/* * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpr3-regulator.h" #define MSM8996_MMSS_FUSE_CORNERS 4 /** * struct cpr3_msm8996_mmss_fuses - MMSS specific fuse data for MSM8996 * @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value * for each fuse corner (raw, not converted to a voltage) * @offset_voltage: The closed-loop voltage margin adjustment fuse parameter * value for each fuse corner (raw, not converted to a * voltage) * @speed_bin: Graphics processor speed bin fuse parameter value for * the given chip * @cpr_fusing_rev: CPR fusing revision fuse parameter value * @limitation: CPR limitation select fuse parameter value * @aging_init_quot_diff: Initial quotient difference between CPR aging * min and max sensors measured at time of manufacturing * @force_highest_corner: Flag indicating that all corners must operate * at the voltage of the highest corner. This is * applicable to MSM8998 only. * * This struct holds the values for all of the fuses read from memory. */ struct cpr3_msm8996_mmss_fuses { u64 init_voltage[MSM8996_MMSS_FUSE_CORNERS]; u64 offset_voltage[MSM8996_MMSS_FUSE_CORNERS]; u64 speed_bin; u64 cpr_fusing_rev; u64 limitation; u64 aging_init_quot_diff; u64 force_highest_corner; }; /* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 */ #define CPR3_MSM8996_MMSS_FUSE_COMBO_COUNT 8 /* * Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0. * Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1. */ #define CPR3_MSM8996PRO_MMSS_FUSE_COMBO_COUNT 16 /* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 */ #define CPR3_MSM8998_MMSS_FUSE_COMBO_COUNT 8 /* * MSM8996 MMSS fuse parameter locations: * * Structs are organized with the following dimensions: * Outer: 0 to 3 for fuse corners from lowest to highest corner * Inner: large enough to hold the longest set of parameter segments which * fully defines a fuse parameter, +1 (for NULL termination). * Each segment corresponds to a contiguous group of bits from a * single fuse row. These segments are concatentated together in * order to form the full fuse parameter value. The segments for * a given parameter may correspond to different fuse rows. */ static const struct cpr3_fuse_param msm8996_mmss_init_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = { {{63, 55, 59}, {} }, {{63, 50, 54}, {} }, {{63, 45, 49}, {} }, {{63, 40, 44}, {} }, }; static const struct cpr3_fuse_param msm8996_cpr_fusing_rev_param[] = { {39, 48, 50}, {}, }; static const struct cpr3_fuse_param msm8996_cpr_limitation_param[] = { {41, 31, 32}, {}, }; static const struct cpr3_fuse_param msm8996_mmss_aging_init_quot_diff_param[] = { {68, 26, 31}, {}, }; /* Offset voltages are defined for SVS and Turbo fuse corners only */ static const struct cpr3_fuse_param msm8996_mmss_offset_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = { {{} }, {{66, 42, 44}, {} }, {{} }, {{64, 58, 61}, {} }, }; static const struct cpr3_fuse_param msm8996pro_mmss_speed_bin_param[] = { {39, 60, 61}, {}, }; /* MSM8998 MMSS fuse parameter locations: */ static const struct cpr3_fuse_param msm8998_mmss_init_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = { {{65, 39, 43}, {} }, {{65, 34, 38}, {} }, {{65, 29, 33}, {} }, {{65, 24, 28}, {} }, }; static const struct cpr3_fuse_param msm8998_cpr_fusing_rev_param[] = { {39, 48, 50}, {}, }; static const struct cpr3_fuse_param msm8998_cpr_limitation_param[] = { {41, 46, 47}, {}, }; static const struct cpr3_fuse_param msm8998_mmss_aging_init_quot_diff_param[] = { {65, 60, 63}, {66, 0, 3}, {}, }; static const struct cpr3_fuse_param msm8998_mmss_offset_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = { {{65, 56, 59}, {} }, {{65, 52, 55}, {} }, {{65, 48, 51}, {} }, {{65, 44, 47}, {} }, }; static const struct cpr3_fuse_param msm8998_cpr_force_highest_corner_param[] = { {100, 45, 45}, {}, }; #define MSM8996PRO_SOC_ID 4 #define MSM8998_V1_SOC_ID 5 #define MSM8998_V2_SOC_ID 6 /* * Some initial msm8996 parts cannot be used in a meaningful way by software. * Other parts can only be used when operating with CPR disabled (i.e. at the * fused open-loop voltage) when no voltage interpolation is applied. A fuse * parameter is provided so that software can properly handle these limitations. */ enum msm8996_cpr_limitation { MSM8996_CPR_LIMITATION_NONE = 0, MSM8996_CPR_LIMITATION_UNSUPPORTED = 2, MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION = 3, }; /* Additional MSM8996 specific data: */ /* Open loop voltage fuse reference voltages in microvolts */ static const int msm8996_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = { 670000, 745000, 905000, 1015000, }; static const int msm8996pro_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = { 670000, 745000, 905000, 1065000, }; static const int msm8998_v1_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = { 528000, 656000, 812000, 932000, }; static const int msm8998_v1_rev0_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = { 632000, 768000, 896000, 1032000, }; static const int msm8998_v2_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = { 516000, 628000, 752000, 924000, }; static const int msm8998_v2_rev0_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = { 616000, 740000, 828000, 1024000, }; #define MSM8996_MMSS_FUSE_STEP_VOLT 10000 #define MSM8996_MMSS_OFFSET_FUSE_STEP_VOLT 10000 #define MSM8996_MMSS_VOLTAGE_FUSE_SIZE 5 #define MSM8996_MMSS_MIN_VOLTAGE_FUSE_VAL 0x1F #define MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SCALE 2 #define MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SIZE 6 #define MSM8996_MMSS_CPR_SENSOR_COUNT 35 #define MSM8996_MMSS_CPR_CLOCK_RATE 19200000 #define MSM8996_MMSS_AGING_SENSOR_ID 29 #define MSM8996_MMSS_AGING_BYPASS_MASK0 (GENMASK(23, 0)) #define MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SCALE 1 #define MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SIZE 8 #define MSM8998_MMSS_CPR_SENSOR_COUNT 35 #define MSM8998_MMSS_AGING_SENSOR_ID 29 #define MSM8998_MMSS_AGING_BYPASS_MASK0 (GENMASK(23, 0)) #define MSM8998_MMSS_MAX_TEMP_POINTS 3 #define MSM8998_MMSS_TEMP_SENSOR_ID_START 12 #define MSM8998_MMSS_TEMP_SENSOR_ID_END 13 /* * Some initial msm8998 parts cannot be operated at low voltages. The * open-loop voltage fuses are reused to identify these parts so that software * can properly handle the limitation. 0xF means that the next higher fuse * corner should be used. 0xE means that the next higher fuse corner which * does not have a voltage limitation should be used. */ enum msm8998_cpr_partial_binning { MSM8998_CPR_PARTIAL_BINNING_NEXT_CORNER = 0xF, MSM8998_CPR_PARTIAL_BINNING_SAFE_CORNER = 0xE, }; /* * The partial binning open-loop voltage fuse values only apply to the lowest * two fuse corners (0 and 1, i.e. MinSVS and SVS). */ #define MSM8998_CPR_PARTIAL_BINNING_MAX_FUSE_CORNER 1 static inline bool cpr3_ctrl_is_msm8998(const struct cpr3_controller *ctrl) { return ctrl->soc_revision == MSM8998_V1_SOC_ID || ctrl->soc_revision == MSM8998_V2_SOC_ID; } /** * cpr3_msm8996_mmss_read_fuse_data() - load MMSS specific fuse parameter values * @vreg: Pointer to the CPR3 regulator * * This function allocates a cpr3_msm8996_mmss_fuses struct, fills it with * values read out of hardware fuses, and finally copies common fuse values * into the regulator struct. * * Return: 0 on success, errno on failure */ static int cpr3_msm8996_mmss_read_fuse_data(struct cpr3_regulator *vreg) { void __iomem *base = vreg->thread->ctrl->fuse_base; struct cpr3_msm8996_mmss_fuses *fuse; int i, rc, combo_max; fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL); if (!fuse) return -ENOMEM; if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID) { rc = cpr3_read_fuse_param(base, msm8996pro_mmss_speed_bin_param, &fuse->speed_bin); if (rc) { cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin); } rc = cpr3_read_fuse_param(base, cpr3_ctrl_is_msm8998(vreg->thread->ctrl) ? msm8998_cpr_fusing_rev_param : msm8996_cpr_fusing_rev_param, &fuse->cpr_fusing_rev); if (rc) { cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev); rc = cpr3_read_fuse_param(base, cpr3_ctrl_is_msm8998(vreg->thread->ctrl) ? msm8998_cpr_limitation_param : msm8996_cpr_limitation_param, &fuse->limitation); if (rc) { cpr3_err(vreg, "Unable to read CPR limitation fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "CPR limitation = %s\n", fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED ? "unsupported chip" : fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION ? "CPR disabled and no interpolation" : "none"); rc = cpr3_read_fuse_param(base, cpr3_ctrl_is_msm8998(vreg->thread->ctrl) ? msm8998_mmss_aging_init_quot_diff_param : msm8996_mmss_aging_init_quot_diff_param, &fuse->aging_init_quot_diff); if (rc) { cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n", rc); return rc; } for (i = 0; i < MSM8996_MMSS_FUSE_CORNERS; i++) { rc = cpr3_read_fuse_param(base, cpr3_ctrl_is_msm8998(vreg->thread->ctrl) ? msm8998_mmss_init_voltage_param[i] : msm8996_mmss_init_voltage_param[i], &fuse->init_voltage[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, cpr3_ctrl_is_msm8998(vreg->thread->ctrl) ? msm8998_mmss_offset_voltage_param[i] : msm8996_mmss_offset_voltage_param[i], &fuse->offset_voltage[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d offset voltage fuse, rc=%d\n", i, rc); return rc; } } if (cpr3_ctrl_is_msm8998(vreg->thread->ctrl)) { rc = cpr3_read_fuse_param(base, msm8998_cpr_force_highest_corner_param, &fuse->force_highest_corner); if (rc) { cpr3_err(vreg, "Unable to read CPR force highest corner fuse, rc=%d\n", rc); return rc; } if (fuse->force_highest_corner) cpr3_info(vreg, "Fusing requires all operation at the highest corner\n"); } if (cpr3_ctrl_is_msm8998(vreg->thread->ctrl)) { combo_max = CPR3_MSM8998_MMSS_FUSE_COMBO_COUNT; vreg->fuse_combo = fuse->cpr_fusing_rev; } else if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID) { combo_max = CPR3_MSM8996PRO_MMSS_FUSE_COMBO_COUNT; vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin; } else { combo_max = CPR3_MSM8996_MMSS_FUSE_COMBO_COUNT; vreg->fuse_combo = fuse->cpr_fusing_rev; } if (vreg->fuse_combo >= combo_max) { cpr3_err(vreg, "invalid CPR fuse combo = %d found, not in range 0 - %d\n", vreg->fuse_combo, combo_max - 1); return -EINVAL; } vreg->speed_bin_fuse = fuse->speed_bin; vreg->cpr_rev_fuse = fuse->cpr_fusing_rev; vreg->fuse_corner_count = MSM8996_MMSS_FUSE_CORNERS; vreg->platform_fuses = fuse; return 0; } /** * cpr3_mmss_parse_corner_data() - parse MMSS corner data from device tree * properties of the regulator's device node * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cpr3_mmss_parse_corner_data(struct cpr3_regulator *vreg) { int i, rc; u32 *temp; rc = cpr3_parse_common_corner_data(vreg); if (rc) { cpr3_err(vreg, "error reading corner data, rc=%d\n", rc); return rc; } temp = kcalloc(vreg->corner_count * CPR3_RO_COUNT, sizeof(*temp), GFP_KERNEL); if (!temp) return -ENOMEM; rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-target-quotients", CPR3_RO_COUNT, temp); if (rc) { cpr3_err(vreg, "could not load target quotients, rc=%d\n", rc); goto done; } for (i = 0; i < vreg->corner_count; i++) memcpy(vreg->corner[i].target_quot, &temp[i * CPR3_RO_COUNT], sizeof(*temp) * CPR3_RO_COUNT); done: kfree(temp); return rc; } /** * cpr3_msm8996_mmss_adjust_target_quotients() - adjust the target quotients * for each corner according to device tree values and fuse values * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cpr3_msm8996_mmss_adjust_target_quotients( struct cpr3_regulator *vreg) { struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses; const struct cpr3_fuse_param (*offset_param)[2]; int *volt_offset; int i, fuse_len, rc = 0; volt_offset = kcalloc(vreg->fuse_corner_count, sizeof(*volt_offset), GFP_KERNEL); if (!volt_offset) return -ENOMEM; offset_param = cpr3_ctrl_is_msm8998(vreg->thread->ctrl) ? msm8998_mmss_offset_voltage_param : msm8996_mmss_offset_voltage_param; for (i = 0; i < vreg->fuse_corner_count; i++) { fuse_len = offset_param[i][0].bit_end + 1 - offset_param[i][0].bit_start; volt_offset[i] = cpr3_convert_open_loop_voltage_fuse( 0, MSM8996_MMSS_OFFSET_FUSE_STEP_VOLT, fuse->offset_voltage[i], fuse_len); if (volt_offset[i]) cpr3_info(vreg, "fuse_corner[%d] offset=%7d uV\n", i, volt_offset[i]); } rc = cpr3_adjust_target_quotients(vreg, volt_offset); if (rc) cpr3_err(vreg, "adjust target quotients failed, rc=%d\n", rc); kfree(volt_offset); return rc; } /** * cpr3_msm8996_mmss_calculate_open_loop_voltages() - calculate the open-loop * voltage for each corner of a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * If open-loop voltage interpolation is allowed in both device tree and in * hardware fuses, then this function calculates the open-loop voltage for a * given corner using linear interpolation. This interpolation is performed * using the processor frequencies of the lower and higher Fmax corners along * with their fused open-loop voltages. * * If open-loop voltage interpolation is not allowed, then this function uses * the Fmax fused open-loop voltage for all of the corners associated with a * given fuse corner. * * Return: 0 on success, errno on failure */ static int cpr3_msm8996_mmss_calculate_open_loop_voltages( struct cpr3_regulator *vreg) { struct device_node *node = vreg->of_node; struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses; bool is_msm8998 = cpr3_ctrl_is_msm8998(vreg->thread->ctrl); int rc = 0; bool allow_interpolation; u64 freq_low, volt_low, freq_high, volt_high, volt_init; int i, j; const int *ref_volt; int *fuse_volt; int *fmax_corner; fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt), GFP_KERNEL); fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner), GFP_KERNEL); if (!fuse_volt || !fmax_corner) { rc = -ENOMEM; goto done; } if (vreg->thread->ctrl->soc_revision == MSM8998_V2_SOC_ID && fuse->cpr_fusing_rev == 0) ref_volt = msm8998_v2_rev0_mmss_fuse_ref_volt; else if (vreg->thread->ctrl->soc_revision == MSM8998_V2_SOC_ID) ref_volt = msm8998_v2_mmss_fuse_ref_volt; else if (vreg->thread->ctrl->soc_revision == MSM8998_V1_SOC_ID && fuse->cpr_fusing_rev == 0) ref_volt = msm8998_v1_rev0_mmss_fuse_ref_volt; else if (vreg->thread->ctrl->soc_revision == MSM8998_V1_SOC_ID) ref_volt = msm8998_v1_mmss_fuse_ref_volt; else if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID) ref_volt = msm8996pro_mmss_fuse_ref_volt; else ref_volt = msm8996_mmss_fuse_ref_volt; for (i = 0; i < vreg->fuse_corner_count; i++) { volt_init = fuse->init_voltage[i]; /* * Handle partial binning on MSM8998 where the initial voltage * fuse is reused as a flag for partial binning needs. Set the * open-loop voltage to the minimum possible value so that it * does not result in higher fuse corners getting forced to * higher open-loop voltages after monotonicity enforcement. */ if (is_msm8998 && (volt_init == MSM8998_CPR_PARTIAL_BINNING_NEXT_CORNER || volt_init == MSM8998_CPR_PARTIAL_BINNING_SAFE_CORNER) && i <= MSM8998_CPR_PARTIAL_BINNING_MAX_FUSE_CORNER) volt_init = MSM8996_MMSS_MIN_VOLTAGE_FUSE_VAL; fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i], MSM8996_MMSS_FUSE_STEP_VOLT, volt_init, MSM8996_MMSS_VOLTAGE_FUSE_SIZE); cpr3_info(vreg, "fuse_corner[%d] open-loop=%7d uV\n", i, fuse_volt[i]); } rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt); if (rc) { cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n", rc); goto done; } allow_interpolation = of_property_read_bool(node, "qcom,allow-voltage-interpolation"); for (i = 1; i < vreg->fuse_corner_count; i++) { if (fuse_volt[i] < fuse_volt[i - 1]) { cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n", i, fuse_volt[i], i - 1, fuse_volt[i - 1], i, fuse_volt[i - 1]); fuse_volt[i] = fuse_volt[i - 1]; } } if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) allow_interpolation = false; if (!allow_interpolation) { /* Use fused open-loop voltage for lower frequencies. */ for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].open_loop_volt = fuse_volt[vreg->corner[i].cpr_fuse_corner]; goto done; } /* Determine highest corner mapped to each fuse corner */ j = vreg->fuse_corner_count - 1; for (i = vreg->corner_count - 1; i >= 0; i--) { if (vreg->corner[i].cpr_fuse_corner == j) { fmax_corner[j] = i; j--; } } if (j >= 0) { cpr3_err(vreg, "invalid fuse corner mapping\n"); rc = -EINVAL; goto done; } /* * Interpolation is not possible for corners mapped to the lowest fuse * corner so use the fuse corner value directly. */ for (i = 0; i <= fmax_corner[0]; i++) vreg->corner[i].open_loop_volt = fuse_volt[0]; /* Interpolate voltages for the higher fuse corners. */ for (i = 1; i < vreg->fuse_corner_count; i++) { freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq; volt_low = fuse_volt[i - 1]; freq_high = vreg->corner[fmax_corner[i]].proc_freq; volt_high = fuse_volt[i]; for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++) vreg->corner[j].open_loop_volt = cpr3_interpolate( freq_low, volt_low, freq_high, volt_high, vreg->corner[j].proc_freq); } done: if (rc == 0) { cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n"); for (i = 0; i < vreg->corner_count; i++) cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i, vreg->corner[i].open_loop_volt); rc = cpr3_adjust_open_loop_voltages(vreg); if (rc) cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n", rc); } kfree(fuse_volt); kfree(fmax_corner); return rc; } /** * cpr3_msm8998_partial_binning_override() - override the voltage and quotient * settings for low corners based upon the special partial binning * open-loop voltage fuse values * @vreg: Pointer to the CPR3 regulator * * Some parts are not able to operate at low voltages. The partial binning * open-loop voltage fuse values specify if a given part has such limitations. * * Return: 0 on success, errno on failure */ static int cpr3_msm8998_partial_binning_override(struct cpr3_regulator *vreg) { struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses; u64 next = MSM8998_CPR_PARTIAL_BINNING_NEXT_CORNER; u64 safe = MSM8998_CPR_PARTIAL_BINNING_SAFE_CORNER; u32 proc_freq; struct cpr3_corner *corner; struct cpr3_corner *safe_corner; int i, j, low, high, safe_fuse_corner, max_fuse_corner; if (!cpr3_ctrl_is_msm8998(vreg->thread->ctrl)) return 0; /* Handle the force highest corner fuse. */ if (fuse->force_highest_corner) { cpr3_info(vreg, "overriding CPR parameters for corners 0 to %d with quotients and voltages of corner %d\n", vreg->corner_count - 2, vreg->corner_count - 1); corner = &vreg->corner[vreg->corner_count - 1]; for (i = 0; i < vreg->corner_count - 1; i++) { proc_freq = vreg->corner[i].proc_freq; vreg->corner[i] = *corner; vreg->corner[i].proc_freq = proc_freq; } /* * Return since the potential partial binning fuse values are * superceded by the force highest corner fuse value. */ return 0; } /* * Allow up to the max corner which can be fused with partial * binning values. */ max_fuse_corner = min(MSM8998_CPR_PARTIAL_BINNING_MAX_FUSE_CORNER, vreg->fuse_corner_count - 2); for (i = 0; i <= max_fuse_corner; i++) { /* Determine which higher corners to override with (if any). */ if (fuse->init_voltage[i] != next && fuse->init_voltage[i] != safe) continue; for (j = i + 1; j <= max_fuse_corner; j++) if (fuse->init_voltage[j] != next && fuse->init_voltage[j] != safe) break; safe_fuse_corner = j; j = fuse->init_voltage[i] == next ? i + 1 : safe_fuse_corner; low = i > 0 ? vreg->fuse_corner_map[i] : 0; high = vreg->fuse_corner_map[i + 1] - 1; cpr3_info(vreg, "overriding CPR parameters for corners %d to %d with quotients of corner %d and voltages of corner %d\n", low, high, vreg->fuse_corner_map[j], vreg->fuse_corner_map[safe_fuse_corner]); corner = &vreg->corner[vreg->fuse_corner_map[j]]; safe_corner = &vreg->corner[vreg->fuse_corner_map[safe_fuse_corner]]; for (j = low; j <= high; j++) { proc_freq = vreg->corner[j].proc_freq; vreg->corner[j] = *corner; vreg->corner[j].proc_freq = proc_freq; vreg->corner[j].floor_volt = safe_corner->floor_volt; vreg->corner[j].ceiling_volt = safe_corner->ceiling_volt; vreg->corner[j].open_loop_volt = safe_corner->open_loop_volt; vreg->corner[j].abs_ceiling_volt = safe_corner->abs_ceiling_volt; } } return 0; } /** * cpr3_mmss_print_settings() - print out MMSS CPR configuration settings into * the kernel log for debugging purposes * @vreg: Pointer to the CPR3 regulator */ static void cpr3_mmss_print_settings(struct cpr3_regulator *vreg) { struct cpr3_corner *corner; int i; cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n"); for (i = 0; i < vreg->corner_count; i++) { corner = &vreg->corner[i]; cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n", i, corner->proc_freq, corner->cpr_fuse_corner, corner->floor_volt, corner->open_loop_volt, corner->ceiling_volt); } } /** * cpr3_mmss_init_aging() - perform MMSS CPR3 controller specific * aging initializations * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ static int cpr3_mmss_init_aging(struct cpr3_controller *ctrl) { struct cpr3_msm8996_mmss_fuses *fuse; struct cpr3_regulator *vreg; u32 aging_ro_scale; int rc; vreg = &ctrl->thread[0].vreg[0]; ctrl->aging_required = vreg->aging_allowed; fuse = vreg->platform_fuses; if (!ctrl->aging_required || !fuse) return 0; rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor", 1, &aging_ro_scale); if (rc) return rc; if (aging_ro_scale == 0) { cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n", aging_ro_scale); return -EINVAL; } ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL; ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE; ctrl->aging_sensor_count = 1; ctrl->aging_sensor = kzalloc(sizeof(*ctrl->aging_sensor), GFP_KERNEL); if (!ctrl->aging_sensor) return -ENOMEM; ctrl->aging_sensor->ro_scale = aging_ro_scale; if (cpr3_ctrl_is_msm8998(ctrl)) { ctrl->aging_sensor->sensor_id = MSM8998_MMSS_AGING_SENSOR_ID; ctrl->aging_sensor->bypass_mask[0] = MSM8998_MMSS_AGING_BYPASS_MASK0; ctrl->aging_sensor->init_quot_diff = cpr3_convert_open_loop_voltage_fuse(0, MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SCALE, fuse->aging_init_quot_diff, MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SIZE); } else { ctrl->aging_sensor->sensor_id = MSM8996_MMSS_AGING_SENSOR_ID; ctrl->aging_sensor->bypass_mask[0] = MSM8996_MMSS_AGING_BYPASS_MASK0; ctrl->aging_sensor->init_quot_diff = cpr3_convert_open_loop_voltage_fuse(0, MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SCALE, fuse->aging_init_quot_diff, MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SIZE); } cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n", ctrl->aging_sensor->sensor_id, ctrl->aging_sensor->init_quot_diff, ctrl->aging_sensor->ro_scale); return 0; } /** * cpr3_mmss_init_thread() - perform all steps necessary to initialize the * configuration data for a CPR3 thread * @thread: Pointer to the CPR3 thread * * Return: 0 on success, errno on failure */ static int cpr3_mmss_init_thread(struct cpr3_thread *thread) { struct cpr3_regulator *vreg = &thread->vreg[0]; struct cpr3_msm8996_mmss_fuses *fuse; int rc; rc = cpr3_parse_common_thread_data(thread); if (rc) { cpr3_err(vreg, "unable to read CPR thread data from device tree, rc=%d\n", rc); return rc; } rc = cpr3_msm8996_mmss_read_fuse_data(vreg); if (rc) { cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc); return rc; } fuse = vreg->platform_fuses; if (fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED) { cpr3_err(vreg, "this chip requires an unsupported voltage\n"); return -EPERM; } else if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) { thread->ctrl->cpr_allowed_hw = false; } rc = cpr3_mmss_parse_corner_data(vreg); if (rc) { cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n", rc); return rc; } rc = cpr3_msm8996_mmss_adjust_target_quotients(vreg); if (rc) { cpr3_err(vreg, "unable to adjust target quotients, rc=%d\n", rc); return rc; } rc = cpr3_msm8996_mmss_calculate_open_loop_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n", rc); return rc; } rc = cpr3_limit_open_loop_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n", rc); return rc; } cpr3_open_loop_voltage_as_ceiling(vreg); rc = cpr3_limit_floor_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc); return rc; } if (cpr3_ctrl_is_msm8998(thread->ctrl)) { rc = cpr4_parse_core_count_temp_voltage_adj(vreg, false); if (rc) { cpr3_err(vreg, "unable to parse temperature based voltage adjustments, rc=%d\n", rc); return rc; } } rc = cpr3_msm8998_partial_binning_override(vreg); if (rc) { cpr3_err(vreg, "unable to override CPR parameters based on partial binning fuse values, rc=%d\n", rc); return rc; } cpr3_mmss_print_settings(vreg); return 0; } /** * cpr4_mmss_parse_temp_adj_properties() - parse temperature based * adjustment properties from device tree * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ static int cpr4_mmss_parse_temp_adj_properties(struct cpr3_controller *ctrl) { struct device_node *of_node = ctrl->dev->of_node; int rc, len, temp_point_count; if (!of_find_property(of_node, "qcom,cpr-temp-point-map", &len)) return 0; temp_point_count = len / sizeof(u32); if (temp_point_count <= 0 || temp_point_count > MSM8998_MMSS_MAX_TEMP_POINTS) { cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n", temp_point_count, MSM8998_MMSS_MAX_TEMP_POINTS); return -EINVAL; } ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count, sizeof(*ctrl->temp_points), GFP_KERNEL); if (!ctrl->temp_points) return -ENOMEM; rc = of_property_read_u32_array(of_node, "qcom,cpr-temp-point-map", ctrl->temp_points, temp_point_count); if (rc) { cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n", rc); return rc; } /* * If t1, t2, and t3 are the temperature points, then the temperature * bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf). */ ctrl->temp_band_count = temp_point_count + 1; rc = of_property_read_u32(of_node, "qcom,cpr-initial-temp-band", &ctrl->initial_temp_band); if (rc) { cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n", rc); return rc; } if (ctrl->initial_temp_band >= ctrl->temp_band_count) { cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n", ctrl->initial_temp_band, ctrl->temp_band_count - 1); return -EINVAL; } ctrl->temp_sensor_id_start = MSM8998_MMSS_TEMP_SENSOR_ID_START; ctrl->temp_sensor_id_end = MSM8998_MMSS_TEMP_SENSOR_ID_END; ctrl->allow_temp_adj = true; return rc; } /** * cpr3_mmss_init_controller() - perform MMSS CPR3 controller specific * initializations * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ static int cpr3_mmss_init_controller(struct cpr3_controller *ctrl) { int rc; rc = cpr3_parse_common_ctrl_data(ctrl); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n", rc); return rc; } if (cpr3_ctrl_is_msm8998(ctrl)) { rc = cpr4_mmss_parse_temp_adj_properties(ctrl); if (rc) return rc; } ctrl->sensor_count = cpr3_ctrl_is_msm8998(ctrl) ? MSM8998_MMSS_CPR_SENSOR_COUNT : MSM8996_MMSS_CPR_SENSOR_COUNT; /* * MMSS only has one thread (0) so the zeroed array does not need * further modification. */ ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count, sizeof(*ctrl->sensor_owner), GFP_KERNEL); if (!ctrl->sensor_owner) return -ENOMEM; ctrl->cpr_clock_rate = MSM8996_MMSS_CPR_CLOCK_RATE; ctrl->ctrl_type = cpr3_ctrl_is_msm8998(ctrl) ? CPR_CTRL_TYPE_CPR4 : CPR_CTRL_TYPE_CPR3; if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) { /* * Use fixed step quotient if specified otherwise use dynamic * calculated per RO step quotient */ of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-step-quot-fixed", &ctrl->step_quot_fixed); ctrl->use_dynamic_step_quot = !ctrl->step_quot_fixed; } ctrl->iface_clk = devm_clk_get(ctrl->dev, "iface_clk"); if (IS_ERR(ctrl->iface_clk)) { rc = PTR_ERR(ctrl->iface_clk); if (cpr3_ctrl_is_msm8998(ctrl)) { /* iface_clk is optional for msm8998 */ ctrl->iface_clk = NULL; } else if (rc == -EPROBE_DEFER) { return rc; } else { cpr3_err(ctrl, "unable to request interface clock, rc=%d\n", rc); return rc; } } ctrl->bus_clk = devm_clk_get(ctrl->dev, "bus_clk"); if (IS_ERR(ctrl->bus_clk)) { rc = PTR_ERR(ctrl->bus_clk); if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable request bus clock, rc=%d\n", rc); return rc; } return 0; } static int cpr3_mmss_regulator_suspend(struct platform_device *pdev, pm_message_t state) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_suspend(ctrl); } static int cpr3_mmss_regulator_resume(struct platform_device *pdev) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_resume(ctrl); } /* Data corresponds to the SoC revision */ static const struct of_device_id cpr_regulator_match_table[] = { { .compatible = "qcom,cpr3-msm8996-v1-mmss-regulator", .data = (void *)(uintptr_t)1, }, { .compatible = "qcom,cpr3-msm8996-v2-mmss-regulator", .data = (void *)(uintptr_t)2, }, { .compatible = "qcom,cpr3-msm8996-v3-mmss-regulator", .data = (void *)(uintptr_t)3, }, { .compatible = "qcom,cpr3-msm8996-mmss-regulator", .data = (void *)(uintptr_t)3, }, { .compatible = "qcom,cpr3-msm8996pro-mmss-regulator", .data = (void *)(uintptr_t)MSM8996PRO_SOC_ID, }, { .compatible = "qcom,cpr4-msm8998-v1-mmss-regulator", .data = (void *)(uintptr_t)MSM8998_V1_SOC_ID, }, { .compatible = "qcom,cpr4-msm8998-v2-mmss-regulator", .data = (void *)(uintptr_t)MSM8998_V2_SOC_ID, }, { .compatible = "qcom,cpr4-msm8998-mmss-regulator", .data = (void *)(uintptr_t)MSM8998_V2_SOC_ID, }, {} }; static int cpr3_mmss_regulator_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct of_device_id *match; struct cpr3_controller *ctrl; int rc; if (!dev->of_node) { dev_err(dev, "Device tree node is missing\n"); return -EINVAL; } ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; ctrl->dev = dev; /* Set to false later if anything precludes CPR operation. */ ctrl->cpr_allowed_hw = true; rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name", &ctrl->name); if (rc) { cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n", rc); return rc; } match = of_match_node(cpr_regulator_match_table, dev->of_node); if (match) ctrl->soc_revision = (uintptr_t)match->data; else cpr3_err(ctrl, "could not find compatible string match\n"); rc = cpr3_map_fuse_base(ctrl, pdev); if (rc) { cpr3_err(ctrl, "could not map fuse base address\n"); return rc; } rc = cpr3_allocate_threads(ctrl, 0, 0); if (rc) { cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n", rc); return rc; } if (ctrl->thread_count != 1) { cpr3_err(ctrl, "expected 1 thread but found %d\n", ctrl->thread_count); return -EINVAL; } else if (ctrl->thread[0].vreg_count != 1) { cpr3_err(ctrl, "expected 1 regulator but found %d\n", ctrl->thread[0].vreg_count); return -EINVAL; } rc = cpr3_mmss_init_controller(ctrl); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n", rc); return rc; } rc = cpr3_mmss_init_thread(&ctrl->thread[0]); if (rc) { cpr3_err(&ctrl->thread[0].vreg[0], "thread initialization failed, rc=%d\n", rc); return rc; } rc = cpr3_mem_acc_init(&ctrl->thread[0].vreg[0]); if (rc) { cpr3_err(ctrl, "failed to initialize mem-acc configuration, rc=%d\n", rc); return rc; } rc = cpr3_mmss_init_aging(ctrl); if (rc) { cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n", rc); return rc; } platform_set_drvdata(pdev, ctrl); return cpr3_regulator_register(pdev, ctrl); } static int cpr3_mmss_regulator_remove(struct platform_device *pdev) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_unregister(ctrl); } static struct platform_driver cpr3_mmss_regulator_driver = { .driver = { .name = "qcom,cpr3-mmss-regulator", .of_match_table = cpr_regulator_match_table, .owner = THIS_MODULE, }, .probe = cpr3_mmss_regulator_probe, .remove = cpr3_mmss_regulator_remove, .suspend = cpr3_mmss_regulator_suspend, .resume = cpr3_mmss_regulator_resume, }; static int cpr_regulator_init(void) { return platform_driver_register(&cpr3_mmss_regulator_driver); } static void cpr_regulator_exit(void) { platform_driver_unregister(&cpr3_mmss_regulator_driver); } MODULE_DESCRIPTION("CPR3 MMSS regulator driver"); MODULE_LICENSE("GPL v2"); arch_initcall(cpr_regulator_init); module_exit(cpr_regulator_exit);