayer, Color::RED, 32, 32)); ASSERT_NO_FATAL_FAILURE(colorLayer = createLayer("test", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor)); Transaction() .setCrop_legacy(colorLayer, Rect(0, 0, 32, 32)) .setLayer(colorLayer, mLayerZBase + 1) .apply(); { SCOPED_TRACE("default color"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::BLACK); } const half3 color(15.0f / 255.0f, 51.0f / 255.0f, 85.0f / 255.0f); const Color expected = {15, 51, 85, 255}; // this is handwavy, but the precison loss scaled by 255 (8-bit per // channel) should be less than one const uint8_t tolerance = 1; Transaction().setColor(colorLayer, color).apply(); { SCOPED_TRACE("new color"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), expected, tolerance); } } // RED: Color layer base color and BufferQueueLayer/BufferStateLayer fill // BLUE: prior background color // GREEN: final background color // BLACK: no color or fill void LayerRenderTypeTransactionTest::setBackgroundColorHelper(uint32_t layerType, bool priorColor, bool bufferFill, float alpha, Color finalColor) { sp layer; int32_t width = 500; int32_t height = 500; Color fillColor = Color::RED; Color priorBgColor = Color::BLUE; Color expectedColor = Color::BLACK; switch (layerType) { case ISurfaceComposerClient::eFXSurfaceColor: ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 0, 0, layerType)); Transaction() .setCrop_legacy(layer, Rect(0, 0, width, height)) .setColor(layer, half3(1.0f, 0, 0)) .apply(); expectedColor = fillColor; break; case ISurfaceComposerClient::eFXSurfaceBufferQueue: ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", width, height)); if (bufferFill) { ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, fillColor, width, height)); expectedColor = fillColor; } Transaction().setCrop_legacy(layer, Rect(0, 0, width, height)).apply(); break; case ISurfaceComposerClient::eFXSurfaceBufferState: ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", width, height, layerType)); if (bufferFill) { ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, fillColor, width, height)); expectedColor = fillColor; } Transaction().setFrame(layer, Rect(0, 0, width, height)).apply(); break; default: GTEST_FAIL() << "Unknown layer type in setBackgroundColorHelper"; return; } if (priorColor && layerType != ISurfaceComposerClient::eFXSurfaceColor) { Transaction() .setBackgroundColor(layer, half3(0, 0, 1.0f), 1.0f, ui::Dataspace::UNKNOWN) .apply(); if (!bufferFill) { expectedColor = priorBgColor; } } { SCOPED_TRACE("default before setting background color layer"); screenshot()->expectColor(Rect(0, 0, width, height), expectedColor); } Transaction() .setBackgroundColor(layer, half3(0, 1.0f, 0), alpha, ui::Dataspace::UNKNOWN) .apply(); { auto shot = screenshot(); shot->expectColor(Rect(0, 0, width, height), finalColor); shot->expectBorder(Rect(0, 0, width, height), Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_Color_NoEffect) { bool priorColor = false; bool bufferFill = false; float alpha = 1.0f; Color finalColor = Color::RED; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceColor, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_BufferQueue_BufferFill_NoPriorColor_Basic) { bool priorColor = false; bool bufferFill = true; float alpha = 1.0f; Color finalColor = Color::RED; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceBufferQueue, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_BufferQueue_NoBufferFill_NoPriorColor_Basic) { bool priorColor = false; bool bufferFill = false; float alpha = 1.0f; Color finalColor = Color::GREEN; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceBufferQueue, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_BufferQueue_BufferFill_PriorColor_Basic) { bool priorColor = true; bool bufferFill = true; float alpha = 1.0f; Color finalColor = Color::RED; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceBufferQueue, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_BufferQueue_NoBufferFill_PriorColor_Basic) { bool priorColor = true; bool bufferFill = false; float alpha = 1.0f; Color finalColor = Color::GREEN; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceBufferQueue, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_BufferQueue_NoPriorColor_ZeroAlpha_NoEffect) { bool priorColor = false; bool bufferFill = false; float alpha = 0; Color finalColor = Color::BLACK; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceBufferQueue, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_BufferQueue_PriorColor_ZeroAlpha_DeleteBackground) { bool priorColor = true; bool bufferFill = false; float alpha = 0; Color finalColor = Color::BLACK; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceBufferQueue, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_BufferState_BufferFill_NoPriorColor_Basic) { bool priorColor = false; bool bufferFill = true; float alpha = 1.0f; Color finalColor = Color::RED; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceBufferState, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_BufferState_NoBufferFill_NoPriorColor_Basic) { bool priorColor = false; bool bufferFill = false; float alpha = 1.0f; Color finalColor = Color::GREEN; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceBufferState, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_BufferState_NoBufferFill_PriorColor_Basic) { bool priorColor = true; bool bufferFill = false; float alpha = 1.0f; Color finalColor = Color::GREEN; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceBufferState, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_BufferState_NoPriorColor_ZeroAlpha_NoEffect) { bool priorColor = false; bool bufferFill = false; float alpha = 0; Color finalColor = Color::BLACK; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceBufferState, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetBackgroundColor_BufferState_PriorColor_ZeroAlpha_DeleteBackground) { bool priorColor = true; bool bufferFill = false; float alpha = 0; Color finalColor = Color::BLACK; ASSERT_NO_FATAL_FAILURE(setBackgroundColorHelper(ISurfaceComposerClient::eFXSurfaceBufferState, priorColor, bufferFill, alpha, finalColor)); } TEST_P(LayerRenderTypeTransactionTest, SetColorClamped) { sp colorLayer; ASSERT_NO_FATAL_FAILURE(colorLayer = createLayer("test", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor)); Transaction() .setCrop_legacy(colorLayer, Rect(0, 0, 32, 32)) .setColor(colorLayer, half3(2.0f, -1.0f, 0.0f)) .apply(); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } TEST_P(LayerRenderTypeTransactionTest, SetColorWithAlpha) { sp bufferLayer; sp colorLayer; ASSERT_NO_FATAL_FAILURE(bufferLayer = createLayer("test bg", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(bufferLayer, Color::RED, 32, 32)); ASSERT_NO_FATAL_FAILURE(colorLayer = createLayer("test", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor)); Transaction().setCrop_legacy(colorLayer, Rect(0, 0, 32, 32)).apply(); const half3 color(15.0f / 255.0f, 51.0f / 255.0f, 85.0f / 255.0f); const float alpha = 0.25f; const ubyte3 expected((vec3(color) * alpha + vec3(1.0f, 0.0f, 0.0f) * (1.0f - alpha)) * 255.0f); // this is handwavy, but the precison loss scaled by 255 (8-bit per // channel) should be less than one const uint8_t tolerance = 1; Transaction() .setColor(colorLayer, color) .setAlpha(colorLayer, alpha) .setLayer(colorLayer, mLayerZBase + 1) .apply(); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), {expected.r, expected.g, expected.b, 255}, tolerance); } TEST_P(LayerRenderTypeTransactionTest, SetColorWithParentAlpha_Bug74220420) { sp bufferLayer; sp parentLayer; sp colorLayer; ASSERT_NO_FATAL_FAILURE(bufferLayer = createLayer("test bg", 32, 32)); ASSERT_NO_FATAL_FAILURE(parentLayer = createLayer("parentWithAlpha", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(bufferLayer, Color::RED, 32, 32)); ASSERT_NO_FATAL_FAILURE(colorLayer = createLayer("childWithColor", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor)); Transaction().setCrop_legacy(colorLayer, Rect(0, 0, 32, 32)).apply(); const half3 color(15.0f / 255.0f, 51.0f / 255.0f, 85.0f / 255.0f); const float alpha = 0.25f; const ubyte3 expected((vec3(color) * alpha + vec3(1.0f, 0.0f, 0.0f) * (1.0f - alpha)) * 255.0f); // this is handwavy, but the precision loss scaled by 255 (8-bit per // channel) should be less than one const uint8_t tolerance = 1; Transaction() .reparent(colorLayer, parentLayer->getHandle()) .setColor(colorLayer, color) .setAlpha(parentLayer, alpha) .setLayer(parentLayer, mLayerZBase + 1) .apply(); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), {expected.r, expected.g, expected.b, 255}, tolerance); } TEST_P(LayerTypeAndRenderTypeTransactionTest, SetColorWithBuffer) { sp bufferLayer; ASSERT_NO_FATAL_FAILURE(bufferLayer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(bufferLayer, Color::RED, 32, 32)); // color is ignored Transaction().setColor(bufferLayer, half3(0.0f, 1.0f, 0.0f)).apply(); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } TEST_P(LayerTypeAndRenderTypeTransactionTest, SetLayerStackBasic) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillLayerColor(layer, Color::RED, 32, 32)); Transaction().setLayerStack(layer, mDisplayLayerStack + 1).apply(); { SCOPED_TRACE("non-existing layer stack"); getScreenCapture()->expectColor(mDisplayRect, Color::BLACK); } Transaction().setLayerStack(layer, mDisplayLayerStack).apply(); { SCOPED_TRACE("original layer stack"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } } TEST_P(LayerRenderTypeTransactionTest, SetMatrixBasic_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerQuadrant(layer, 32, 32, Color::RED, Color::GREEN, Color::BLUE, Color::WHITE)); Transaction().setMatrix(layer, 1.0f, 0.0f, 0.0f, 1.0f).setPosition(layer, 0, 0).apply(); { SCOPED_TRACE("IDENTITY"); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::RED, Color::GREEN, Color::BLUE, Color::WHITE); } Transaction().setMatrix(layer, -1.0f, 0.0f, 0.0f, 1.0f).setPosition(layer, 32, 0).apply(); { SCOPED_TRACE("FLIP_H"); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::GREEN, Color::RED, Color::WHITE, Color::BLUE); } Transaction().setMatrix(layer, 1.0f, 0.0f, 0.0f, -1.0f).setPosition(layer, 0, 32).apply(); { SCOPED_TRACE("FLIP_V"); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::BLUE, Color::WHITE, Color::RED, Color::GREEN); } Transaction().setMatrix(layer, 0.0f, 1.0f, -1.0f, 0.0f).setPosition(layer, 32, 0).apply(); { SCOPED_TRACE("ROT_90"); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::BLUE, Color::RED, Color::WHITE, Color::GREEN); } Transaction().setMatrix(layer, 2.0f, 0.0f, 0.0f, 2.0f).setPosition(layer, 0, 0).apply(); { SCOPED_TRACE("SCALE"); getScreenCapture()->expectQuadrant(Rect(0, 0, 64, 64), Color::RED, Color::GREEN, Color::BLUE, Color::WHITE, true /* filtered */); } } TEST_P(LayerRenderTypeTransactionTest, SetMatrixBasic_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerQuadrant(layer, 32, 32, Color::RED, Color::GREEN, Color::BLUE, Color::WHITE)); Transaction() .setMatrix(layer, 1.0f, 0.0f, 0.0f, 1.0f) .setFrame(layer, Rect(0, 0, 32, 32)) .apply(); { SCOPED_TRACE("IDENTITY"); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::RED, Color::GREEN, Color::BLUE, Color::WHITE); } Transaction().setMatrix(layer, -1.0f, 0.0f, 0.0f, 1.0f).apply(); { SCOPED_TRACE("FLIP_H"); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::RED, Color::GREEN, Color::BLUE, Color::WHITE); } Transaction().setMatrix(layer, 1.0f, 0.0f, 0.0f, -1.0f).apply(); { SCOPED_TRACE("FLIP_V"); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::RED, Color::GREEN, Color::BLUE, Color::WHITE); } Transaction().setMatrix(layer, 0.0f, 1.0f, -1.0f, 0.0f).apply(); { SCOPED_TRACE("ROT_90"); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::RED, Color::GREEN, Color::BLUE, Color::WHITE); } Transaction().setMatrix(layer, 2.0f, 0.0f, 0.0f, 2.0f).apply(); { SCOPED_TRACE("SCALE"); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::RED, Color::GREEN, Color::BLUE, Color::WHITE); } } TEST_P(LayerRenderTypeTransactionTest, SetMatrixRot45_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerQuadrant(layer, 32, 32, Color::RED, Color::GREEN, Color::BLUE, Color::WHITE)); const float rot = M_SQRT1_2; // 45 degrees const float trans = M_SQRT2 * 16.0f; Transaction().setMatrix(layer, rot, rot, -rot, rot).setPosition(layer, trans, 0).apply(); auto shot = getScreenCapture(); // check a 8x8 region inside each color auto get8x8Rect = [](int32_t centerX, int32_t centerY) { const int32_t halfL = 4; return Rect(centerX - halfL, centerY - halfL, centerX + halfL, centerY + halfL); }; const int32_t unit = int32_t(trans / 2); shot->expectColor(get8x8Rect(2 * unit, 1 * unit), Color::RED); shot->expectColor(get8x8Rect(3 * unit, 2 * unit), Color::GREEN); shot->expectColor(get8x8Rect(1 * unit, 2 * unit), Color::BLUE); shot->expectColor(get8x8Rect(2 * unit, 3 * unit), Color::WHITE); } TEST_P(LayerRenderTypeTransactionTest, SetMatrixWithResize_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // setMatrix is applied after any pending resize, unlike setPosition Transaction().setMatrix(layer, 2.0f, 0.0f, 0.0f, 2.0f).setSize(layer, 64, 64).apply(); { SCOPED_TRACE("resize pending"); auto shot = getScreenCapture(); const Rect rect(0, 0, 32, 32); shot->expectColor(rect, Color::RED); shot->expectBorder(rect, Color::BLACK); } ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 64, 64)); { SCOPED_TRACE("resize applied"); const Rect rect(0, 0, 128, 128); getScreenCapture()->expectColor(rect, Color::RED); } } TEST_P(LayerRenderTypeTransactionTest, SetMatrixWithScaleToWindow_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // setMatrix is immediate with SCALE_TO_WINDOW, unlike setPosition Transaction() .setMatrix(layer, 2.0f, 0.0f, 0.0f, 2.0f) .setSize(layer, 64, 64) .setOverrideScalingMode(layer, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW) .apply(); getScreenCapture()->expectColor(Rect(0, 0, 128, 128), Color::RED); } TEST_P(LayerRenderTypeTransactionTest, SetOverrideScalingModeBasic_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerQuadrant(layer, 32, 32, Color::RED, Color::GREEN, Color::BLUE, Color::WHITE)); // XXX SCALE_CROP is not respected; calling setSize and // setOverrideScalingMode in separate transactions does not work // (b/69315456) Transaction() .setSize(layer, 64, 16) .setOverrideScalingMode(layer, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW) .apply(); { SCOPED_TRACE("SCALE_TO_WINDOW"); getScreenCapture()->expectQuadrant(Rect(0, 0, 64, 16), Color::RED, Color::GREEN, Color::BLUE, Color::WHITE, true /* filtered */); } } TEST_P(LayerTypeTransactionTest, RefreshRateIsInitialized) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); sp handle = layer->getHandle(); ASSERT_TRUE(handle != nullptr); FrameStats frameStats; mClient->getLayerFrameStats(handle, &frameStats); ASSERT_GT(frameStats.refreshPeriodNano, static_cast(0)); } TEST_P(LayerRenderTypeTransactionTest, SetCropBasic_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); const Rect crop(8, 8, 24, 24); Transaction().setCrop_legacy(layer, crop).apply(); auto shot = getScreenCapture(); shot->expectColor(crop, Color::RED); shot->expectBorder(crop, Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetCropBasic_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::RED, 32, 32)); const Rect crop(8, 8, 24, 24); Transaction().setCrop(layer, crop).apply(); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetCropEmpty_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); { SCOPED_TRACE("empty rect"); Transaction().setCrop_legacy(layer, Rect(8, 8, 8, 8)).apply(); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } { SCOPED_TRACE("negative rect"); Transaction().setCrop_legacy(layer, Rect(8, 8, 0, 0)).apply(); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } } TEST_P(LayerRenderTypeTransactionTest, SetCropEmpty_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::RED, 32, 32)); { SCOPED_TRACE("empty rect"); Transaction().setCrop(layer, Rect(8, 8, 8, 8)).apply(); getScreenCapture()->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); } { SCOPED_TRACE("negative rect"); Transaction().setCrop(layer, Rect(8, 8, 0, 0)).apply(); getScreenCapture()->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); } } TEST_P(LayerRenderTypeTransactionTest, SetCropOutOfBounds_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); Transaction().setCrop_legacy(layer, Rect(-128, -64, 128, 64)).apply(); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 32), Color::RED); shot->expectBorder(Rect(0, 0, 32, 32), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetCropOutOfBounds_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 64, ISurfaceComposerClient::eFXSurfaceBufferState)); sp buffer = new GraphicBuffer(32, 64, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); fillGraphicBufferColor(buffer, Rect(0, 0, 32, 16), Color::BLUE); fillGraphicBufferColor(buffer, Rect(0, 16, 32, 64), Color::RED); Transaction().setFrame(layer, Rect(0, 0, 64, 64)).apply(); Transaction().setBuffer(layer, buffer).apply(); // Partially out of bounds in the negative (upper left) direction Transaction().setCrop(layer, Rect(-128, -128, 32, 16)).apply(); { SCOPED_TRACE("out of bounds, negative (upper left) direction"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 64, 64), Color::BLUE); shot->expectBorder(Rect(0, 0, 64, 64), Color::BLACK); } // Partially out of bounds in the positive (lower right) direction Transaction().setCrop(layer, Rect(0, 16, 128, 128)).apply(); { SCOPED_TRACE("out of bounds, positive (lower right) direction"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 64, 64), Color::RED); shot->expectBorder(Rect(0, 0, 64, 64), Color::BLACK); } // Fully out of buffer space bounds Transaction().setCrop(layer, Rect(-128, -128, -1, -1)).apply(); { SCOPED_TRACE("Fully out of bounds"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 64, 16), Color::BLUE); shot->expectColor(Rect(0, 16, 64, 64), Color::RED); shot->expectBorder(Rect(0, 0, 64, 64), Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetCropWithTranslation_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); const Point position(32, 32); const Rect crop(8, 8, 24, 24); Transaction().setPosition(layer, position.x, position.y).setCrop_legacy(layer, crop).apply(); auto shot = getScreenCapture(); shot->expectColor(crop + position, Color::RED); shot->expectBorder(crop + position, Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetCropWithTranslation_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::RED, 32, 32)); const Rect frame(32, 32, 64, 64); const Rect crop(8, 8, 24, 24); Transaction().setFrame(layer, frame).setCrop(layer, crop).apply(); auto shot = getScreenCapture(); shot->expectColor(frame, Color::RED); shot->expectBorder(frame, Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetCropWithScale_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // crop_legacy is affected by matrix Transaction() .setMatrix(layer, 2.0f, 0.0f, 0.0f, 2.0f) .setCrop_legacy(layer, Rect(8, 8, 24, 24)) .apply(); auto shot = getScreenCapture(); shot->expectColor(Rect(16, 16, 48, 48), Color::RED); shot->expectBorder(Rect(16, 16, 48, 48), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetCropWithResize_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // setCrop_legacy is applied immediately by default, with or without resize pending Transaction().setCrop_legacy(layer, Rect(8, 8, 24, 24)).setSize(layer, 16, 16).apply(); { SCOPED_TRACE("resize pending"); auto shot = getScreenCapture(); shot->expectColor(Rect(8, 8, 24, 24), Color::RED); shot->expectBorder(Rect(8, 8, 24, 24), Color::BLACK); } ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 16, 16)); { SCOPED_TRACE("resize applied"); auto shot = getScreenCapture(); shot->expectColor(Rect(8, 8, 16, 16), Color::RED); shot->expectBorder(Rect(8, 8, 16, 16), Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetCropWithNextResize_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // request setCrop_legacy to be applied with the next resize Transaction() .setCrop_legacy(layer, Rect(8, 8, 24, 24)) .setGeometryAppliesWithResize(layer) .apply(); { SCOPED_TRACE("waiting for next resize"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } Transaction().setCrop_legacy(layer, Rect(4, 4, 12, 12)).apply(); { SCOPED_TRACE("pending crop modified"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } Transaction().setSize(layer, 16, 16).apply(); { SCOPED_TRACE("resize pending"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::RED); } // finally resize ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 16, 16)); { SCOPED_TRACE("new crop applied"); auto shot = getScreenCapture(); shot->expectColor(Rect(4, 4, 12, 12), Color::RED); shot->expectBorder(Rect(4, 4, 12, 12), Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetCropWithNextResizeScaleToWindow_BufferQueue) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); // setCrop_legacy is not immediate even with SCALE_TO_WINDOW override Transaction() .setCrop_legacy(layer, Rect(4, 4, 12, 12)) .setSize(layer, 16, 16) .setOverrideScalingMode(layer, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW) .setGeometryAppliesWithResize(layer) .apply(); { SCOPED_TRACE("new crop pending"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 16, 16), Color::RED); shot->expectBorder(Rect(0, 0, 16, 16), Color::BLACK); } // XXX crop is never latched without other geometry change (b/69315677) Transaction().setPosition(layer, 1, 0).setGeometryAppliesWithResize(layer).apply(); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 16, 16)); Transaction().setPosition(layer, 0, 0).apply(); { SCOPED_TRACE("new crop applied"); auto shot = getScreenCapture(); shot->expectColor(Rect(4, 4, 12, 12), Color::RED); shot->expectBorder(Rect(4, 4, 12, 12), Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetFrameBasic_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::RED, 32, 32)); const Rect frame(8, 8, 24, 24); Transaction().setFrame(layer, frame).apply(); auto shot = getScreenCapture(); shot->expectColor(frame, Color::RED); shot->expectBorder(frame, Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetFrameEmpty_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::RED, 32, 32)); { SCOPED_TRACE("empty rect"); Transaction().setFrame(layer, Rect(8, 8, 8, 8)).apply(); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::BLACK); } { SCOPED_TRACE("negative rect"); Transaction().setFrame(layer, Rect(8, 8, 0, 0)).apply(); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetFrameDefaultParentless_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::RED, 10, 10)); // A parentless layer will default to a frame with the same size as the buffer auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetFrameDefaultBSParent_BufferState) { sp parent, child; ASSERT_NO_FATAL_FAILURE( parent = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(parent, Color::RED, 32, 32)); Transaction().setFrame(parent, Rect(0, 0, 32, 32)).apply(); ASSERT_NO_FATAL_FAILURE( child = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(child, Color::BLUE, 10, 10)); Transaction().reparent(child, parent->getHandle()).apply(); // A layer will default to the frame of its parent auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 32), Color::BLUE); shot->expectBorder(Rect(0, 0, 32, 32), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetFrameDefaultBQParent_BufferState) { sp parent, child; ASSERT_NO_FATAL_FAILURE(parent = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(parent, Color::RED, 32, 32)); ASSERT_NO_FATAL_FAILURE( child = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(child, Color::BLUE, 10, 10)); Transaction().reparent(child, parent->getHandle()).apply(); // A layer will default to the frame of its parent auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 32), Color::BLUE); shot->expectBorder(Rect(0, 0, 32, 32), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetFrameUpdate_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::RED, 32, 32)); Transaction().setFrame(layer, Rect(0, 0, 32, 32)).apply(); std::this_thread::sleep_for(500ms); Transaction().setFrame(layer, Rect(16, 16, 48, 48)).apply(); auto shot = getScreenCapture(); shot->expectColor(Rect(16, 16, 48, 48), Color::RED); shot->expectBorder(Rect(16, 16, 48, 48), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetFrameOutsideBounds_BufferState) { sp parent, child; ASSERT_NO_FATAL_FAILURE( parent = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE( child = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); Transaction().reparent(child, parent->getHandle()).apply(); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(parent, Color::RED, 32, 32)); Transaction().setFrame(parent, Rect(0, 0, 32, 32)).apply(); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(child, Color::BLUE, 10, 10)); Transaction().setFrame(child, Rect(0, 16, 32, 32)).apply(); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 16), Color::RED); shot->expectColor(Rect(0, 16, 32, 32), Color::BLUE); shot->expectBorder(Rect(0, 0, 32, 32), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetBufferBasic_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::RED, 32, 32)); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetBufferMultipleBuffers_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::RED, 32, 32)); { SCOPED_TRACE("set buffer 1"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::BLUE, 32, 32)); { SCOPED_TRACE("set buffer 2"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLUE); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::RED, 32, 32)); { SCOPED_TRACE("set buffer 3"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } } TEST_P(LayerRenderTypeTransactionTest, SetBufferMultipleLayers_BufferState) { sp layer1; ASSERT_NO_FATAL_FAILURE( layer1 = createLayer("test", 64, 64, ISurfaceComposerClient::eFXSurfaceBufferState)); sp layer2; ASSERT_NO_FATAL_FAILURE( layer2 = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer1, Color::RED, 64, 64)); Transaction().setFrame(layer1, Rect(0, 0, 64, 64)).apply(); { SCOPED_TRACE("set layer 1 buffer red"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 64, 64), Color::RED); } ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer2, Color::BLUE, 32, 32)); Transaction().setFrame(layer2, Rect(0, 0, 32, 32)).apply(); { SCOPED_TRACE("set layer 2 buffer blue"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 32), Color::BLUE); shot->expectColor(Rect(0, 32, 64, 64), Color::RED); shot->expectColor(Rect(0, 32, 32, 64), Color::RED); } ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer1, Color::GREEN, 64, 64)); { SCOPED_TRACE("set layer 1 buffer green"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 32), Color::BLUE); shot->expectColor(Rect(0, 32, 64, 64), Color::GREEN); shot->expectColor(Rect(0, 32, 32, 64), Color::GREEN); } ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer2, Color::WHITE, 32, 32)); { SCOPED_TRACE("set layer 2 buffer white"); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, 32, 32), Color::WHITE); shot->expectColor(Rect(0, 32, 64, 64), Color::GREEN); shot->expectColor(Rect(0, 32, 32, 64), Color::GREEN); } } TEST_P(LayerRenderTypeTransactionTest, SetBufferCaching_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); std::array colors = {Color::RED, Color::BLUE, Color::WHITE, Color::GREEN}; std::array, 10> buffers; size_t idx = 0; for (auto& buffer : buffers) { buffer = new GraphicBuffer(32, 32, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); Color color = colors[idx % colors.size()]; fillGraphicBufferColor(buffer, Rect(0, 0, 32, 32), color); idx++; } // Set each buffer twice. The first time adds it to the cache, the second time tests that the // cache is working. idx = 0; for (auto& buffer : buffers) { for (int i = 0; i < 2; i++) { Transaction().setBuffer(layer, buffer).apply(); Color color = colors[idx % colors.size()]; auto shot = screenshot(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), color); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } idx++; } } TEST_P(LayerRenderTypeTransactionTest, SetBufferCaching_LeastRecentlyUsed_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); std::array colors = {Color::RED, Color::BLUE, Color::WHITE, Color::GREEN}; std::array, 70> buffers; size_t idx = 0; for (auto& buffer : buffers) { buffer = new GraphicBuffer(32, 32, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); Color color = colors[idx % colors.size()]; fillGraphicBufferColor(buffer, Rect(0, 0, 32, 32), color); idx++; } // Set each buffer twice. The first time adds it to the cache, the second time tests that the // cache is working. idx = 0; for (auto& buffer : buffers) { for (int i = 0; i < 2; i++) { Transaction().setBuffer(layer, buffer).apply(); Color color = colors[idx % colors.size()]; auto shot = screenshot(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), color); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } idx++; } } TEST_P(LayerRenderTypeTransactionTest, SetBufferCaching_DestroyedBuffer_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); std::array colors = {Color::RED, Color::BLUE, Color::WHITE, Color::GREEN}; std::array, 65> buffers; size_t idx = 0; for (auto& buffer : buffers) { buffer = new GraphicBuffer(32, 32, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); Color color = colors[idx % colors.size()]; fillGraphicBufferColor(buffer, Rect(0, 0, 32, 32), color); idx++; } // Set each buffer twice. The first time adds it to the cache, the second time tests that the // cache is working. idx = 0; for (auto& buffer : buffers) { for (int i = 0; i < 2; i++) { Transaction().setBuffer(layer, buffer).apply(); Color color = colors[idx % colors.size()]; auto shot = screenshot(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), color); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } if (idx == 0) { buffers[0].clear(); } idx++; } } TEST_P(LayerRenderTypeTransactionTest, SetTransformRotate90_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerQuadrant(layer, 32, 32, Color::RED, Color::GREEN, Color::BLUE, Color::WHITE)); Transaction() .setFrame(layer, Rect(0, 0, 32, 32)) .setTransform(layer, NATIVE_WINDOW_TRANSFORM_ROT_90) .apply(); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::BLUE, Color::RED, Color::WHITE, Color::GREEN, true /* filtered */); } TEST_P(LayerRenderTypeTransactionTest, SetTransformFlipH_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerQuadrant(layer, 32, 32, Color::RED, Color::GREEN, Color::BLUE, Color::WHITE)); Transaction() .setFrame(layer, Rect(0, 0, 32, 32)) .setTransform(layer, NATIVE_WINDOW_TRANSFORM_FLIP_H) .apply(); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::GREEN, Color::RED, Color::WHITE, Color::BLUE, true /* filtered */); } TEST_P(LayerRenderTypeTransactionTest, SetTransformFlipV_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerQuadrant(layer, 32, 32, Color::RED, Color::GREEN, Color::BLUE, Color::WHITE)); Transaction() .setFrame(layer, Rect(0, 0, 32, 32)) .setTransform(layer, NATIVE_WINDOW_TRANSFORM_FLIP_V) .apply(); getScreenCapture()->expectQuadrant(Rect(0, 0, 32, 32), Color::BLUE, Color::WHITE, Color::RED, Color::GREEN, true /* filtered */); } TEST_F(LayerTransactionTest, SetTransformToDisplayInverse_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); Transaction().setTransformToDisplayInverse(layer, false).apply(); ASSERT_NO_FATAL_FAILURE(fillBufferStateLayerColor(layer, Color::GREEN, 32, 32)); Transaction().setTransformToDisplayInverse(layer, true).apply(); } TEST_P(LayerRenderTypeTransactionTest, SetFenceBasic_BufferState) { sp layer; Transaction transaction; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); sp buffer = new GraphicBuffer(32, 32, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); fillGraphicBufferColor(buffer, Rect(0, 0, 32, 32), Color::RED); sp fence; if (getBuffer(nullptr, &fence) != NO_ERROR) { GTEST_SUCCEED() << "test not supported"; return; } Transaction().setBuffer(layer, buffer).setAcquireFence(layer, fence).apply(); status_t status = fence->wait(1000); ASSERT_NE(static_cast(Fence::Status::Unsignaled), status); std::this_thread::sleep_for(200ms); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetFenceNull_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); sp buffer = new GraphicBuffer(32, 32, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); fillGraphicBufferColor(buffer, Rect(0, 0, 32, 32), Color::RED); sp fence = Fence::NO_FENCE; Transaction() .setBuffer(layer, buffer) .setAcquireFence(layer, fence) .apply(); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetDataspaceBasic_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); sp buffer = new GraphicBuffer(32, 32, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); fillGraphicBufferColor(buffer, Rect(0, 0, 32, 32), Color::RED); Transaction() .setBuffer(layer, buffer) .setDataspace(layer, ui::Dataspace::UNKNOWN) .apply(); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetHdrMetadataBasic_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); sp buffer = new GraphicBuffer(32, 32, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); fillGraphicBufferColor(buffer, Rect(0, 0, 32, 32), Color::RED); HdrMetadata hdrMetadata; hdrMetadata.validTypes = 0; Transaction() .setBuffer(layer, buffer) .setHdrMetadata(layer, hdrMetadata) .apply(); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetSurfaceDamageRegionBasic_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); sp buffer = new GraphicBuffer(32, 32, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); fillGraphicBufferColor(buffer, Rect(0, 0, 32, 32), Color::RED); Region region; region.set(32, 32); Transaction() .setBuffer(layer, buffer) .setSurfaceDamageRegion(layer, region) .apply(); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } TEST_P(LayerRenderTypeTransactionTest, SetApiBasic_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); sp buffer = new GraphicBuffer(32, 32, PIXEL_FORMAT_RGBA_8888, 1, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | BufferUsage::COMPOSER_OVERLAY, "test"); fillGraphicBufferColor(buffer, Rect(0, 0, 32, 32), Color::RED); Transaction() .setBuffer(layer, buffer) .setApi(layer, NATIVE_WINDOW_API_CPU) .apply(); auto shot = getScreenCapture(); shot->expectColor(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::RED); shot->expectBorder(Rect(0, 0, mDisplayWidth, mDisplayHeight), Color::BLACK); } TEST_F(LayerTransactionTest, SetSidebandStreamNull_BufferState) { sp layer; ASSERT_NO_FATAL_FAILURE( layer = createLayer("test", 32, 32, ISurfaceComposerClient::eFXSurfaceBufferState)); // verify this doesn't cause a crash Transaction().setSidebandStream(layer, nullptr).apply(); } TEST_F(LayerTransactionTest, ReparentToSelf) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", 32, 32)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(layer, Color::RED, 32, 32)); Transaction().reparent(layer, layer->getHandle()).apply(); { // We expect the transaction to be silently dropped, but for SurfaceFlinger // to still be functioning. SCOPED_TRACE("after reparent to self"); const Rect rect(0, 0, 32, 32); auto shot = screenshot(); shot->expectColor(rect, Color::RED); shot->expectBorder(rect, Color::BLACK); } } class ColorTransformHelper { public: static void DegammaColorSingle(half& s) { if (s <= 0.03928f) s = s / 12.92f; else s = pow((s + 0.055f) / 1.055f, 2.4f); } static void DegammaColor(half3& color) { DegammaColorSingle(color.r); DegammaColorSingle(color.g); DegammaColorSingle(color.b); } static void GammaColorSingle(half& s) { if (s <= 0.0031308f) { s = s * 12.92f; } else { s = 1.055f * pow(s, (1.0f / 2.4f)) - 0.055f; } } static void GammaColor(half3& color) { GammaColorSingle(color.r); GammaColorSingle(color.g); GammaColorSingle(color.b); } static void applyMatrix(half3& color, const mat3& mat) { half3 ret = half3(0); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { ret[i] = ret[i] + color[j] * mat[j][i]; } } color = ret; } }; TEST_P(LayerRenderTypeTransactionTest, SetColorTransformBasic) { sp colorLayer; ASSERT_NO_FATAL_FAILURE(colorLayer = createLayer("test", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor)); Transaction() .setCrop_legacy(colorLayer, Rect(0, 0, 32, 32)) .setLayer(colorLayer, mLayerZBase + 1) .apply(); { SCOPED_TRACE("default color"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::BLACK); } const half3 color(50.0f / 255.0f, 100.0f / 255.0f, 150.0f / 255.0f); half3 expected = color; mat3 matrix; matrix[0][0] = 0.3; matrix[1][0] = 0.59; matrix[2][0] = 0.11; matrix[0][1] = 0.3; matrix[1][1] = 0.59; matrix[2][1] = 0.11; matrix[0][2] = 0.3; matrix[1][2] = 0.59; matrix[2][2] = 0.11; // degamma before applying the matrix if (mColorManagementUsed) { ColorTransformHelper::DegammaColor(expected); } ColorTransformHelper::applyMatrix(expected, matrix); if (mColorManagementUsed) { ColorTransformHelper::GammaColor(expected); } const Color expectedColor = {uint8_t(expected.r * 255), uint8_t(expected.g * 255), uint8_t(expected.b * 255), 255}; // this is handwavy, but the precison loss scaled by 255 (8-bit per // channel) should be less than one const uint8_t tolerance = 1; Transaction().setColor(colorLayer, color) .setColorTransform(colorLayer, matrix, vec3()).apply(); { SCOPED_TRACE("new color"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), expectedColor, tolerance); } } TEST_P(LayerRenderTypeTransactionTest, SetColorTransformOnParent) { sp parentLayer; sp colorLayer; ASSERT_NO_FATAL_FAILURE(parentLayer = createLayer("parent", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceContainer)); ASSERT_NO_FATAL_FAILURE( colorLayer = createLayer("test", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor, parentLayer.get())); Transaction() .setCrop_legacy(parentLayer, Rect(0, 0, 100, 100)) .setCrop_legacy(colorLayer, Rect(0, 0, 32, 32)) .setLayer(parentLayer, mLayerZBase + 1) .apply(); { SCOPED_TRACE("default color"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::BLACK); } const half3 color(50.0f / 255.0f, 100.0f / 255.0f, 150.0f / 255.0f); half3 expected = color; mat3 matrix; matrix[0][0] = 0.3; matrix[1][0] = 0.59; matrix[2][0] = 0.11; matrix[0][1] = 0.3; matrix[1][1] = 0.59; matrix[2][1] = 0.11; matrix[0][2] = 0.3; matrix[1][2] = 0.59; matrix[2][2] = 0.11; // degamma before applying the matrix if (mColorManagementUsed) { ColorTransformHelper::DegammaColor(expected); } ColorTransformHelper::applyMatrix(expected, matrix); if (mColorManagementUsed) { ColorTransformHelper::GammaColor(expected); } const Color expectedColor = {uint8_t(expected.r * 255), uint8_t(expected.g * 255), uint8_t(expected.b * 255), 255}; // this is handwavy, but the precison loss scaled by 255 (8-bit per // channel) should be less than one const uint8_t tolerance = 1; Transaction() .setColor(colorLayer, color) .setColorTransform(parentLayer, matrix, vec3()) .apply(); { SCOPED_TRACE("new color"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), expectedColor, tolerance); } } TEST_P(LayerRenderTypeTransactionTest, SetColorTransformOnChildAndParent) { sp parentLayer; sp colorLayer; ASSERT_NO_FATAL_FAILURE(parentLayer = createLayer("parent", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceContainer)); ASSERT_NO_FATAL_FAILURE( colorLayer = createLayer("test", 0 /* buffer width */, 0 /* buffer height */, ISurfaceComposerClient::eFXSurfaceColor, parentLayer.get())); Transaction() .setCrop_legacy(parentLayer, Rect(0, 0, 100, 100)) .setCrop_legacy(colorLayer, Rect(0, 0, 32, 32)) .setLayer(parentLayer, mLayerZBase + 1) .apply(); { SCOPED_TRACE("default color"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), Color::BLACK); } const half3 color(50.0f / 255.0f, 100.0f / 255.0f, 150.0f / 255.0f); half3 expected = color; mat3 matrixChild; matrixChild[0][0] = 0.3; matrixChild[1][0] = 0.59; matrixChild[2][0] = 0.11; matrixChild[0][1] = 0.3; matrixChild[1][1] = 0.59; matrixChild[2][1] = 0.11; matrixChild[0][2] = 0.3; matrixChild[1][2] = 0.59; matrixChild[2][2] = 0.11; mat3 matrixParent; matrixParent[0][0] = 0.2; matrixParent[1][0] = 0.4; matrixParent[2][0] = 0.10; matrixParent[0][1] = 0.2; matrixParent[1][1] = 0.4; matrixParent[2][1] = 0.10; matrixParent[0][2] = 0.2; matrixParent[1][2] = 0.4; matrixParent[2][2] = 0.10; // degamma before applying the matrix if (mColorManagementUsed) { ColorTransformHelper::DegammaColor(expected); } ColorTransformHelper::applyMatrix(expected, matrixChild); ColorTransformHelper::applyMatrix(expected, matrixParent); if (mColorManagementUsed) { ColorTransformHelper::GammaColor(expected); } const Color expectedColor = {uint8_t(expected.r * 255), uint8_t(expected.g * 255), uint8_t(expected.b * 255), 255}; // this is handwavy, but the precison loss scaled by 255 (8-bit per // channel) should be less than one const uint8_t tolerance = 1; Transaction() .setColor(colorLayer, color) .setColorTransform(parentLayer, matrixParent, vec3()) .setColorTransform(colorLayer, matrixChild, vec3()) .apply(); { SCOPED_TRACE("new color"); getScreenCapture()->expectColor(Rect(0, 0, 32, 32), expectedColor, tolerance); } } struct CallbackData { CallbackData() = default; CallbackData(nsecs_t time, const sp& fence, const std::vector& stats) : latchTime(time), presentFence(fence), surfaceControlStats(stats) {} nsecs_t latchTime; sp presentFence; std::vector surfaceControlStats; }; class ExpectedResult { public: enum Transaction { NOT_PRESENTED = 0, PRESENTED, }; enum Buffer { NOT_ACQUIRED = 0, ACQUIRED, }; enum PreviousBuffer { NOT_RELEASED = 0, RELEASED, UNKNOWN, }; void reset() { mTransactionResult = ExpectedResult::Transaction::NOT_PRESENTED; mExpectedSurfaceResults.clear(); } void addSurface(ExpectedResult::Transaction transactionResult, const sp& layer, ExpectedResult::Buffer bufferResult = ACQUIRED, ExpectedResult::PreviousBuffer previousBufferResult = NOT_RELEASED) { mTransactionResult = transactionResult; mExpectedSurfaceResults.emplace(std::piecewise_construct, std::forward_as_tuple(layer), std::forward_as_tuple(bufferResult, previousBufferResult)); } void addSurfaces(ExpectedResult::Transaction transactionResult, const std::vector>& layers, ExpectedResult::Buffer bufferResult = ACQUIRED, ExpectedResult::PreviousBuffer previousBufferResult = NOT_RELEASED) { for (const auto& layer : layers) { addSurface(transactionResult, layer, bufferResult, previousBufferResult); } } void addExpectedPresentTime(nsecs_t expectedPresentTime) { mExpectedPresentTime = expectedPresentTime; } void verifyCallbackData(const CallbackData& callbackData) const { const auto& [latchTime, presentFence, surfaceControlStats] = callbackData; if (mTransactionResult == ExpectedResult::Transaction::PRESENTED) { ASSERT_GE(latchTime, 0) << "bad latch time"; ASSERT_NE(presentFence, nullptr); if (mExpectedPresentTime >= 0) { ASSERT_EQ(presentFence->wait(3000), NO_ERROR); ASSERT_GE(presentFence->getSignalTime(), mExpectedPresentTime - nsecs_t(5 * 1e6)); // if the panel is running at 30 hz, at the worst case, our expected time just // misses vsync and we have to wait another 33.3ms ASSERT_LE(presentFence->getSignalTime(), mExpectedPresentTime + nsecs_t(66.666666 * 1e6)); } } else { ASSERT_EQ(presentFence, nullptr) << "transaction shouldn't have been presented"; ASSERT_EQ(latchTime, -1) << "unpresented transactions shouldn't be latched"; } ASSERT_EQ(surfaceControlStats.size(), mExpectedSurfaceResults.size()) << "wrong number of surfaces"; for (const auto& stats : surfaceControlStats) { ASSERT_NE(stats.surfaceControl, nullptr) << "returned null surface control"; const auto& expectedSurfaceResult = mExpectedSurfaceResults.find(stats.surfaceControl); ASSERT_NE(expectedSurfaceResult, mExpectedSurfaceResults.end()) << "unexpected surface control"; expectedSurfaceResult->second.verifySurfaceControlStats(stats, latchTime); } } private: class ExpectedSurfaceResult { public: ExpectedSurfaceResult(ExpectedResult::Buffer bufferResult, ExpectedResult::PreviousBuffer previousBufferResult) : mBufferResult(bufferResult), mPreviousBufferResult(previousBufferResult) {} void verifySurfaceControlStats(const SurfaceControlStats& surfaceControlStats, nsecs_t latchTime) const { const auto& [surfaceControl, acquireTime, previousReleaseFence] = surfaceControlStats; ASSERT_EQ(acquireTime > 0, mBufferResult == ExpectedResult::Buffer::ACQUIRED) << "bad acquire time"; ASSERT_LE(acquireTime, latchTime) << "acquire time should be <= latch time"; if (mPreviousBufferResult == ExpectedResult::PreviousBuffer::RELEASED) { ASSERT_NE(previousReleaseFence, nullptr) << "failed to set release prev buffer fence"; } else if (mPreviousBufferResult == ExpectedResult::PreviousBuffer::NOT_RELEASED) { ASSERT_EQ(previousReleaseFence, nullptr) << "should not have set released prev buffer fence"; } } private: ExpectedResult::Buffer mBufferResult; ExpectedResult::PreviousBuffer mPreviousBufferResult; }; struct SCHash { std::size_t operator()(const sp& sc) const { return std::hash{}(sc->getHandle().get()); } }; ExpectedResult::Transaction mTransactionResult = ExpectedResult::Transaction::NOT_PRESENTED; nsecs_t mExpectedPresentTime = -1; std::unordered_map, ExpectedSurfaceResult, SCHash> mExpectedSurfaceResults; }; class CallbackHelper { public: static void function(void* callbackContext, nsecs_t latchTime, const sp& presentFence, const std::vector& stats) { if (!callbackContext) { ALOGE("failed to get callback context"); } CallbackHelper* helper = static_cast(callbackContext); std::lock_guard lock(helper->mMutex); helper->mCallbackDataQueue.emplace(latchTime, presentFence, stats); helper->mConditionVariable.notify_all(); } void getCallbackData(CallbackData* outData) { std::unique_lock lock(mMutex); if (mCallbackDataQueue.empty()) { ASSERT_NE(mConditionVariable.wait_for(lock, std::chrono::seconds(3)), std::cv_status::timeout) << "did not receive callback"; } *outData = std::move(mCallbackDataQueue.front()); mCallbackDataQueue.pop(); } void verifyFinalState() { // Wait to see if there are extra callbacks std::this_thread::sleep_for(500ms); std::lock_guard lock(mMutex); EXPECT_EQ(mCallbackDataQueue.size(), 0) << "extra callbacks received"; mCallbackDataQueue = {}; } void* getContext() { return static_cast(this); } std::mutex mMutex; std::condition_variable mConditionVariable; std::queue mCallbackDataQueue; }; class LayerCallbackTest : public LayerTransactionTest { public: virtual sp createBufferStateLayer() { return createLayer(mClient, "test", 0, 0, ISurfaceComposerClient::eFXSurfaceBufferState); } static int fillTransaction(Transaction& transaction, CallbackHelper* callbackHelper, const sp& layer = nullptr, bool setBuffer = true, bool setBackgroundColor = false) { if (layer) { sp buffer; sp fence; if (setBuffer) { int err = getBuffer(&buffer, &fence); if (err != NO_ERROR) { return err; } transaction.setBuffer(layer, buffer); transaction.setAcquireFence(layer, fence); } if (setBackgroundColor) { transaction.setBackgroundColor(layer, /*color*/ half3(1.0f, 0, 0), /*alpha*/ 1.0f, ui::Dataspace::UNKNOWN); } } transaction.addTransactionCompletedCallback(callbackHelper->function, callbackHelper->getContext()); return NO_ERROR; } static void waitForCallback(CallbackHelper& helper, const ExpectedResult& expectedResult, bool finalState = false) { CallbackData callbackData; ASSERT_NO_FATAL_FAILURE(helper.getCallbackData(&callbackData)); EXPECT_NO_FATAL_FAILURE(expectedResult.verifyCallbackData(callbackData)); if (finalState) { ASSERT_NO_FATAL_FAILURE(helper.verifyFinalState()); } } static void waitForCallbacks(CallbackHelper& helper, const std::vector& expectedResults, bool finalState = false) { for (const auto& expectedResult : expectedResults) { waitForCallback(helper, expectedResult); } if (finalState) { ASSERT_NO_FATAL_FAILURE(helper.verifyFinalState()); } } }; TEST_F(LayerCallbackTest, BufferColor) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback; int err = fillTransaction(transaction, &callback, layer, true, true); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.apply(); ExpectedResult expected; expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected, true)); } TEST_F(LayerCallbackTest, NoBufferNoColor) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback; int err = fillTransaction(transaction, &callback, layer, false, false); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.setFrame(layer, Rect(0, 0, 32, 32)).apply(); ExpectedResult expected; expected.addSurface(ExpectedResult::Transaction::NOT_PRESENTED, layer, ExpectedResult::Buffer::NOT_ACQUIRED); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected, true)); } TEST_F(LayerCallbackTest, BufferNoColor) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback; int err = fillTransaction(transaction, &callback, layer, true, false); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.setFrame(layer, Rect(0, 0, 32, 32)).apply(); ExpectedResult expected; expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected, true)); } TEST_F(LayerCallbackTest, NoBufferColor) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback; int err = fillTransaction(transaction, &callback, layer, false, true); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.setFrame(layer, Rect(0, 0, 32, 32)).apply(); ExpectedResult expected; expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer, ExpectedResult::Buffer::NOT_ACQUIRED); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected, true)); } TEST_F(LayerCallbackTest, NoStateChange) { Transaction transaction; CallbackHelper callback; int err = fillTransaction(transaction, &callback); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.apply(); ExpectedResult expected; EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected, true)); } TEST_F(LayerCallbackTest, OffScreen) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback; int err = fillTransaction(transaction, &callback, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.setFrame(layer, Rect(-100, -100, 100, 100)).apply(); ExpectedResult expected; expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected, true)); } TEST_F(LayerCallbackTest, MergeBufferNoColor) { sp layer1, layer2; ASSERT_NO_FATAL_FAILURE(layer1 = createBufferStateLayer()); ASSERT_NO_FATAL_FAILURE(layer2 = createBufferStateLayer()); Transaction transaction1, transaction2; CallbackHelper callback1, callback2; int err = fillTransaction(transaction1, &callback1, layer1); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback2, layer2); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction1.setFrame(layer1, Rect(0, 0, 32, 32)); transaction2.setFrame(layer2, Rect(32, 32, 64, 64)).merge(std::move(transaction1)).apply(); ExpectedResult expected; expected.addSurfaces(ExpectedResult::Transaction::PRESENTED, {layer1, layer2}); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected, true)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected, true)); } TEST_F(LayerCallbackTest, MergeNoBufferColor) { sp layer1, layer2; ASSERT_NO_FATAL_FAILURE(layer1 = createBufferStateLayer()); ASSERT_NO_FATAL_FAILURE(layer2 = createBufferStateLayer()); Transaction transaction1, transaction2; CallbackHelper callback1, callback2; int err = fillTransaction(transaction1, &callback1, layer1, false, true); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback2, layer2, false, true); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction1.setFrame(layer1, Rect(0, 0, 32, 32)); transaction2.setFrame(layer2, Rect(32, 32, 64, 64)).merge(std::move(transaction1)).apply(); ExpectedResult expected; expected.addSurfaces(ExpectedResult::Transaction::PRESENTED, {layer1, layer2}, ExpectedResult::Buffer::NOT_ACQUIRED); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected, true)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected, true)); } TEST_F(LayerCallbackTest, MergeOneBufferOneColor) { sp layer1, layer2; ASSERT_NO_FATAL_FAILURE(layer1 = createBufferStateLayer()); ASSERT_NO_FATAL_FAILURE(layer2 = createBufferStateLayer()); Transaction transaction1, transaction2; CallbackHelper callback1, callback2; int err = fillTransaction(transaction1, &callback1, layer1); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback2, layer2, false, true); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction1.setFrame(layer1, Rect(0, 0, 32, 32)); transaction2.setFrame(layer2, Rect(32, 32, 64, 64)).merge(std::move(transaction1)).apply(); ExpectedResult expected; expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer1); expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer2, ExpectedResult::Buffer::NOT_ACQUIRED); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected, true)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected, true)); } TEST_F(LayerCallbackTest, Merge_SameCallback) { sp layer1, layer2; ASSERT_NO_FATAL_FAILURE(layer1 = createBufferStateLayer()); ASSERT_NO_FATAL_FAILURE(layer2 = createBufferStateLayer()); Transaction transaction1, transaction2; CallbackHelper callback; int err = fillTransaction(transaction1, &callback, layer1); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback, layer2); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction2.merge(std::move(transaction1)).apply(); ExpectedResult expected; expected.addSurfaces(ExpectedResult::Transaction::PRESENTED, {layer1, layer2}); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected, true)); } TEST_F(LayerCallbackTest, Merge_SameLayer) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction1, transaction2; CallbackHelper callback1, callback2; int err = fillTransaction(transaction1, &callback1, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback2, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction2.merge(std::move(transaction1)).apply(); ExpectedResult expected; expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected, true)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected, true)); } TEST_F(LayerCallbackTest, Merge_DifferentClients) { sp client1(new SurfaceComposerClient), client2(new SurfaceComposerClient); ASSERT_EQ(NO_ERROR, client1->initCheck()) << "failed to create SurfaceComposerClient"; ASSERT_EQ(NO_ERROR, client2->initCheck()) << "failed to create SurfaceComposerClient"; sp layer1, layer2; ASSERT_NO_FATAL_FAILURE(layer1 = createLayer(client1, "test", 0, 0, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(layer2 = createLayer(client2, "test", 0, 0, ISurfaceComposerClient::eFXSurfaceBufferState)); Transaction transaction1, transaction2; CallbackHelper callback1, callback2; int err = fillTransaction(transaction1, &callback1, layer1); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback2, layer2); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction1.setFrame(layer1, Rect(0, 0, 32, 32)); transaction2.setFrame(layer2, Rect(32, 32, 64, 64)).merge(std::move(transaction1)).apply(); ExpectedResult expected; expected.addSurfaces(ExpectedResult::Transaction::PRESENTED, {layer1, layer2}); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected, true)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected, true)); } TEST_F(LayerCallbackTest, MultipleTransactions) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback; for (size_t i = 0; i < 10; i++) { int err = fillTransaction(transaction, &callback, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.apply(); ExpectedResult expected; expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer, ExpectedResult::Buffer::ACQUIRED, (i == 0) ? ExpectedResult::PreviousBuffer::NOT_RELEASED : ExpectedResult::PreviousBuffer::RELEASED); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected)); } ASSERT_NO_FATAL_FAILURE(callback.verifyFinalState()); } TEST_F(LayerCallbackTest, MultipleTransactions_NoStateChange) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback; for (size_t i = 0; i < 10; i++) { ExpectedResult expected; if (i == 0) { int err = fillTransaction(transaction, &callback, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer); } else { int err = fillTransaction(transaction, &callback); if (err) { GTEST_SUCCEED() << "test not supported"; return; } } transaction.apply(); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected)); } ASSERT_NO_FATAL_FAILURE(callback.verifyFinalState()); } TEST_F(LayerCallbackTest, MultipleTransactions_SameStateChange) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback; for (size_t i = 0; i < 10; i++) { if (i == 0) { int err = fillTransaction(transaction, &callback, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } } else { int err = fillTransaction(transaction, &callback); if (err) { GTEST_SUCCEED() << "test not supported"; return; } } transaction.setFrame(layer, Rect(0, 0, 32, 32)).apply(); ExpectedResult expected; expected.addSurface((i == 0) ? ExpectedResult::Transaction::PRESENTED : ExpectedResult::Transaction::NOT_PRESENTED, layer, (i == 0) ? ExpectedResult::Buffer::ACQUIRED : ExpectedResult::Buffer::NOT_ACQUIRED); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected, i == 0)); } ASSERT_NO_FATAL_FAILURE(callback.verifyFinalState()); } TEST_F(LayerCallbackTest, MultipleTransactions_Merge) { sp layer1, layer2; ASSERT_NO_FATAL_FAILURE(layer1 = createBufferStateLayer()); ASSERT_NO_FATAL_FAILURE(layer2 = createBufferStateLayer()); Transaction transaction1, transaction2; CallbackHelper callback1, callback2; for (size_t i = 0; i < 10; i++) { int err = fillTransaction(transaction1, &callback1, layer1); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback2, layer2); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction1.setFrame(layer1, Rect(0, 0, 32, 32)); transaction2.setFrame(layer2, Rect(32, 32, 64, 64)).merge(std::move(transaction1)).apply(); ExpectedResult expected; expected.addSurfaces(ExpectedResult::Transaction::PRESENTED, {layer1, layer2}, ExpectedResult::Buffer::ACQUIRED, (i == 0) ? ExpectedResult::PreviousBuffer::NOT_RELEASED : ExpectedResult::PreviousBuffer::RELEASED); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected)); } ASSERT_NO_FATAL_FAILURE(callback1.verifyFinalState()); ASSERT_NO_FATAL_FAILURE(callback2.verifyFinalState()); } TEST_F(LayerCallbackTest, MultipleTransactions_Merge_DifferentClients) { sp client1(new SurfaceComposerClient), client2(new SurfaceComposerClient); ASSERT_EQ(NO_ERROR, client1->initCheck()) << "failed to create SurfaceComposerClient"; ASSERT_EQ(NO_ERROR, client2->initCheck()) << "failed to create SurfaceComposerClient"; sp layer1, layer2; ASSERT_NO_FATAL_FAILURE(layer1 = createLayer(client1, "test", 0, 0, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(layer2 = createLayer(client2, "test", 0, 0, ISurfaceComposerClient::eFXSurfaceBufferState)); Transaction transaction1, transaction2; CallbackHelper callback1, callback2; for (size_t i = 0; i < 10; i++) { int err = fillTransaction(transaction1, &callback1, layer1); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback2, layer2); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction1.setFrame(layer1, Rect(0, 0, 32, 32)); transaction2.setFrame(layer2, Rect(32, 32, 64, 64)).merge(std::move(transaction1)).apply(); ExpectedResult expected; expected.addSurfaces(ExpectedResult::Transaction::PRESENTED, {layer1, layer2}, ExpectedResult::Buffer::ACQUIRED, (i == 0) ? ExpectedResult::PreviousBuffer::NOT_RELEASED : ExpectedResult::PreviousBuffer::RELEASED); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected)); } ASSERT_NO_FATAL_FAILURE(callback1.verifyFinalState()); ASSERT_NO_FATAL_FAILURE(callback2.verifyFinalState()); } TEST_F(LayerCallbackTest, MultipleTransactions_Merge_DifferentClients_NoStateChange) { sp client1(new SurfaceComposerClient), client2(new SurfaceComposerClient); ASSERT_EQ(NO_ERROR, client1->initCheck()) << "failed to create SurfaceComposerClient"; ASSERT_EQ(NO_ERROR, client2->initCheck()) << "failed to create SurfaceComposerClient"; sp layer1, layer2; ASSERT_NO_FATAL_FAILURE(layer1 = createLayer(client1, "test", 0, 0, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(layer2 = createLayer(client2, "test", 0, 0, ISurfaceComposerClient::eFXSurfaceBufferState)); Transaction transaction1, transaction2; CallbackHelper callback1, callback2; // Normal call to set up test int err = fillTransaction(transaction1, &callback1, layer1); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback2, layer2); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction1.setFrame(layer1, Rect(0, 0, 32, 32)); transaction2.setFrame(layer2, Rect(32, 32, 64, 64)).merge(std::move(transaction1)).apply(); ExpectedResult expected; expected.addSurfaces(ExpectedResult::Transaction::PRESENTED, {layer1, layer2}); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected, true)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected, true)); expected.reset(); // Test err = fillTransaction(transaction1, &callback1); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback2); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction2.merge(std::move(transaction1)).apply(); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected, true)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected, true)); } TEST_F(LayerCallbackTest, MultipleTransactions_Merge_DifferentClients_SameStateChange) { sp client1(new SurfaceComposerClient), client2(new SurfaceComposerClient); ASSERT_EQ(NO_ERROR, client1->initCheck()) << "failed to create SurfaceComposerClient"; ASSERT_EQ(NO_ERROR, client2->initCheck()) << "failed to create SurfaceComposerClient"; sp layer1, layer2; ASSERT_NO_FATAL_FAILURE(layer1 = createLayer(client1, "test", 0, 0, ISurfaceComposerClient::eFXSurfaceBufferState)); ASSERT_NO_FATAL_FAILURE(layer2 = createLayer(client2, "test", 0, 0, ISurfaceComposerClient::eFXSurfaceBufferState)); Transaction transaction1, transaction2; CallbackHelper callback1, callback2; // Normal call to set up test int err = fillTransaction(transaction1, &callback1, layer1); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback2, layer2); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction1.setFrame(layer1, Rect(0, 0, 32, 32)); transaction2.setFrame(layer2, Rect(32, 32, 64, 64)).merge(std::move(transaction1)).apply(); ExpectedResult expected; expected.addSurfaces(ExpectedResult::Transaction::PRESENTED, {layer1, layer2}); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected, true)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected, true)); expected.reset(); // Test err = fillTransaction(transaction1, &callback1); if (err) { GTEST_SUCCEED() << "test not supported"; return; } err = fillTransaction(transaction2, &callback2); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction2.setFrame(layer2, Rect(32, 32, 64, 64)).merge(std::move(transaction1)).apply(); expected.addSurface(ExpectedResult::Transaction::NOT_PRESENTED, layer2, ExpectedResult::Buffer::NOT_ACQUIRED); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected, true)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected, true)); } TEST_F(LayerCallbackTest, MultipleTransactions_SingleFrame) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback; std::vector expectedResults(50); for (auto& expected : expectedResults) { expected.reset(); expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer, ExpectedResult::Buffer::ACQUIRED, ExpectedResult::PreviousBuffer::UNKNOWN); int err = fillTransaction(transaction, &callback, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.apply(); } EXPECT_NO_FATAL_FAILURE(waitForCallbacks(callback, expectedResults, true)); } TEST_F(LayerCallbackTest, MultipleTransactions_SingleFrame_NoStateChange) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); // Normal call to set up test Transaction transaction; CallbackHelper callback; int err = fillTransaction(transaction, &callback, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.apply(); ExpectedResult expected; expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected, true)); // Test std::vector expectedResults(50); for (auto& expected : expectedResults) { expected.reset(); err = fillTransaction(transaction, &callback); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.apply(); } EXPECT_NO_FATAL_FAILURE(waitForCallbacks(callback, expectedResults, true)); } TEST_F(LayerCallbackTest, MultipleTransactions_SingleFrame_SameStateChange) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); // Normal call to set up test Transaction transaction; CallbackHelper callback; int err = fillTransaction(transaction, &callback, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.setFrame(layer, Rect(0, 0, 32, 32)).apply(); ExpectedResult expectedResult; expectedResult.addSurface(ExpectedResult::Transaction::PRESENTED, layer); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expectedResult, true)); // Test std::vector expectedResults(50); for (auto& expected : expectedResults) { expected.reset(); expected.addSurface(ExpectedResult::Transaction::NOT_PRESENTED, layer, ExpectedResult::Buffer::NOT_ACQUIRED); err = fillTransaction(transaction, &callback); if (err) { GTEST_SUCCEED() << "test not supported"; return; } transaction.setFrame(layer, Rect(0, 0, 32, 32)).apply(); } EXPECT_NO_FATAL_FAILURE(waitForCallbacks(callback, expectedResults, true)); } TEST_F(LayerCallbackTest, DesiredPresentTime) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback; int err = fillTransaction(transaction, &callback, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } // Try to present 100ms in the future nsecs_t time = systemTime() + (100 * 1e6); transaction.setDesiredPresentTime(time); transaction.apply(); ExpectedResult expected; expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer); expected.addExpectedPresentTime(time); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected, true)); } TEST_F(LayerCallbackTest, DesiredPresentTime_Multiple) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback1; int err = fillTransaction(transaction, &callback1, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } // Try to present 100ms in the future nsecs_t time = systemTime() + (100 * 1e6); transaction.setDesiredPresentTime(time); transaction.apply(); ExpectedResult expected1; expected1.addSurface(ExpectedResult::Transaction::PRESENTED, layer); expected1.addExpectedPresentTime(time); CallbackHelper callback2; err = fillTransaction(transaction, &callback2, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } // Try to present 33ms after the first frame time += (33.3 * 1e6); transaction.setDesiredPresentTime(time); transaction.apply(); ExpectedResult expected2; expected2.addSurface(ExpectedResult::Transaction::PRESENTED, layer, ExpectedResult::Buffer::ACQUIRED, ExpectedResult::PreviousBuffer::RELEASED); expected2.addExpectedPresentTime(time); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected1, true)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected2, true)); } TEST_F(LayerCallbackTest, DesiredPresentTime_OutOfOrder) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback1; int err = fillTransaction(transaction, &callback1, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } // Try to present 100ms in the future nsecs_t time = systemTime() + (100 * 1e6); transaction.setDesiredPresentTime(time); transaction.apply(); ExpectedResult expected1; expected1.addSurface(ExpectedResult::Transaction::PRESENTED, layer); expected1.addExpectedPresentTime(time); CallbackHelper callback2; err = fillTransaction(transaction, &callback2, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } // Try to present 33ms before the previous frame time -= (33.3 * 1e6); transaction.setDesiredPresentTime(time); transaction.apply(); ExpectedResult expected2; expected2.addSurface(ExpectedResult::Transaction::PRESENTED, layer, ExpectedResult::Buffer::ACQUIRED, ExpectedResult::PreviousBuffer::RELEASED); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback1, expected1, true)); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback2, expected2, true)); } TEST_F(LayerCallbackTest, DesiredPresentTime_Past) { sp layer; ASSERT_NO_FATAL_FAILURE(layer = createBufferStateLayer()); Transaction transaction; CallbackHelper callback; int err = fillTransaction(transaction, &callback, layer); if (err) { GTEST_SUCCEED() << "test not supported"; return; } // Try to present 100ms in the past nsecs_t time = systemTime() - (100 * 1e6); transaction.setDesiredPresentTime(time); transaction.apply(); ExpectedResult expected; expected.addSurface(ExpectedResult::Transaction::PRESENTED, layer); expected.addExpectedPresentTime(systemTime()); EXPECT_NO_FATAL_FAILURE(waitForCallback(callback, expected, true)); } class LayerUpdateTest : public LayerTransactionTest { protected: virtual void SetUp() { LayerTransactionTest::SetUp(); ASSERT_EQ(NO_ERROR, mClient->initCheck()); const auto display = SurfaceComposerClient::getInternalDisplayToken(); ASSERT_FALSE(display == nullptr); DisplayInfo info; ASSERT_EQ(NO_ERROR, SurfaceComposerClient::getDisplayInfo(display, &info)); ssize_t displayWidth = info.w; ssize_t displayHeight = info.h; // Background surface mBGSurfaceControl = createLayer(String8("BG Test Surface"), displayWidth, displayHeight, 0); ASSERT_TRUE(mBGSurfaceControl != nullptr); ASSERT_TRUE(mBGSurfaceControl->isValid()); fillSurfaceRGBA8(mBGSurfaceControl, 63, 63, 195); // Foreground surface mFGSurfaceControl = createLayer(String8("FG Test Surface"), 64, 64, 0); ASSERT_TRUE(mFGSurfaceControl != nullptr); ASSERT_TRUE(mFGSurfaceControl->isValid()); fillSurfaceRGBA8(mFGSurfaceControl, 195, 63, 63); // Synchronization surface mSyncSurfaceControl = createLayer(String8("Sync Test Surface"), 1, 1, 0); ASSERT_TRUE(mSyncSurfaceControl != nullptr); ASSERT_TRUE(mSyncSurfaceControl->isValid()); fillSurfaceRGBA8(mSyncSurfaceControl, 31, 31, 31); asTransaction([&](Transaction& t) { t.setDisplayLayerStack(display, 0); t.setLayer(mBGSurfaceControl, INT32_MAX - 2).show(mBGSurfaceControl); t.setLayer(mFGSurfaceControl, INT32_MAX - 1) .setPosition(mFGSurfaceControl, 64, 64) .show(mFGSurfaceControl); t.setLayer(mSyncSurfaceControl, INT32_MAX - 1) .setPosition(mSyncSurfaceControl, displayWidth - 2, displayHeight - 2) .show(mSyncSurfaceControl); }); } virtual void TearDown() { LayerTransactionTest::TearDown(); mBGSurfaceControl = 0; mFGSurfaceControl = 0; mSyncSurfaceControl = 0; } void waitForPostedBuffers() { // Since the sync surface is in synchronous mode (i.e. double buffered) // posting three buffers to it should ensure that at least two // SurfaceFlinger::handlePageFlip calls have been made, which should // guaranteed that a buffer posted to another Surface has been retired. fillSurfaceRGBA8(mSyncSurfaceControl, 31, 31, 31); fillSurfaceRGBA8(mSyncSurfaceControl, 31, 31, 31); fillSurfaceRGBA8(mSyncSurfaceControl, 31, 31, 31); } sp mBGSurfaceControl; sp mFGSurfaceControl; // This surface is used to ensure that the buffers posted to // mFGSurfaceControl have been picked up by SurfaceFlinger. sp mSyncSurfaceControl; }; TEST_F(LayerUpdateTest, RelativesAreNotDetached) { std::unique_ptr sc; sp relative = createLayer(String8("relativeTestSurface"), 10, 10, 0); fillSurfaceRGBA8(relative, 10, 10, 10); waitForPostedBuffers(); Transaction{} .setRelativeLayer(relative, mFGSurfaceControl->getHandle(), 1) .setPosition(relative, 64, 64) .apply(); { // The relative should be on top of the FG control. ScreenCapture::captureScreen(&sc); sc->checkPixel(64, 64, 10, 10, 10); } Transaction{}.detachChildren(mFGSurfaceControl).apply(); { // Nothing should change at this point. ScreenCapture::captureScreen(&sc); sc->checkPixel(64, 64, 10, 10, 10); } Transaction{}.hide(relative).apply(); { // Ensure that the relative was actually hidden, rather than // being left in the detached but visible state. ScreenCapture::captureScreen(&sc); sc->expectFGColor(64, 64); } } class GeometryLatchingTest : public LayerUpdateTest { protected: void EXPECT_INITIAL_STATE(const char* trace) { SCOPED_TRACE(trace); ScreenCapture::captureScreen(&sc); // We find the leading edge of the FG surface. sc->expectFGColor(127, 127); sc->expectBGColor(128, 128); } void lockAndFillFGBuffer() { fillSurfaceRGBA8(mFGSurfaceControl, 195, 63, 63, false); } void unlockFGBuffer() { sp s = mFGSurfaceControl->getSurface(); ASSERT_EQ(NO_ERROR, s->unlockAndPost()); waitForPostedBuffers(); } void completeFGResize() { fillSurfaceRGBA8(mFGSurfaceControl, 195, 63, 63); waitForPostedBuffers(); } void restoreInitialState() { asTransaction([&](Transaction& t) { t.setSize(mFGSurfaceControl, 64, 64); t.setPosition(mFGSurfaceControl, 64, 64); t.setCrop_legacy(mFGSurfaceControl, Rect(0, 0, 64, 64)); }); EXPECT_INITIAL_STATE("After restoring initial state"); } std::unique_ptr sc; }; class CropLatchingTest : public GeometryLatchingTest { protected: void EXPECT_CROPPED_STATE(const char* trace) { SCOPED_TRACE(trace); ScreenCapture::captureScreen(&sc); // The edge should be moved back one pixel by our crop. sc->expectFGColor(126, 126); sc->expectBGColor(127, 127); sc->expectBGColor(128, 128); } void EXPECT_RESIZE_STATE(const char* trace) { SCOPED_TRACE(trace); ScreenCapture::captureScreen(&sc); // The FG is now resized too 128,128 at 64,64 sc->expectFGColor(64, 64); sc->expectFGColor(191, 191); sc->expectBGColor(192, 192); } }; TEST_F(LayerUpdateTest, DeferredTransactionTest) { std::unique_ptr sc; { SCOPED_TRACE("before anything"); ScreenCapture::captureScreen(&sc); sc->expectBGColor(32, 32); sc->expectFGColor(96, 96); sc->expectBGColor(160, 160); } // set up two deferred transactions on different frames asTransaction([&](Transaction& t) { t.setAlpha(mFGSurfaceControl, 0.75); t.deferTransactionUntil_legacy(mFGSurfaceControl, mSyncSurfaceControl->getHandle(), mSyncSurfaceControl->getSurface()->getNextFrameNumber()); }); asTransaction([&](Transaction& t) { t.setPosition(mFGSurfaceControl, 128, 128); t.deferTransactionUntil_legacy(mFGSurfaceControl, mSyncSurfaceControl->getHandle(), mSyncSurfaceControl->getSurface()->getNextFrameNumber() + 1); }); { SCOPED_TRACE("before any trigger"); ScreenCapture::captureScreen(&sc); sc->expectBGColor(32, 32); sc->expectFGColor(96, 96); sc->expectBGColor(160, 160); } // should trigger the first deferred transaction, but not the second one fillSurfaceRGBA8(mSyncSurfaceControl, 31, 31, 31); { SCOPED_TRACE("after first trigger"); ScreenCapture::captureScreen(&sc); sc->expectBGColor(32, 32); sc->checkPixel(96, 96, 162, 63, 96); sc->expectBGColor(160, 160); } // should show up immediately since it's not deferred asTransaction([&](Transaction& t) { t.setAlpha(mFGSurfaceControl, 1.0); }); // trigger the second deferred transaction fillSurfaceRGBA8(mSyncSurfaceControl, 31, 31, 31); { SCOPED_TRACE("after second trigger"); ScreenCapture::captureScreen(&sc); sc->expectBGColor(32, 32); sc->expectBGColor(96, 96); sc->expectFGColor(160, 160); } } TEST_F(LayerUpdateTest, LayerWithNoBuffersResizesImmediately) { std::unique_ptr sc; sp childNoBuffer = createSurface(mClient, "Bufferless child", 0 /* buffer width */, 0 /* buffer height */, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); sp childBuffer = createSurface(mClient, "Buffered child", 20, 20, PIXEL_FORMAT_RGBA_8888, 0, childNoBuffer.get()); fillSurfaceRGBA8(childBuffer, 200, 200, 200); SurfaceComposerClient::Transaction{} .setCrop_legacy(childNoBuffer, Rect(0, 0, 10, 10)) .show(childNoBuffer) .show(childBuffer) .apply(true); { ScreenCapture::captureScreen(&sc); sc->expectChildColor(73, 73); sc->expectFGColor(74, 74); } SurfaceComposerClient::Transaction{} .setCrop_legacy(childNoBuffer, Rect(0, 0, 20, 20)) .apply(true); { ScreenCapture::captureScreen(&sc); sc->expectChildColor(73, 73); sc->expectChildColor(74, 74); } } TEST_F(LayerUpdateTest, MergingTransactions) { std::unique_ptr sc; { SCOPED_TRACE("before move"); ScreenCapture::captureScreen(&sc); sc->expectBGColor(0, 12); sc->expectFGColor(75, 75); sc->expectBGColor(145, 145); } Transaction t1, t2; t1.setPosition(mFGSurfaceControl, 128, 128); t2.setPosition(mFGSurfaceControl, 0, 0); // We expect that the position update from t2 now // overwrites the position update from t1. t1.merge(std::move(t2)); t1.apply(); { ScreenCapture::captureScreen(&sc); sc->expectFGColor(1, 1); } } class ChildLayerTest : public LayerUpdateTest { protected: void SetUp() override { LayerUpdateTest::SetUp(); mChild = createSurface(mClient, "Child surface", 10, 15, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(mChild, 200, 200, 200); { SCOPED_TRACE("before anything"); mCapture = screenshot(); mCapture->expectChildColor(64, 64); } } void TearDown() override { LayerUpdateTest::TearDown(); mChild = 0; } sp mChild; std::unique_ptr mCapture; }; TEST_F(ChildLayerTest, ChildLayerPositioning) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 10, 10); t.setPosition(mFGSurfaceControl, 64, 64); }); { mCapture = screenshot(); // Top left of foreground must now be visible mCapture->expectFGColor(64, 64); // But 10 pixels in we should see the child surface mCapture->expectChildColor(74, 74); // And 10 more pixels we should be back to the foreground surface mCapture->expectFGColor(84, 84); } asTransaction([&](Transaction& t) { t.setPosition(mFGSurfaceControl, 0, 0); }); { mCapture = screenshot(); // Top left of foreground should now be at 0, 0 mCapture->expectFGColor(0, 0); // But 10 pixels in we should see the child surface mCapture->expectChildColor(10, 10); // And 10 more pixels we should be back to the foreground surface mCapture->expectFGColor(20, 20); } } TEST_F(ChildLayerTest, ChildLayerCropping) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 0, 0); t.setPosition(mFGSurfaceControl, 0, 0); t.setCrop_legacy(mFGSurfaceControl, Rect(0, 0, 5, 5)); }); { mCapture = screenshot(); mCapture->expectChildColor(0, 0); mCapture->expectChildColor(4, 4); mCapture->expectBGColor(5, 5); } } TEST_F(ChildLayerTest, ChildLayerConstraints) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mFGSurfaceControl, 0, 0); t.setPosition(mChild, 63, 63); }); { mCapture = screenshot(); mCapture->expectFGColor(0, 0); // Last pixel in foreground should now be the child. mCapture->expectChildColor(63, 63); // But the child should be constrained and the next pixel // must be the background mCapture->expectBGColor(64, 64); } } TEST_F(ChildLayerTest, ChildLayerScaling) { asTransaction([&](Transaction& t) { t.setPosition(mFGSurfaceControl, 0, 0); }); // Find the boundary between the parent and child { mCapture = screenshot(); mCapture->expectChildColor(9, 9); mCapture->expectFGColor(10, 10); } asTransaction([&](Transaction& t) { t.setMatrix(mFGSurfaceControl, 2.0, 0, 0, 2.0); }); // The boundary should be twice as far from the origin now. // The pixels from the last test should all be child now { mCapture = screenshot(); mCapture->expectChildColor(9, 9); mCapture->expectChildColor(10, 10); mCapture->expectChildColor(19, 19); mCapture->expectFGColor(20, 20); } } // A child with a scale transform should be cropped by its parent bounds. TEST_F(ChildLayerTest, ChildLayerScalingCroppedByParent) { asTransaction([&](Transaction& t) { t.setPosition(mFGSurfaceControl, 0, 0); t.setPosition(mChild, 0, 0); }); // Find the boundary between the parent and child. { mCapture = screenshot(); mCapture->expectChildColor(0, 0); mCapture->expectChildColor(9, 9); mCapture->expectFGColor(10, 10); } asTransaction([&](Transaction& t) { t.setMatrix(mChild, 10.0, 0, 0, 10.0); }); // The child should fill its parent bounds and be cropped by it. { mCapture = screenshot(); mCapture->expectChildColor(0, 0); mCapture->expectChildColor(63, 63); mCapture->expectBGColor(64, 64); } } TEST_F(ChildLayerTest, ChildLayerAlpha) { fillSurfaceRGBA8(mBGSurfaceControl, 0, 0, 254); fillSurfaceRGBA8(mFGSurfaceControl, 254, 0, 0); fillSurfaceRGBA8(mChild, 0, 254, 0); waitForPostedBuffers(); asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 0, 0); t.setPosition(mFGSurfaceControl, 0, 0); }); { mCapture = screenshot(); // Unblended child color mCapture->checkPixel(0, 0, 0, 254, 0); } asTransaction([&](Transaction& t) { t.setAlpha(mChild, 0.5); }); { mCapture = screenshot(); // Child and BG blended. mCapture->checkPixel(0, 0, 127, 127, 0); } asTransaction([&](Transaction& t) { t.setAlpha(mFGSurfaceControl, 0.5); }); { mCapture = screenshot(); // Child and BG blended. mCapture->checkPixel(0, 0, 95, 64, 95); } } TEST_F(ChildLayerTest, ReparentChildren) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 10, 10); t.setPosition(mFGSurfaceControl, 64, 64); }); { mCapture = screenshot(); // Top left of foreground must now be visible mCapture->expectFGColor(64, 64); // But 10 pixels in we should see the child surface mCapture->expectChildColor(74, 74); // And 10 more pixels we should be back to the foreground surface mCapture->expectFGColor(84, 84); } asTransaction([&](Transaction& t) { t.reparentChildren(mFGSurfaceControl, mBGSurfaceControl->getHandle()); }); { mCapture = screenshot(); mCapture->expectFGColor(64, 64); // In reparenting we should have exposed the entire foreground surface. mCapture->expectFGColor(74, 74); // And the child layer should now begin at 10, 10 (since the BG // layer is at (0, 0)). mCapture->expectBGColor(9, 9); mCapture->expectChildColor(10, 10); } } TEST_F(ChildLayerTest, ChildrenSurviveParentDestruction) { sp mGrandChild = createSurface(mClient, "Grand Child", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mChild.get()); fillSurfaceRGBA8(mGrandChild, 111, 111, 111); { SCOPED_TRACE("Grandchild visible"); ScreenCapture::captureScreen(&mCapture); mCapture->checkPixel(64, 64, 111, 111, 111); } mChild.clear(); { SCOPED_TRACE("After destroying child"); ScreenCapture::captureScreen(&mCapture); mCapture->expectFGColor(64, 64); } asTransaction([&](Transaction& t) { t.reparent(mGrandChild, mFGSurfaceControl->getHandle()); }); { SCOPED_TRACE("After reparenting grandchild"); ScreenCapture::captureScreen(&mCapture); mCapture->checkPixel(64, 64, 111, 111, 111); } } TEST_F(ChildLayerTest, DetachChildrenSameClient) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 10, 10); t.setPosition(mFGSurfaceControl, 64, 64); }); { mCapture = screenshot(); // Top left of foreground must now be visible mCapture->expectFGColor(64, 64); // But 10 pixels in we should see the child surface mCapture->expectChildColor(74, 74); // And 10 more pixels we should be back to the foreground surface mCapture->expectFGColor(84, 84); } asTransaction([&](Transaction& t) { t.detachChildren(mFGSurfaceControl); }); asTransaction([&](Transaction& t) { t.hide(mChild); }); // Since the child has the same client as the parent, it will not get // detached and will be hidden. { mCapture = screenshot(); mCapture->expectFGColor(64, 64); mCapture->expectFGColor(74, 74); mCapture->expectFGColor(84, 84); } } TEST_F(ChildLayerTest, DetachChildrenDifferentClient) { sp mNewComposerClient = new SurfaceComposerClient; sp mChildNewClient = createSurface(mNewComposerClient, "New Child Test Surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); ASSERT_TRUE(mChildNewClient->isValid()); fillSurfaceRGBA8(mChildNewClient, 200, 200, 200); asTransaction([&](Transaction& t) { t.hide(mChild); t.show(mChildNewClient); t.setPosition(mChildNewClient, 10, 10); t.setPosition(mFGSurfaceControl, 64, 64); }); { mCapture = screenshot(); // Top left of foreground must now be visible mCapture->expectFGColor(64, 64); // But 10 pixels in we should see the child surface mCapture->expectChildColor(74, 74); // And 10 more pixels we should be back to the foreground surface mCapture->expectFGColor(84, 84); } asTransaction([&](Transaction& t) { t.detachChildren(mFGSurfaceControl); }); asTransaction([&](Transaction& t) { t.hide(mChildNewClient); }); // Nothing should have changed. { mCapture = screenshot(); mCapture->expectFGColor(64, 64); mCapture->expectChildColor(74, 74); mCapture->expectFGColor(84, 84); } } TEST_F(ChildLayerTest, DetachChildrenThenAttach) { sp newComposerClient = new SurfaceComposerClient; sp childNewClient = newComposerClient->createSurface(String8("New Child Test Surface"), 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); ASSERT_TRUE(childNewClient != nullptr); ASSERT_TRUE(childNewClient->isValid()); fillSurfaceRGBA8(childNewClient, 200, 200, 200); Transaction() .hide(mChild) .show(childNewClient) .setPosition(childNewClient, 10, 10) .setPosition(mFGSurfaceControl, 64, 64) .apply(); { mCapture = screenshot(); // Top left of foreground must now be visible mCapture->expectFGColor(64, 64); // But 10 pixels in we should see the child surface mCapture->expectChildColor(74, 74); // And 10 more pixels we should be back to the foreground surface mCapture->expectFGColor(84, 84); } Transaction().detachChildren(mFGSurfaceControl).apply(); Transaction().hide(childNewClient).apply(); // Nothing should have changed. { mCapture = screenshot(); mCapture->expectFGColor(64, 64); mCapture->expectChildColor(74, 74); mCapture->expectFGColor(84, 84); } sp newParentSurface = createLayer(String8("New Parent Surface"), 32, 32, 0); fillLayerColor(ISurfaceComposerClient::eFXSurfaceBufferQueue, newParentSurface, Color::RED, 32, 32); Transaction() .setLayer(newParentSurface, INT32_MAX - 1) .show(newParentSurface) .setPosition(newParentSurface, 20, 20) .reparent(childNewClient, newParentSurface->getHandle()) .apply(); { mCapture = screenshot(); // Child is now hidden. mCapture->expectColor(Rect(20, 20, 52, 52), Color::RED); } } TEST_F(ChildLayerTest, DetachChildrenWithDeferredTransaction) { sp newComposerClient = new SurfaceComposerClient; sp childNewClient = newComposerClient->createSurface(String8("New Child Test Surface"), 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); ASSERT_TRUE(childNewClient != nullptr); ASSERT_TRUE(childNewClient->isValid()); fillSurfaceRGBA8(childNewClient, 200, 200, 200); Transaction() .hide(mChild) .show(childNewClient) .setPosition(childNewClient, 10, 10) .setPosition(mFGSurfaceControl, 64, 64) .apply(); { mCapture = screenshot(); Rect rect = Rect(74, 74, 84, 84); mCapture->expectBorder(rect, Color{195, 63, 63, 255}); mCapture->expectColor(rect, Color{200, 200, 200, 255}); } Transaction() .deferTransactionUntil_legacy(childNewClient, mFGSurfaceControl->getHandle(), mFGSurfaceControl->getSurface()->getNextFrameNumber()) .apply(); Transaction().detachChildren(mFGSurfaceControl).apply(); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(mFGSurfaceControl, Color::RED, 32, 32)); // BufferLayer can still dequeue buffers even though there's a detached layer with a // deferred transaction. { SCOPED_TRACE("new buffer"); mCapture = screenshot(); Rect rect = Rect(74, 74, 84, 84); mCapture->expectBorder(rect, Color::RED); mCapture->expectColor(rect, Color{200, 200, 200, 255}); } } TEST_F(ChildLayerTest, ChildrenInheritNonTransformScalingFromParent) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 0, 0); t.setPosition(mFGSurfaceControl, 0, 0); }); { mCapture = screenshot(); // We've positioned the child in the top left. mCapture->expectChildColor(0, 0); // But it's only 10x15. mCapture->expectFGColor(10, 15); } asTransaction([&](Transaction& t) { t.setOverrideScalingMode(mFGSurfaceControl, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW); // We cause scaling by 2. t.setSize(mFGSurfaceControl, 128, 128); }); { mCapture = screenshot(); // We've positioned the child in the top left. mCapture->expectChildColor(0, 0); mCapture->expectChildColor(10, 10); mCapture->expectChildColor(19, 29); // And now it should be scaled all the way to 20x30 mCapture->expectFGColor(20, 30); } } // Regression test for b/37673612 TEST_F(ChildLayerTest, ChildrenWithParentBufferTransform) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 0, 0); t.setPosition(mFGSurfaceControl, 0, 0); }); { mCapture = screenshot(); // We've positioned the child in the top left. mCapture->expectChildColor(0, 0); mCapture->expectChildColor(9, 14); // But it's only 10x15. mCapture->expectFGColor(10, 15); } // We set things up as in b/37673612 so that there is a mismatch between the buffer size and // the WM specified state size. asTransaction([&](Transaction& t) { t.setSize(mFGSurfaceControl, 128, 64); }); sp s = mFGSurfaceControl->getSurface(); auto anw = static_cast(s.get()); native_window_set_buffers_transform(anw, NATIVE_WINDOW_TRANSFORM_ROT_90); native_window_set_buffers_dimensions(anw, 64, 128); fillSurfaceRGBA8(mFGSurfaceControl, 195, 63, 63); waitForPostedBuffers(); { // The child should still be in the same place and not have any strange scaling as in // b/37673612. mCapture = screenshot(); mCapture->expectChildColor(0, 0); mCapture->expectFGColor(10, 10); } } // A child with a buffer transform from its parents should be cropped by its parent bounds. TEST_F(ChildLayerTest, ChildCroppedByParentWithBufferTransform) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 0, 0); t.setPosition(mFGSurfaceControl, 0, 0); t.setSize(mChild, 100, 100); }); fillSurfaceRGBA8(mChild, 200, 200, 200); { mCapture = screenshot(); mCapture->expectChildColor(0, 0); mCapture->expectChildColor(63, 63); mCapture->expectBGColor(64, 64); } asTransaction([&](Transaction& t) { t.setSize(mFGSurfaceControl, 128, 64); }); sp s = mFGSurfaceControl->getSurface(); auto anw = static_cast(s.get()); // Apply a 90 transform on the buffer. native_window_set_buffers_transform(anw, NATIVE_WINDOW_TRANSFORM_ROT_90); native_window_set_buffers_dimensions(anw, 64, 128); fillSurfaceRGBA8(mFGSurfaceControl, 195, 63, 63); waitForPostedBuffers(); // The child should be cropped by the new parent bounds. { mCapture = screenshot(); mCapture->expectChildColor(0, 0); mCapture->expectChildColor(99, 63); mCapture->expectFGColor(100, 63); mCapture->expectBGColor(128, 64); } } // A child with a scale transform from its parents should be cropped by its parent bounds. TEST_F(ChildLayerTest, ChildCroppedByParentWithBufferScale) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 0, 0); t.setPosition(mFGSurfaceControl, 0, 0); t.setSize(mChild, 200, 200); }); fillSurfaceRGBA8(mChild, 200, 200, 200); { mCapture = screenshot(); mCapture->expectChildColor(0, 0); mCapture->expectChildColor(63, 63); mCapture->expectBGColor(64, 64); } asTransaction([&](Transaction& t) { t.setOverrideScalingMode(mFGSurfaceControl, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW); // Set a scaling by 2. t.setSize(mFGSurfaceControl, 128, 128); }); // Child should inherit its parents scale but should be cropped by its parent bounds. { mCapture = screenshot(); mCapture->expectChildColor(0, 0); mCapture->expectChildColor(127, 127); mCapture->expectBGColor(128, 128); } } // Regression test for b/127368943 // Child should ignore the buffer transform but apply parent scale transform. TEST_F(ChildLayerTest, ChildrenWithParentBufferTransformAndScale) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 0, 0); t.setPosition(mFGSurfaceControl, 0, 0); }); { mCapture = screenshot(); mCapture->expectChildColor(0, 0); mCapture->expectChildColor(9, 14); mCapture->expectFGColor(10, 15); } // Change the size of the foreground to 128 * 64 so we can test rotation as well. asTransaction([&](Transaction& t) { t.setOverrideScalingMode(mFGSurfaceControl, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW); t.setSize(mFGSurfaceControl, 128, 64); }); sp s = mFGSurfaceControl->getSurface(); auto anw = static_cast(s.get()); // Apply a 90 transform on the buffer and submit a buffer half the expected size so that we // have an effective scale of 2.0 applied to the buffer along with a rotation transform. native_window_set_buffers_transform(anw, NATIVE_WINDOW_TRANSFORM_ROT_90); native_window_set_buffers_dimensions(anw, 32, 64); fillSurfaceRGBA8(mFGSurfaceControl, 195, 63, 63); waitForPostedBuffers(); // The child should ignore the buffer transform but apply the 2.0 scale from parent. { mCapture = screenshot(); mCapture->expectChildColor(0, 0); mCapture->expectChildColor(19, 29); mCapture->expectFGColor(20, 30); } } TEST_F(ChildLayerTest, Bug36858924) { // Destroy the child layer mChild.clear(); // Now recreate it as hidden mChild = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, ISurfaceComposerClient::eHidden, mFGSurfaceControl.get()); // Show the child layer in a deferred transaction asTransaction([&](Transaction& t) { t.deferTransactionUntil_legacy(mChild, mFGSurfaceControl->getHandle(), mFGSurfaceControl->getSurface()->getNextFrameNumber()); t.show(mChild); }); // Render the foreground surface a few times // // Prior to the bugfix for b/36858924, this would usually hang while trying to fill the third // frame because SurfaceFlinger would never process the deferred transaction and would therefore // never acquire/release the first buffer ALOGI("Filling 1"); fillSurfaceRGBA8(mFGSurfaceControl, 0, 255, 0); ALOGI("Filling 2"); fillSurfaceRGBA8(mFGSurfaceControl, 0, 0, 255); ALOGI("Filling 3"); fillSurfaceRGBA8(mFGSurfaceControl, 255, 0, 0); ALOGI("Filling 4"); fillSurfaceRGBA8(mFGSurfaceControl, 0, 255, 0); } TEST_F(ChildLayerTest, Reparent) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 10, 10); t.setPosition(mFGSurfaceControl, 64, 64); }); { mCapture = screenshot(); // Top left of foreground must now be visible mCapture->expectFGColor(64, 64); // But 10 pixels in we should see the child surface mCapture->expectChildColor(74, 74); // And 10 more pixels we should be back to the foreground surface mCapture->expectFGColor(84, 84); } asTransaction([&](Transaction& t) { t.reparent(mChild, mBGSurfaceControl->getHandle()); }); { mCapture = screenshot(); mCapture->expectFGColor(64, 64); // In reparenting we should have exposed the entire foreground surface. mCapture->expectFGColor(74, 74); // And the child layer should now begin at 10, 10 (since the BG // layer is at (0, 0)). mCapture->expectBGColor(9, 9); mCapture->expectChildColor(10, 10); } } TEST_F(ChildLayerTest, ReparentToNoParent) { asTransaction([&](Transaction& t) { t.show(mChild); t.setPosition(mChild, 10, 10); t.setPosition(mFGSurfaceControl, 64, 64); }); { mCapture = screenshot(); // Top left of foreground must now be visible mCapture->expectFGColor(64, 64); // But 10 pixels in we should see the child surface mCapture->expectChildColor(74, 74); // And 10 more pixels we should be back to the foreground surface mCapture->expectFGColor(84, 84); } asTransaction([&](Transaction& t) { t.reparent(mChild, nullptr); }); { mCapture = screenshot(); // The surface should now be offscreen. mCapture->expectFGColor(64, 64); mCapture->expectFGColor(74, 74); mCapture->expectFGColor(84, 84); } } TEST_F(ChildLayerTest, ReparentFromNoParent) { sp newSurface = createLayer(String8("New Surface"), 10, 10, 0); ASSERT_TRUE(newSurface != nullptr); ASSERT_TRUE(newSurface->isValid()); fillSurfaceRGBA8(newSurface, 63, 195, 63); asTransaction([&](Transaction& t) { t.hide(mChild); t.show(newSurface); t.setPosition(newSurface, 10, 10); t.setLayer(newSurface, INT32_MAX - 2); t.setPosition(mFGSurfaceControl, 64, 64); }); { mCapture = screenshot(); // Top left of foreground must now be visible mCapture->expectFGColor(64, 64); // At 10, 10 we should see the new surface mCapture->checkPixel(10, 10, 63, 195, 63); } asTransaction([&](Transaction& t) { t.reparent(newSurface, mFGSurfaceControl->getHandle()); }); { mCapture = screenshot(); // newSurface will now be a child of mFGSurface so it will be 10, 10 offset from // mFGSurface, putting it at 74, 74. mCapture->expectFGColor(64, 64); mCapture->checkPixel(74, 74, 63, 195, 63); mCapture->expectFGColor(84, 84); } } TEST_F(ChildLayerTest, NestedChildren) { sp grandchild = createSurface(mClient, "Grandchild surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mChild.get()); fillSurfaceRGBA8(grandchild, 50, 50, 50); { mCapture = screenshot(); // Expect the grandchild to begin at 64, 64 because it's a child of mChild layer // which begins at 64, 64 mCapture->checkPixel(64, 64, 50, 50, 50); } } TEST_F(ChildLayerTest, ChildLayerRelativeLayer) { sp relative = createLayer(String8("Relative surface"), 128, 128, 0); fillSurfaceRGBA8(relative, 255, 255, 255); Transaction t; t.setLayer(relative, INT32_MAX) .setRelativeLayer(mChild, relative->getHandle(), 1) .setPosition(mFGSurfaceControl, 0, 0) .apply(true); // We expect that the child should have been elevated above our // INT_MAX layer even though it's not a child of it. { mCapture = screenshot(); mCapture->expectChildColor(0, 0); mCapture->expectChildColor(9, 9); mCapture->checkPixel(10, 10, 255, 255, 255); } } class BoundlessLayerTest : public LayerUpdateTest { protected: std::unique_ptr mCapture; }; // Verify setting a size on a buffer layer has no effect. TEST_F(BoundlessLayerTest, BufferLayerIgnoresSize) { sp bufferLayer = createSurface(mClient, "BufferLayer", 45, 45, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); ASSERT_TRUE(bufferLayer->isValid()); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(bufferLayer, Color::BLACK, 30, 30)); asTransaction([&](Transaction& t) { t.show(bufferLayer); }); { mCapture = screenshot(); // Top left of background must now be visible mCapture->expectBGColor(0, 0); // Foreground Surface bounds must be color layer mCapture->expectColor(Rect(64, 64, 94, 94), Color::BLACK); // Buffer layer should not extend past buffer bounds mCapture->expectFGColor(95, 95); } } // Verify a boundless color layer will fill its parent bounds. The parent has a buffer size // which will crop the color layer. TEST_F(BoundlessLayerTest, BoundlessColorLayerFillsParentBufferBounds) { sp colorLayer = createSurface(mClient, "ColorLayer", 0, 0, PIXEL_FORMAT_RGBA_8888, ISurfaceComposerClient::eFXSurfaceColor, mFGSurfaceControl.get()); ASSERT_TRUE(colorLayer->isValid()); asTransaction([&](Transaction& t) { t.setColor(colorLayer, half3{0, 0, 0}); t.show(colorLayer); }); { mCapture = screenshot(); // Top left of background must now be visible mCapture->expectBGColor(0, 0); // Foreground Surface bounds must be color layer mCapture->expectColor(Rect(64, 64, 128, 128), Color::BLACK); // Color layer should not extend past foreground bounds mCapture->expectBGColor(129, 129); } } // Verify a boundless color layer will fill its parent bounds. The parent has no buffer but has // a crop which will be used to crop the color layer. TEST_F(BoundlessLayerTest, BoundlessColorLayerFillsParentCropBounds) { sp cropLayer = createSurface(mClient, "CropLayer", 0, 0, PIXEL_FORMAT_RGBA_8888, 0 /* flags */, mFGSurfaceControl.get()); ASSERT_TRUE(cropLayer->isValid()); sp colorLayer = createSurface(mClient, "ColorLayer", 0, 0, PIXEL_FORMAT_RGBA_8888, ISurfaceComposerClient::eFXSurfaceColor, cropLayer.get()); ASSERT_TRUE(colorLayer->isValid()); asTransaction([&](Transaction& t) { t.setCrop_legacy(cropLayer, Rect(5, 5, 10, 10)); t.setColor(colorLayer, half3{0, 0, 0}); t.show(cropLayer); t.show(colorLayer); }); { mCapture = screenshot(); // Top left of background must now be visible mCapture->expectBGColor(0, 0); // Top left of foreground must now be visible mCapture->expectFGColor(64, 64); // 5 pixels from the foreground we should see the child surface mCapture->expectColor(Rect(69, 69, 74, 74), Color::BLACK); // 10 pixels from the foreground we should be back to the foreground surface mCapture->expectFGColor(74, 74); } } // Verify for boundless layer with no children, their transforms have no effect. TEST_F(BoundlessLayerTest, BoundlessColorLayerTransformHasNoEffect) { sp colorLayer = createSurface(mClient, "ColorLayer", 0, 0, PIXEL_FORMAT_RGBA_8888, ISurfaceComposerClient::eFXSurfaceColor, mFGSurfaceControl.get()); ASSERT_TRUE(colorLayer->isValid()); asTransaction([&](Transaction& t) { t.setPosition(colorLayer, 320, 320); t.setMatrix(colorLayer, 2, 0, 0, 2); t.setColor(colorLayer, half3{0, 0, 0}); t.show(colorLayer); }); { mCapture = screenshot(); // Top left of background must now be visible mCapture->expectBGColor(0, 0); // Foreground Surface bounds must be color layer mCapture->expectColor(Rect(64, 64, 128, 128), Color::BLACK); // Color layer should not extend past foreground bounds mCapture->expectBGColor(129, 129); } } // Verify for boundless layer with children, their transforms have an effect. TEST_F(BoundlessLayerTest, IntermediateBoundlessLayerCanSetTransform) { sp boundlessLayerRightShift = createSurface(mClient, "BoundlessLayerRightShift", 0, 0, PIXEL_FORMAT_RGBA_8888, 0 /* flags */, mFGSurfaceControl.get()); ASSERT_TRUE(boundlessLayerRightShift->isValid()); sp boundlessLayerDownShift = createSurface(mClient, "BoundlessLayerLeftShift", 0, 0, PIXEL_FORMAT_RGBA_8888, 0 /* flags */, boundlessLayerRightShift.get()); ASSERT_TRUE(boundlessLayerDownShift->isValid()); sp colorLayer = createSurface(mClient, "ColorLayer", 0, 0, PIXEL_FORMAT_RGBA_8888, ISurfaceComposerClient::eFXSurfaceColor, boundlessLayerDownShift.get()); ASSERT_TRUE(colorLayer->isValid()); asTransaction([&](Transaction& t) { t.setPosition(boundlessLayerRightShift, 32, 0); t.show(boundlessLayerRightShift); t.setPosition(boundlessLayerDownShift, 0, 32); t.show(boundlessLayerDownShift); t.setCrop_legacy(colorLayer, Rect(0, 0, 64, 64)); t.setColor(colorLayer, half3{0, 0, 0}); t.show(colorLayer); }); { mCapture = screenshot(); // Top left of background must now be visible mCapture->expectBGColor(0, 0); // Top left of foreground must now be visible mCapture->expectFGColor(64, 64); // Foreground Surface bounds must be color layer mCapture->expectColor(Rect(96, 96, 128, 128), Color::BLACK); // Color layer should not extend past foreground bounds mCapture->expectBGColor(129, 129); } } // Verify child layers do not get clipped if they temporarily move into the negative // coordinate space as the result of an intermediate transformation. TEST_F(BoundlessLayerTest, IntermediateBoundlessLayerDoNotCrop) { sp boundlessLayer = mClient->createSurface(String8("BoundlessLayer"), 0, 0, PIXEL_FORMAT_RGBA_8888, 0 /* flags */, mFGSurfaceControl.get()); ASSERT_TRUE(boundlessLayer != nullptr); ASSERT_TRUE(boundlessLayer->isValid()); sp colorLayer = mClient->createSurface(String8("ColorLayer"), 0, 0, PIXEL_FORMAT_RGBA_8888, ISurfaceComposerClient::eFXSurfaceColor, boundlessLayer.get()); ASSERT_TRUE(colorLayer != nullptr); ASSERT_TRUE(colorLayer->isValid()); asTransaction([&](Transaction& t) { // shift child layer off bounds. If this layer was not boundless, we will // expect the child layer to be cropped. t.setPosition(boundlessLayer, 32, 32); t.show(boundlessLayer); t.setCrop_legacy(colorLayer, Rect(0, 0, 64, 64)); // undo shift by parent t.setPosition(colorLayer, -32, -32); t.setColor(colorLayer, half3{0, 0, 0}); t.show(colorLayer); }); { mCapture = screenshot(); // Top left of background must now be visible mCapture->expectBGColor(0, 0); // Foreground Surface bounds must be color layer mCapture->expectColor(Rect(64, 64, 128, 128), Color::BLACK); // Color layer should not extend past foreground bounds mCapture->expectBGColor(129, 129); } } // Verify for boundless root layers with children, their transforms have an effect. TEST_F(BoundlessLayerTest, RootBoundlessLayerCanSetTransform) { sp rootBoundlessLayer = createSurface(mClient, "RootBoundlessLayer", 0, 0, PIXEL_FORMAT_RGBA_8888, 0 /* flags */); ASSERT_TRUE(rootBoundlessLayer->isValid()); sp colorLayer = createSurface(mClient, "ColorLayer", 0, 0, PIXEL_FORMAT_RGBA_8888, ISurfaceComposerClient::eFXSurfaceColor, rootBoundlessLayer.get()); ASSERT_TRUE(colorLayer->isValid()); asTransaction([&](Transaction& t) { t.setLayer(rootBoundlessLayer, INT32_MAX - 1); t.setPosition(rootBoundlessLayer, 32, 32); t.show(rootBoundlessLayer); t.setCrop_legacy(colorLayer, Rect(0, 0, 64, 64)); t.setColor(colorLayer, half3{0, 0, 0}); t.show(colorLayer); t.hide(mFGSurfaceControl); }); { mCapture = screenshot(); // Top left of background must now be visible mCapture->expectBGColor(0, 0); // Top left of foreground must now be visible mCapture->expectBGColor(31, 31); // Foreground Surface bounds must be color layer mCapture->expectColor(Rect(32, 32, 96, 96), Color::BLACK); // Color layer should not extend past foreground bounds mCapture->expectBGColor(97, 97); } } class ScreenCaptureTest : public LayerUpdateTest { protected: std::unique_ptr mCapture; }; TEST_F(ScreenCaptureTest, CaptureSingleLayer) { auto bgHandle = mBGSurfaceControl->getHandle(); ScreenCapture::captureLayers(&mCapture, bgHandle); mCapture->expectBGColor(0, 0); // Doesn't capture FG layer which is at 64, 64 mCapture->expectBGColor(64, 64); } TEST_F(ScreenCaptureTest, CaptureLayerWithChild) { auto fgHandle = mFGSurfaceControl->getHandle(); sp child = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(child, 200, 200, 200); SurfaceComposerClient::Transaction().show(child).apply(true); // Captures mFGSurfaceControl layer and its child. ScreenCapture::captureLayers(&mCapture, fgHandle); mCapture->expectFGColor(10, 10); mCapture->expectChildColor(0, 0); } TEST_F(ScreenCaptureTest, CaptureLayerChildOnly) { auto fgHandle = mFGSurfaceControl->getHandle(); sp child = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(child, 200, 200, 200); SurfaceComposerClient::Transaction().show(child).apply(true); // Captures mFGSurfaceControl's child ScreenCapture::captureChildLayers(&mCapture, fgHandle); mCapture->checkPixel(10, 10, 0, 0, 0); mCapture->expectChildColor(0, 0); } TEST_F(ScreenCaptureTest, CaptureLayerExclude) { auto fgHandle = mFGSurfaceControl->getHandle(); sp child = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(child, 200, 200, 200); sp child2 = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(child2, 200, 0, 200); SurfaceComposerClient::Transaction() .show(child) .show(child2) .setLayer(child, 1) .setLayer(child2, 2) .apply(true); // Child2 would be visible but its excluded, so we should see child1 color instead. ScreenCapture::captureChildLayersExcluding(&mCapture, fgHandle, {child2->getHandle()}); mCapture->checkPixel(10, 10, 0, 0, 0); mCapture->checkPixel(0, 0, 200, 200, 200); } // Like the last test but verifies that children are also exclude. TEST_F(ScreenCaptureTest, CaptureLayerExcludeTree) { auto fgHandle = mFGSurfaceControl->getHandle(); sp child = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(child, 200, 200, 200); sp child2 = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(child2, 200, 0, 200); sp child3 = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, child2.get()); fillSurfaceRGBA8(child2, 200, 0, 200); SurfaceComposerClient::Transaction() .show(child) .show(child2) .show(child3) .setLayer(child, 1) .setLayer(child2, 2) .apply(true); // Child2 would be visible but its excluded, so we should see child1 color instead. ScreenCapture::captureChildLayersExcluding(&mCapture, fgHandle, {child2->getHandle()}); mCapture->checkPixel(10, 10, 0, 0, 0); mCapture->checkPixel(0, 0, 200, 200, 200); } TEST_F(ScreenCaptureTest, CaptureTransparent) { sp child = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(child, 200, 200, 200); SurfaceComposerClient::Transaction().show(child).apply(true); auto childHandle = child->getHandle(); // Captures child ScreenCapture::captureLayers(&mCapture, childHandle, {0, 0, 10, 20}); mCapture->expectColor(Rect(0, 0, 9, 9), {200, 200, 200, 255}); // Area outside of child's bounds is transparent. mCapture->expectColor(Rect(0, 10, 9, 19), {0, 0, 0, 0}); } TEST_F(ScreenCaptureTest, DontCaptureRelativeOutsideTree) { auto fgHandle = mFGSurfaceControl->getHandle(); sp child = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); ASSERT_NE(nullptr, child.get()) << "failed to create surface"; sp relative = createLayer(String8("Relative surface"), 10, 10, 0); fillSurfaceRGBA8(child, 200, 200, 200); fillSurfaceRGBA8(relative, 100, 100, 100); SurfaceComposerClient::Transaction() .show(child) // Set relative layer above fg layer so should be shown above when computing all layers. .setRelativeLayer(relative, fgHandle, 1) .show(relative) .apply(true); // Captures mFGSurfaceControl layer and its child. Relative layer shouldn't be captured. ScreenCapture::captureLayers(&mCapture, fgHandle); mCapture->expectFGColor(10, 10); mCapture->expectChildColor(0, 0); } TEST_F(ScreenCaptureTest, CaptureRelativeInTree) { auto fgHandle = mFGSurfaceControl->getHandle(); sp child = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); sp relative = createSurface(mClient, "Relative surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(child, 200, 200, 200); fillSurfaceRGBA8(relative, 100, 100, 100); SurfaceComposerClient::Transaction() .show(child) // Set relative layer below fg layer but relative to child layer so it should be shown // above child layer. .setLayer(relative, -1) .setRelativeLayer(relative, child->getHandle(), 1) .show(relative) .apply(true); // Captures mFGSurfaceControl layer and its children. Relative layer is a child of fg so its // relative value should be taken into account, placing it above child layer. ScreenCapture::captureLayers(&mCapture, fgHandle); mCapture->expectFGColor(10, 10); // Relative layer is showing on top of child layer mCapture->expectColor(Rect(0, 0, 9, 9), {100, 100, 100, 255}); } // In the following tests we verify successful skipping of a parent layer, // so we use the same verification logic and only change how we mutate // the parent layer to verify that various properties are ignored. class ScreenCaptureChildOnlyTest : public LayerUpdateTest { public: void SetUp() override { LayerUpdateTest::SetUp(); mChild = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(mChild, 200, 200, 200); SurfaceComposerClient::Transaction().show(mChild).apply(true); } void verify(std::function verifyStartingState) { // Verify starting state before a screenshot is taken. verifyStartingState(); // Verify child layer does not inherit any of the properties of its // parent when its screenshot is captured. auto fgHandle = mFGSurfaceControl->getHandle(); ScreenCapture::captureChildLayers(&mCapture, fgHandle); mCapture->checkPixel(10, 10, 0, 0, 0); mCapture->expectChildColor(0, 0); // Verify all assumptions are still true after the screenshot is taken. verifyStartingState(); } std::unique_ptr mCapture; sp mChild; }; // Regression test b/76099859 TEST_F(ScreenCaptureChildOnlyTest, CaptureLayerIgnoresParentVisibility) { SurfaceComposerClient::Transaction().hide(mFGSurfaceControl).apply(true); // Even though the parent is hidden we should still capture the child. // Before and after reparenting, verify child is properly hidden // when rendering full-screen. verify([&] { screenshot()->expectBGColor(64, 64); }); } TEST_F(ScreenCaptureChildOnlyTest, CaptureLayerIgnoresParentCrop) { SurfaceComposerClient::Transaction() .setCrop_legacy(mFGSurfaceControl, Rect(0, 0, 1, 1)) .apply(true); // Even though the parent is cropped out we should still capture the child. // Before and after reparenting, verify child is cropped by parent. verify([&] { screenshot()->expectBGColor(65, 65); }); } // Regression test b/124372894 TEST_F(ScreenCaptureChildOnlyTest, CaptureLayerIgnoresTransform) { SurfaceComposerClient::Transaction().setMatrix(mFGSurfaceControl, 2, 0, 0, 2).apply(true); // We should not inherit the parent scaling. // Before and after reparenting, verify child is properly scaled. verify([&] { screenshot()->expectChildColor(80, 80); }); } TEST_F(ScreenCaptureTest, CaptureLayerWithGrandchild) { auto fgHandle = mFGSurfaceControl->getHandle(); sp child = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(child, 200, 200, 200); sp grandchild = createSurface(mClient, "Grandchild surface", 5, 5, PIXEL_FORMAT_RGBA_8888, 0, child.get()); fillSurfaceRGBA8(grandchild, 50, 50, 50); SurfaceComposerClient::Transaction() .show(child) .setPosition(grandchild, 5, 5) .show(grandchild) .apply(true); // Captures mFGSurfaceControl, its child, and the grandchild. ScreenCapture::captureLayers(&mCapture, fgHandle); mCapture->expectFGColor(10, 10); mCapture->expectChildColor(0, 0); mCapture->checkPixel(5, 5, 50, 50, 50); } TEST_F(ScreenCaptureTest, CaptureChildOnly) { sp child = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(child, 200, 200, 200); auto childHandle = child->getHandle(); SurfaceComposerClient::Transaction().setPosition(child, 5, 5).show(child).apply(true); // Captures only the child layer, and not the parent. ScreenCapture::captureLayers(&mCapture, childHandle); mCapture->expectChildColor(0, 0); mCapture->expectChildColor(9, 9); } TEST_F(ScreenCaptureTest, CaptureGrandchildOnly) { sp child = createSurface(mClient, "Child surface", 10, 10, PIXEL_FORMAT_RGBA_8888, 0, mFGSurfaceControl.get()); fillSurfaceRGBA8(child, 200, 200, 200); auto childHandle = child->getHandle(); sp grandchild = createSurface(mClient, "Grandchild surface", 5, 5, PIXEL_FORMAT_RGBA_8888, 0, child.get()); fillSurfaceRGBA8(grandchild, 50, 50, 50); SurfaceComposerClient::Transaction() .show(child) .setPosition(grandchild, 5, 5) .show(grandchild) .apply(true); auto grandchildHandle = grandchild->getHandle(); // Captures only the grandchild. ScreenCapture::captureLayers(&mCapture, grandchildHandle); mCapture->checkPixel(0, 0, 50, 50, 50); mCapture->checkPixel(4, 4, 50, 50, 50); } TEST_F(ScreenCaptureTest, CaptureCrop) { sp redLayer = createLayer(String8("Red surface"), 60, 60, 0); sp blueLayer = createSurface(mClient, "Blue surface", 30, 30, PIXEL_FORMAT_RGBA_8888, 0, redLayer.get()); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(redLayer, Color::RED, 60, 60)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(blueLayer, Color::BLUE, 30, 30)); SurfaceComposerClient::Transaction() .setLayer(redLayer, INT32_MAX - 1) .show(redLayer) .show(blueLayer) .apply(true); auto redLayerHandle = redLayer->getHandle(); // Capturing full screen should have both red and blue are visible. ScreenCapture::captureLayers(&mCapture, redLayerHandle); mCapture->expectColor(Rect(0, 0, 29, 29), Color::BLUE); // red area below the blue area mCapture->expectColor(Rect(0, 30, 59, 59), Color::RED); // red area to the right of the blue area mCapture->expectColor(Rect(30, 0, 59, 59), Color::RED); const Rect crop = Rect(0, 0, 30, 30); ScreenCapture::captureLayers(&mCapture, redLayerHandle, crop); // Capturing the cropped screen, cropping out the shown red area, should leave only the blue // area visible. mCapture->expectColor(Rect(0, 0, 29, 29), Color::BLUE); mCapture->checkPixel(30, 30, 0, 0, 0); } TEST_F(ScreenCaptureTest, CaptureSize) { sp redLayer = createLayer(String8("Red surface"), 60, 60, 0); sp blueLayer = createSurface(mClient, "Blue surface", 30, 30, PIXEL_FORMAT_RGBA_8888, 0, redLayer.get()); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(redLayer, Color::RED, 60, 60)); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(blueLayer, Color::BLUE, 30, 30)); SurfaceComposerClient::Transaction() .setLayer(redLayer, INT32_MAX - 1) .show(redLayer) .show(blueLayer) .apply(true); auto redLayerHandle = redLayer->getHandle(); // Capturing full screen should have both red and blue are visible. ScreenCapture::captureLayers(&mCapture, redLayerHandle); mCapture->expectColor(Rect(0, 0, 29, 29), Color::BLUE); // red area below the blue area mCapture->expectColor(Rect(0, 30, 59, 59), Color::RED); // red area to the right of the blue area mCapture->expectColor(Rect(30, 0, 59, 59), Color::RED); ScreenCapture::captureLayers(&mCapture, redLayerHandle, Rect::EMPTY_RECT, 0.5); // Capturing the downsized area (30x30) should leave both red and blue but in a smaller area. mCapture->expectColor(Rect(0, 0, 14, 14), Color::BLUE); // red area below the blue area mCapture->expectColor(Rect(0, 15, 29, 29), Color::RED); // red area to the right of the blue area mCapture->expectColor(Rect(15, 0, 29, 29), Color::RED); mCapture->checkPixel(30, 30, 0, 0, 0); } TEST_F(ScreenCaptureTest, CaptureInvalidLayer) { sp redLayer = createLayer(String8("Red surface"), 60, 60, 0); ASSERT_NO_FATAL_FAILURE(fillBufferQueueLayerColor(redLayer, Color::RED, 60, 60)); auto redLayerHandle = redLayer->getHandle(); redLayer.clear(); SurfaceComposerClient::Transaction().apply(true); sp outBuffer; // Layer was deleted so captureLayers should fail with NAME_NOT_FOUND sp sf(ComposerService::getComposerService()); ASSERT_EQ(NAME_NOT_FOUND, sf->captureLayers(redLayerHandle, &outBuffer, Rect::EMPTY_RECT, 1.0)); } class DereferenceSurfaceControlTest : public LayerTransactionTest { protected: void SetUp() override { LayerTransactionTest::SetUp(); bgLayer = createLayer("BG layer", 20, 20); fillBufferQueueLayerColor(bgLayer, Color::RED, 20, 20); fgLayer = createLayer("FG layer", 20, 20); fillBufferQueueLayerColor(fgLayer, Color::BLUE, 20, 20); Transaction().setLayer(fgLayer, mLayerZBase + 1).apply(); { SCOPED_TRACE("before anything"); auto shot = screenshot(); shot->expectColor(Rect(0, 0, 20, 20), Color::BLUE); } } void TearDown() override { LayerTransactionTest::TearDown(); bgLayer = 0; fgLayer = 0; } sp bgLayer; sp fgLayer; }; TEST_F(DereferenceSurfaceControlTest, LayerNotInTransaction) { fgLayer = nullptr; { SCOPED_TRACE("after setting null"); auto shot = screenshot(); shot->expectColor(Rect(0, 0, 20, 20), Color::RED); } } TEST_F(DereferenceSurfaceControlTest, LayerInTransaction) { auto transaction = Transaction().show(fgLayer); fgLayer = nullptr; { SCOPED_TRACE("after setting null"); auto shot = screenshot(); shot->expectColor(Rect(0, 0, 20, 20), Color::BLUE); } } class MultiDisplayLayerBoundsTest : public LayerTransactionTest { protected: virtual void SetUp() { LayerTransactionTest::SetUp(); ASSERT_EQ(NO_ERROR, mClient->initCheck()); mMainDisplay = SurfaceComposerClient::getInternalDisplayToken(); SurfaceComposerClient::getDisplayInfo(mMainDisplay, &mMainDisplayInfo); sp consumer; BufferQueue::createBufferQueue(&mProducer, &consumer); consumer->setConsumerName(String8("Virtual disp consumer")); consumer->setDefaultBufferSize(mMainDisplayInfo.w, mMainDisplayInfo.h); } virtual void TearDown() { SurfaceComposerClient::destroyDisplay(mVirtualDisplay); LayerTransactionTest::TearDown(); mColorLayer = 0; } void createDisplay(const Rect& layerStackRect, uint32_t layerStack) { mVirtualDisplay = SurfaceComposerClient::createDisplay(String8("VirtualDisplay"), false /*secure*/); asTransaction([&](Transaction& t) { t.setDisplaySurface(mVirtualDisplay, mProducer); t.setDisplayLayerStack(mVirtualDisplay, layerStack); t.setDisplayProjection(mVirtualDisplay, mMainDisplayInfo.orientation, layerStackRect, Rect(mMainDisplayInfo.w, mMainDisplayInfo.h)); }); } void createColorLayer(uint32_t layerStack) { mColorLayer = createSurface(mClient, "ColorLayer", 0 /* buffer width */, 0 /* buffer height */, PIXEL_FORMAT_RGBA_8888, ISurfaceComposerClient::eFXSurfaceColor); ASSERT_TRUE(mColorLayer != nullptr); ASSERT_TRUE(mColorLayer->isValid()); asTransaction([&](Transaction& t) { t.setLayerStack(mColorLayer, layerStack); t.setCrop_legacy(mColorLayer, Rect(0, 0, 30, 40)); t.setLayer(mColorLayer, INT32_MAX - 2); t.setColor(mColorLayer, half3{mExpectedColor.r / 255.0f, mExpectedColor.g / 255.0f, mExpectedColor.b / 255.0f}); t.show(mColorLayer); }); } DisplayInfo mMainDisplayInfo; sp mMainDisplay; sp mVirtualDisplay; sp mProducer; sp mColorLayer; Color mExpectedColor = {63, 63, 195, 255}; }; TEST_F(MultiDisplayLayerBoundsTest, RenderLayerInVirtualDisplay) { createDisplay({mMainDisplayInfo.viewportW, mMainDisplayInfo.viewportH}, 1 /* layerStack */); createColorLayer(1 /* layerStack */); asTransaction([&](Transaction& t) { t.setPosition(mColorLayer, 10, 10); }); // Verify color layer does not render on main display. std::unique_ptr sc; ScreenCapture::captureScreen(&sc, mMainDisplay); sc->expectColor(Rect(10, 10, 40, 50), {0, 0, 0, 255}); sc->expectColor(Rect(0, 0, 9, 9), {0, 0, 0, 255}); // Verify color layer renders correctly on virtual display. ScreenCapture::captureScreen(&sc, mVirtualDisplay); sc->expectColor(Rect(10, 10, 40, 50), mExpectedColor); sc->expectColor(Rect(1, 1, 9, 9), {0, 0, 0, 0}); } TEST_F(MultiDisplayLayerBoundsTest, RenderLayerInMirroredVirtualDisplay) { // Create a display and set its layer stack to the main display's layer stack so // the contents of the main display are mirrored on to the virtual display. // Assumption here is that the new mirrored display has the same viewport as the // primary display that it is mirroring. createDisplay({mMainDisplayInfo.viewportW, mMainDisplayInfo.viewportH}, 0 /* layerStack */); createColorLayer(0 /* layerStack */); asTransaction([&](Transaction& t) { t.setPosition(mColorLayer, 10, 10); }); // Verify color layer renders correctly on main display and it is mirrored on the // virtual display. std::unique_ptr sc; ScreenCapture::captureScreen(&sc, mMainDisplay); sc->expectColor(Rect(10, 10, 40, 50), mExpectedColor); sc->expectColor(Rect(0, 0, 9, 9), {0, 0, 0, 255}); ScreenCapture::captureScreen(&sc, mVirtualDisplay); sc->expectColor(Rect(10, 10, 40, 50), mExpectedColor); sc->expectColor(Rect(0, 0, 9, 9), {0, 0, 0, 255}); } class DisplayActiveConfigTest : public ::testing::Test { protected: void SetUp() override { mDisplayToken = SurfaceComposerClient::getInternalDisplayToken(); SurfaceComposerClient::getDisplayConfigs(mDisplayToken, &mDisplayconfigs); EXPECT_GT(mDisplayconfigs.size(), 0); // set display power to on to make sure config can be changed SurfaceComposerClient::setDisplayPowerMode(mDisplayToken, HWC_POWER_MODE_NORMAL); } sp mDisplayToken; Vector mDisplayconfigs; }; TEST_F(DisplayActiveConfigTest, allConfigsAllowed) { std::vector allowedConfigs; // Add all configs to the allowed configs for (int i = 0; i < mDisplayconfigs.size(); i++) { allowedConfigs.push_back(i); } status_t res = SurfaceComposerClient::setAllowedDisplayConfigs(mDisplayToken, allowedConfigs); EXPECT_EQ(res, NO_ERROR); std::vector outConfigs; res = SurfaceComposerClient::getAllowedDisplayConfigs(mDisplayToken, &outConfigs); EXPECT_EQ(res, NO_ERROR); EXPECT_EQ(allowedConfigs, outConfigs); } TEST_F(DisplayActiveConfigTest, changeAllowedConfig) { // we need at least 2 configs available for this test if (mDisplayconfigs.size() <= 1) return; int activeConfig = SurfaceComposerClient::getActiveConfig(mDisplayToken); // We want to set the allowed config to everything but the active config std::vector allowedConfigs; for (int i = 0; i < mDisplayconfigs.size(); i++) { if (i != activeConfig) { allowedConfigs.push_back(i); } } status_t res = SurfaceComposerClient::setAllowedDisplayConfigs(mDisplayToken, allowedConfigs); EXPECT_EQ(res, NO_ERROR); // Allow some time for the config change std::this_thread::sleep_for(200ms); int newActiveConfig = SurfaceComposerClient::getActiveConfig(mDisplayToken); EXPECT_NE(activeConfig, newActiveConfig); // Make sure the new config is part of allowed config EXPECT_TRUE(std::find(allowedConfigs.begin(), allowedConfigs.end(), newActiveConfig) != allowedConfigs.end()); } class RelativeZTest : public LayerTransactionTest { protected: virtual void SetUp() { LayerTransactionTest::SetUp(); ASSERT_EQ(NO_ERROR, mClient->initCheck()); const auto display = SurfaceComposerClient::getInternalDisplayToken(); ASSERT_FALSE(display == nullptr); // Back layer mBackgroundLayer = createColorLayer("Background layer", Color::RED); // Front layer mForegroundLayer = createColorLayer("Foreground layer", Color::GREEN); asTransaction([&](Transaction& t) { t.setDisplayLayerStack(display, 0); t.setLayer(mBackgroundLayer, INT32_MAX - 2).show(mBackgroundLayer); t.setLayer(mForegroundLayer, INT32_MAX - 1).show(mForegroundLayer); }); } virtual void TearDown() { LayerTransactionTest::TearDown(); mBackgroundLayer = 0; mForegroundLayer = 0; } sp mBackgroundLayer; sp mForegroundLayer; }; // When a layer is reparented offscreen, remove relative z order if the relative parent // is still onscreen so that the layer is not drawn. TEST_F(RelativeZTest, LayerRemoved) { std::unique_ptr sc; // Background layer (RED) // Child layer (WHITE) (relative to foregroud layer) // Foregroud layer (GREEN) sp childLayer = createColorLayer("Child layer", Color::BLUE, mBackgroundLayer.get()); Transaction{} .setRelativeLayer(childLayer, mForegroundLayer->getHandle(), 1) .show(childLayer) .apply(); { // The childLayer should be in front of the FG control. ScreenCapture::captureScreen(&sc); sc->checkPixel(1, 1, Color::BLUE.r, Color::BLUE.g, Color::BLUE.b); } // Background layer (RED) // Foregroud layer (GREEN) Transaction{}.reparent(childLayer, nullptr).apply(); // Background layer (RED) // Child layer (WHITE) // Foregroud layer (GREEN) Transaction{}.reparent(childLayer, mBackgroundLayer->getHandle()).apply(); { // The relative z info for child layer should be reset, leaving FG control on top. ScreenCapture::captureScreen(&sc); sc->checkPixel(1, 1, Color::GREEN.r, Color::GREEN.g, Color::GREEN.b); } } // When a layer is reparented offscreen, preseve relative z order if the relative parent // is also offscreen. Regression test b/132613412 TEST_F(RelativeZTest, LayerRemovedOffscreenRelativeParent) { std::unique_ptr sc; // Background layer (RED) // Foregroud layer (GREEN) // child level 1 (WHITE) // child level 2a (BLUE) // child level 3 (GREEN) (relative to child level 2b) // child level 2b (BLACK) sp childLevel1 = createColorLayer("child level 1", Color::WHITE, mForegroundLayer.get()); sp childLevel2a = createColorLayer("child level 2a", Color::BLUE, childLevel1.get()); sp childLevel2b = createColorLayer("child level 2b", Color::BLACK, childLevel1.get()); sp childLevel3 = createColorLayer("child level 3", Color::GREEN, childLevel2a.get()); Transaction{} .setRelativeLayer(childLevel3, childLevel2b->getHandle(), 1) .show(childLevel2a) .show(childLevel2b) .show(childLevel3) .apply(); { // The childLevel3 should be in front of childLevel2b. ScreenCapture::captureScreen(&sc); sc->checkPixel(1, 1, Color::GREEN.r, Color::GREEN.g, Color::GREEN.b); } // Background layer (RED) // Foregroud layer (GREEN) Transaction{}.reparent(childLevel1, nullptr).apply(); // Background layer (RED) // Foregroud layer (GREEN) // child level 1 (WHITE) // child level 2 back (BLUE) // child level 3 (GREEN) (relative to child level 2b) // child level 2 front (BLACK) Transaction{}.reparent(childLevel1, mForegroundLayer->getHandle()).apply(); { // Nothing should change at this point since relative z info was preserved. ScreenCapture::captureScreen(&sc); sc->checkPixel(1, 1, Color::GREEN.r, Color::GREEN.g, Color::GREEN.b); } } // This test ensures that when we drop an app buffer in SurfaceFlinger, we merge // the dropped buffer's damage region into the next buffer's damage region. If // we don't do this, we'll report an incorrect damage region to hardware // composer, resulting in broken rendering. This test checks the BufferQueue // case. // // Unfortunately, we don't currently have a way to inspect the damage region // SurfaceFlinger sends to hardware composer from a test, so this test requires // the dev to manually watch the device's screen during the test to spot broken // rendering. Because the results can't be automatically verified, this test is // marked disabled. TEST_F(LayerTransactionTest, DISABLED_BufferQueueLayerMergeDamageRegionWhenDroppingBuffers) { const int width = mDisplayWidth; const int height = mDisplayHeight; sp layer; ASSERT_NO_FATAL_FAILURE(layer = createLayer("test", width, height)); const auto producer = layer->getIGraphicBufferProducer(); const sp dummyListener(new DummyProducerListener); IGraphicBufferProducer::QueueBufferOutput queueBufferOutput; ASSERT_EQ(OK, producer->connect(dummyListener, NATIVE_WINDOW_API_CPU, true, &queueBufferOutput)); std::map> slotMap; auto slotToBuffer = [&](int slot, sp* buf) { ASSERT_NE(nullptr, buf); const auto iter = slotMap.find(slot); ASSERT_NE(slotMap.end(), iter); *buf = iter->second; }; auto dequeue = [&](int* outSlot) { ASSERT_NE(nullptr, outSlot); *outSlot = -1; int slot; sp fence; uint64_t age; FrameEventHistoryDelta timestamps; const status_t dequeueResult = producer->dequeueBuffer(&slot, &fence, width, height, PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN, &age, ×tamps); if (dequeueResult == IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION) { sp newBuf; ASSERT_EQ(OK, producer->requestBuffer(slot, &newBuf)); ASSERT_NE(nullptr, newBuf.get()); slotMap[slot] = newBuf; } else { ASSERT_EQ(OK, dequeueResult); } *outSlot = slot; }; auto queue = [&](int slot, const Region& damage, nsecs_t displayTime) { IGraphicBufferProducer::QueueBufferInput input( /*timestamp=*/displayTime, /*isAutoTimestamp=*/false, HAL_DATASPACE_UNKNOWN, /*crop=*/Rect::EMPTY_RECT, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW, /*transform=*/0, Fence::NO_FENCE); input.setSurfaceDamage(damage); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, producer->queueBuffer(slot, input, &output)); }; auto fillAndPostBuffers = [&](const Color& color) { int slot1; ASSERT_NO_FATAL_FAILURE(dequeue(&slot1)); int slot2; ASSERT_NO_FATAL_FAILURE(dequeue(&slot2)); sp buf1; ASSERT_NO_FATAL_FAILURE(slotToBuffer(slot1, &buf1)); sp buf2; ASSERT_NO_FATAL_FAILURE(slotToBuffer(slot2, &buf2)); fillGraphicBufferColor(buf1, Rect(width, height), color); fillGraphicBufferColor(buf2, Rect(width, height), color); const auto displayTime = systemTime() + milliseconds_to_nanoseconds(100); ASSERT_NO_FATAL_FAILURE(queue(slot1, Region::INVALID_REGION, displayTime)); ASSERT_NO_FATAL_FAILURE( queue(slot2, Region(Rect(width / 3, height / 3, 2 * width / 3, 2 * height / 3)), displayTime)); }; const auto startTime = systemTime(); const std::array colors = {Color::RED, Color::GREEN, Color::BLUE}; int colorIndex = 0; while (nanoseconds_to_seconds(systemTime() - startTime) < 10) { ASSERT_NO_FATAL_FAILURE(fillAndPostBuffers(colors[colorIndex++ % colors.size()])); std::this_thread::sleep_for(1s); } ASSERT_EQ(OK, producer->disconnect(NATIVE_WINDOW_API_CPU)); } } // namespace android