#undef TRACE_SYSTEM #define TRACE_SYSTEM sched #if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SCHED_H #include #include #include struct rq; /* * Tracepoint for calling kthread_stop, performed to end a kthread: */ TRACE_EVENT(sched_kthread_stop, TP_PROTO(struct task_struct *t), TP_ARGS(t), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, t->comm, TASK_COMM_LEN); __entry->pid = t->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); /* * Tracepoint for the return value of the kthread stopping: */ TRACE_EVENT(sched_kthread_stop_ret, TP_PROTO(int ret), TP_ARGS(ret), TP_STRUCT__entry( __field( int, ret ) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%d", __entry->ret) ); /* * Tracepoint for task enqueue/dequeue: */ TRACE_EVENT(sched_enq_deq_task, TP_PROTO(struct task_struct *p, bool enqueue, unsigned int cpus_allowed), TP_ARGS(p, enqueue, cpus_allowed), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, cpu ) __field( bool, enqueue ) __field(unsigned int, nr_running ) __field(unsigned long, cpu_load ) __field(unsigned int, rt_nr_running ) __field(unsigned int, cpus_allowed ) __field(unsigned int, demand ) __field(unsigned int, pred_demand ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; __entry->cpu = task_cpu(p); __entry->enqueue = enqueue; __entry->nr_running = task_rq(p)->nr_running; __entry->cpu_load = task_rq(p)->cpu_load[0]; __entry->rt_nr_running = task_rq(p)->rt.rt_nr_running; __entry->cpus_allowed = cpus_allowed; __entry->demand = task_load(p); __entry->pred_demand = task_pl(p); ), TP_printk("cpu=%d %s comm=%s pid=%d prio=%d nr_running=%u cpu_load=%lu rt_nr_running=%u affine=%x demand=%u pred_demand=%u", __entry->cpu, __entry->enqueue ? "enqueue" : "dequeue", __entry->comm, __entry->pid, __entry->prio, __entry->nr_running, __entry->cpu_load, __entry->rt_nr_running, __entry->cpus_allowed , __entry->demand, __entry->pred_demand ) ); #ifdef CONFIG_SCHED_WALT struct group_cpu_time; extern const char *task_event_names[]; #if defined(CREATE_TRACE_POINTS) && defined(CONFIG_SCHED_WALT) static inline void __window_data(u32 *dst, u32 *src) { if (src) memcpy(dst, src, nr_cpu_ids * sizeof(u32)); else memset(dst, 0, nr_cpu_ids * sizeof(u32)); } struct trace_seq; const char *__window_print(struct trace_seq *p, const u32 *buf, int buf_len) { int i; const char *ret = p->buffer + seq_buf_used(&p->seq); for (i = 0; i < buf_len; i++) trace_seq_printf(p, "%u ", buf[i]); trace_seq_putc(p, 0); return ret; } static inline s64 __rq_update_sum(struct rq *rq, bool curr, bool new) { if (curr) if (new) return rq->nt_curr_runnable_sum; else return rq->curr_runnable_sum; else if (new) return rq->nt_prev_runnable_sum; else return rq->prev_runnable_sum; } static inline s64 __grp_update_sum(struct rq *rq, bool curr, bool new) { if (curr) if (new) return rq->grp_time.nt_curr_runnable_sum; else return rq->grp_time.curr_runnable_sum; else if (new) return rq->grp_time.nt_prev_runnable_sum; else return rq->grp_time.prev_runnable_sum; } static inline s64 __get_update_sum(struct rq *rq, enum migrate_types migrate_type, bool src, bool new, bool curr) { switch (migrate_type) { case RQ_TO_GROUP: if (src) return __rq_update_sum(rq, curr, new); else return __grp_update_sum(rq, curr, new); case GROUP_TO_RQ: if (src) return __grp_update_sum(rq, curr, new); else return __rq_update_sum(rq, curr, new); default: WARN_ON_ONCE(1); return -1; } } #endif TRACE_EVENT(sched_update_pred_demand, TP_PROTO(struct rq *rq, struct task_struct *p, u32 runtime, int pct, unsigned int pred_demand), TP_ARGS(rq, p, runtime, pct, pred_demand), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field(unsigned int, runtime ) __field( int, pct ) __field(unsigned int, pred_demand ) __array( u8, bucket, NUM_BUSY_BUCKETS) __field( int, cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->runtime = runtime; __entry->pct = pct; __entry->pred_demand = pred_demand; memcpy(__entry->bucket, p->ravg.busy_buckets, NUM_BUSY_BUCKETS * sizeof(u8)); __entry->cpu = rq->cpu; ), TP_printk("%d (%s): runtime %u pct %d cpu %d pred_demand %u (buckets: %u %u %u %u %u %u %u %u %u %u)", __entry->pid, __entry->comm, __entry->runtime, __entry->pct, __entry->cpu, __entry->pred_demand, __entry->bucket[0], __entry->bucket[1], __entry->bucket[2], __entry->bucket[3],__entry->bucket[4], __entry->bucket[5], __entry->bucket[6], __entry->bucket[7], __entry->bucket[8], __entry->bucket[9]) ); TRACE_EVENT(sched_update_history, TP_PROTO(struct rq *rq, struct task_struct *p, u32 runtime, int samples, enum task_event evt), TP_ARGS(rq, p, runtime, samples, evt), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field(unsigned int, runtime ) __field( int, samples ) __field(enum task_event, evt ) __field(unsigned int, demand ) __field(unsigned int, coloc_demand ) __field(unsigned int, pred_demand ) __array( u32, hist, RAVG_HIST_SIZE_MAX) __field(unsigned int, nr_big_tasks ) __field( int, cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->runtime = runtime; __entry->samples = samples; __entry->evt = evt; __entry->demand = p->ravg.demand; __entry->coloc_demand = p->ravg.coloc_demand; __entry->pred_demand = p->ravg.pred_demand; memcpy(__entry->hist, p->ravg.sum_history, RAVG_HIST_SIZE_MAX * sizeof(u32)); __entry->nr_big_tasks = rq->walt_stats.nr_big_tasks; __entry->cpu = rq->cpu; ), TP_printk("%d (%s): runtime %u samples %d event %s demand %u coloc_demand %u pred_demand %u" " (hist: %u %u %u %u %u) cpu %d nr_big %u", __entry->pid, __entry->comm, __entry->runtime, __entry->samples, task_event_names[__entry->evt], __entry->demand, __entry->coloc_demand, __entry->pred_demand, __entry->hist[0], __entry->hist[1], __entry->hist[2], __entry->hist[3], __entry->hist[4], __entry->cpu, __entry->nr_big_tasks) ); TRACE_EVENT(sched_get_task_cpu_cycles, TP_PROTO(int cpu, int event, u64 cycles, u64 exec_time, struct task_struct *p), TP_ARGS(cpu, event, cycles, exec_time, p), TP_STRUCT__entry( __field(int, cpu ) __field(int, event ) __field(u64, cycles ) __field(u64, exec_time ) __field(u32, freq ) __field(u32, legacy_freq ) __field(u32, max_freq ) __field(pid_t, pid ) __array(char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->cpu = cpu; __entry->event = event; __entry->cycles = cycles; __entry->exec_time = exec_time; __entry->freq = cpu_cycles_to_freq(cycles, exec_time); __entry->legacy_freq = cpu_cur_freq(cpu); __entry->max_freq = cpu_max_freq(cpu); __entry->pid = p->pid; memcpy(__entry->comm, p->comm, TASK_COMM_LEN); ), TP_printk("cpu=%d event=%d cycles=%llu exec_time=%llu freq=%u legacy_freq=%u max_freq=%u task=%d (%s)", __entry->cpu, __entry->event, __entry->cycles, __entry->exec_time, __entry->freq, __entry->legacy_freq, __entry->max_freq, __entry->pid, __entry->comm) ); TRACE_EVENT(sched_update_task_ravg, TP_PROTO(struct task_struct *p, struct rq *rq, enum task_event evt, u64 wallclock, u64 irqtime, u64 cycles, u64 exec_time, struct group_cpu_time *cpu_time), TP_ARGS(p, rq, evt, wallclock, irqtime, cycles, exec_time, cpu_time), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( pid_t, cur_pid ) __field(unsigned int, cur_freq ) __field( u64, wallclock ) __field( u64, mark_start ) __field( u64, delta_m ) __field( u64, win_start ) __field( u64, delta ) __field( u64, irqtime ) __field(enum task_event, evt ) __field(unsigned int, demand ) __field(unsigned int, coloc_demand ) __field(unsigned int, sum ) __field( int, cpu ) __field(unsigned int, pred_demand ) __field( u64, rq_cs ) __field( u64, rq_ps ) __field( u64, grp_cs ) __field( u64, grp_ps ) __field( u64, grp_nt_cs ) __field( u64, grp_nt_ps ) __field( u32, curr_window ) __field( u32, prev_window ) __dynamic_array(u32, curr_sum, nr_cpu_ids ) __dynamic_array(u32, prev_sum, nr_cpu_ids ) __field( u64, nt_cs ) __field( u64, nt_ps ) __field( u32, active_windows ) __field( u8, curr_top ) __field( u8, prev_top ) ), TP_fast_assign( __entry->wallclock = wallclock; __entry->win_start = rq->window_start; __entry->delta = (wallclock - rq->window_start); __entry->evt = evt; __entry->cpu = rq->cpu; __entry->cur_pid = rq->curr->pid; __entry->cur_freq = cpu_cycles_to_freq(cycles, exec_time); memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->mark_start = p->ravg.mark_start; __entry->delta_m = (wallclock - p->ravg.mark_start); __entry->demand = p->ravg.demand; __entry->coloc_demand = p->ravg.coloc_demand; __entry->sum = p->ravg.sum; __entry->irqtime = irqtime; __entry->pred_demand = p->ravg.pred_demand; __entry->rq_cs = rq->curr_runnable_sum; __entry->rq_ps = rq->prev_runnable_sum; __entry->grp_cs = cpu_time ? cpu_time->curr_runnable_sum : 0; __entry->grp_ps = cpu_time ? cpu_time->prev_runnable_sum : 0; __entry->grp_nt_cs = cpu_time ? cpu_time->nt_curr_runnable_sum : 0; __entry->grp_nt_ps = cpu_time ? cpu_time->nt_prev_runnable_sum : 0; __entry->curr_window = p->ravg.curr_window; __entry->prev_window = p->ravg.prev_window; __window_data(__get_dynamic_array(curr_sum), p->ravg.curr_window_cpu); __window_data(__get_dynamic_array(prev_sum), p->ravg.prev_window_cpu); __entry->nt_cs = rq->nt_curr_runnable_sum; __entry->nt_ps = rq->nt_prev_runnable_sum; __entry->active_windows = p->ravg.active_windows; __entry->curr_top = rq->curr_top; __entry->prev_top = rq->prev_top; ), TP_printk("wc %llu ws %llu delta %llu event %s cpu %d cur_freq %u cur_pid %d task %d (%s) ms %llu delta %llu demand %u coloc_demand: %u sum %u irqtime %llu pred_demand %u rq_cs %llu rq_ps %llu cur_window %u (%s) prev_window %u (%s) nt_cs %llu nt_ps %llu active_wins %u grp_cs %lld grp_ps %lld, grp_nt_cs %llu, grp_nt_ps: %llu curr_top %u prev_top %u", __entry->wallclock, __entry->win_start, __entry->delta, task_event_names[__entry->evt], __entry->cpu, __entry->cur_freq, __entry->cur_pid, __entry->pid, __entry->comm, __entry->mark_start, __entry->delta_m, __entry->demand, __entry->coloc_demand, __entry->sum, __entry->irqtime, __entry->pred_demand, __entry->rq_cs, __entry->rq_ps, __entry->curr_window, __window_print(p, __get_dynamic_array(curr_sum), nr_cpu_ids), __entry->prev_window, __window_print(p, __get_dynamic_array(prev_sum), nr_cpu_ids), __entry->nt_cs, __entry->nt_ps, __entry->active_windows, __entry->grp_cs, __entry->grp_ps, __entry->grp_nt_cs, __entry->grp_nt_ps, __entry->curr_top, __entry->prev_top) ); TRACE_EVENT(sched_update_task_ravg_mini, TP_PROTO(struct task_struct *p, struct rq *rq, enum task_event evt, u64 wallclock, u64 irqtime, u64 cycles, u64 exec_time, struct group_cpu_time *cpu_time), TP_ARGS(p, rq, evt, wallclock, irqtime, cycles, exec_time, cpu_time), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, wallclock ) __field( u64, mark_start ) __field( u64, delta_m ) __field( u64, win_start ) __field( u64, delta ) __field(enum task_event, evt ) __field(unsigned int, demand ) __field( int, cpu ) __field( u64, rq_cs ) __field( u64, rq_ps ) __field( u64, grp_cs ) __field( u64, grp_ps ) __field( u32, curr_window ) __field( u32, prev_window ) ), TP_fast_assign( __entry->wallclock = wallclock; __entry->win_start = rq->window_start; __entry->delta = (wallclock - rq->window_start); __entry->evt = evt; __entry->cpu = rq->cpu; memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->mark_start = p->ravg.mark_start; __entry->delta_m = (wallclock - p->ravg.mark_start); __entry->demand = p->ravg.demand; __entry->rq_cs = rq->curr_runnable_sum; __entry->rq_ps = rq->prev_runnable_sum; __entry->grp_cs = cpu_time ? cpu_time->curr_runnable_sum : 0; __entry->grp_ps = cpu_time ? cpu_time->prev_runnable_sum : 0; __entry->curr_window = p->ravg.curr_window; __entry->prev_window = p->ravg.prev_window; ), TP_printk("wc %llu ws %llu delta %llu event %s cpu %d task %d (%s) ms %llu delta %llu demand %u rq_cs %llu rq_ps %llu cur_window %u prev_window %u grp_cs %lld grp_ps %lld", __entry->wallclock, __entry->win_start, __entry->delta, task_event_names[__entry->evt], __entry->cpu, __entry->pid, __entry->comm, __entry->mark_start, __entry->delta_m, __entry->demand, __entry->rq_cs, __entry->rq_ps, __entry->curr_window, __entry->prev_window, __entry->grp_cs, __entry->grp_ps) ); struct migration_sum_data; extern const char *migrate_type_names[]; TRACE_EVENT(sched_set_preferred_cluster, TP_PROTO(struct related_thread_group *grp, u64 total_demand), TP_ARGS(grp, total_demand), TP_STRUCT__entry( __field( int, id ) __field( u64, demand ) __field( int, cluster_first_cpu ) __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field(unsigned int, task_demand ) ), TP_fast_assign( __entry->id = grp->id; __entry->demand = total_demand; __entry->cluster_first_cpu = grp->preferred_cluster ? cluster_first_cpu(grp->preferred_cluster) : -1; ), TP_printk("group_id %d total_demand %llu preferred_cluster_first_cpu %d", __entry->id, __entry->demand, __entry->cluster_first_cpu) ); TRACE_EVENT(sched_migration_update_sum, TP_PROTO(struct task_struct *p, enum migrate_types migrate_type, struct rq *rq), TP_ARGS(p, migrate_type, rq), TP_STRUCT__entry( __field(int, tcpu ) __field(int, pid ) __field(enum migrate_types, migrate_type ) __field( s64, src_cs ) __field( s64, src_ps ) __field( s64, dst_cs ) __field( s64, dst_ps ) __field( s64, src_nt_cs ) __field( s64, src_nt_ps ) __field( s64, dst_nt_cs ) __field( s64, dst_nt_ps ) ), TP_fast_assign( __entry->tcpu = task_cpu(p); __entry->pid = p->pid; __entry->migrate_type = migrate_type; __entry->src_cs = __get_update_sum(rq, migrate_type, true, false, true); __entry->src_ps = __get_update_sum(rq, migrate_type, true, false, false); __entry->dst_cs = __get_update_sum(rq, migrate_type, false, false, true); __entry->dst_ps = __get_update_sum(rq, migrate_type, false, false, false); __entry->src_nt_cs = __get_update_sum(rq, migrate_type, true, true, true); __entry->src_nt_ps = __get_update_sum(rq, migrate_type, true, true, false); __entry->dst_nt_cs = __get_update_sum(rq, migrate_type, false, true, true); __entry->dst_nt_ps = __get_update_sum(rq, migrate_type, false, true, false); ), TP_printk("pid %d task_cpu %d migrate_type %s src_cs %llu src_ps %llu dst_cs %lld dst_ps %lld src_nt_cs %llu src_nt_ps %llu dst_nt_cs %lld dst_nt_ps %lld", __entry->pid, __entry->tcpu, migrate_type_names[__entry->migrate_type], __entry->src_cs, __entry->src_ps, __entry->dst_cs, __entry->dst_ps, __entry->src_nt_cs, __entry->src_nt_ps, __entry->dst_nt_cs, __entry->dst_nt_ps) ); TRACE_EVENT(sched_set_boost, TP_PROTO(int type), TP_ARGS(type), TP_STRUCT__entry( __field(int, type ) ), TP_fast_assign( __entry->type = type; ), TP_printk("type %d", __entry->type) ); #endif #ifdef CONFIG_SCHED_WALT DECLARE_EVENT_CLASS(sched_cpu_load, TP_PROTO(struct rq *rq, int idle, u64 irqload, unsigned int power_cost), TP_ARGS(rq, idle, irqload, power_cost), TP_STRUCT__entry( __field(unsigned int, cpu ) __field(unsigned int, idle ) __field(unsigned int, nr_running ) __field(unsigned int, nr_big_tasks ) __field(unsigned int, load_scale_factor ) __field(unsigned int, capacity ) __field( u64, cumulative_runnable_avg ) __field( u64, irqload ) __field(unsigned int, max_freq ) __field(unsigned int, power_cost ) __field( int, cstate ) __field( int, dstate ) ), TP_fast_assign( __entry->cpu = rq->cpu; __entry->idle = idle; __entry->nr_running = rq->nr_running; __entry->nr_big_tasks = rq->walt_stats.nr_big_tasks; __entry->load_scale_factor = cpu_load_scale_factor(rq->cpu); __entry->capacity = cpu_capacity(rq->cpu); __entry->cumulative_runnable_avg = rq->walt_stats.cumulative_runnable_avg; __entry->irqload = irqload; __entry->max_freq = cpu_max_freq(rq->cpu); __entry->power_cost = power_cost; __entry->cstate = rq->cstate; __entry->dstate = rq->cluster->dstate; ), TP_printk("cpu %u idle %d nr_run %u nr_big %u lsf %u capacity %u cr_avg %llu irqload %llu fmax %u power_cost %u cstate %d dstate %d", __entry->cpu, __entry->idle, __entry->nr_running, __entry->nr_big_tasks, __entry->load_scale_factor, __entry->capacity, __entry->cumulative_runnable_avg, __entry->irqload, __entry->max_freq, __entry->power_cost, __entry->cstate, __entry->dstate) ); DEFINE_EVENT(sched_cpu_load, sched_cpu_load_lb, TP_PROTO(struct rq *rq, int idle, u64 irqload, unsigned int power_cost), TP_ARGS(rq, idle, irqload, power_cost) ); TRACE_EVENT(sched_load_to_gov, TP_PROTO(struct rq *rq, u64 aggr_grp_load, u32 tt_load, u64 freq_aggr_thresh, u64 load, int policy, int big_task_rotation), TP_ARGS(rq, aggr_grp_load, tt_load, freq_aggr_thresh, load, policy, big_task_rotation), TP_STRUCT__entry( __field( int, cpu ) __field( int, policy ) __field( int, ed_task_pid ) __field( u64, aggr_grp_load ) __field( u64, freq_aggr_thresh ) __field( u64, tt_load ) __field( u64, rq_ps ) __field( u64, grp_rq_ps ) __field( u64, nt_ps ) __field( u64, grp_nt_ps ) __field( u64, pl ) __field( u64, load ) __field( int, big_task_rotation ) ), TP_fast_assign( __entry->cpu = cpu_of(rq); __entry->policy = policy; __entry->ed_task_pid = rq->ed_task ? rq->ed_task->pid : -1; __entry->aggr_grp_load = aggr_grp_load; __entry->freq_aggr_thresh = freq_aggr_thresh; __entry->tt_load = tt_load; __entry->rq_ps = rq->prev_runnable_sum; __entry->grp_rq_ps = rq->grp_time.prev_runnable_sum; __entry->nt_ps = rq->nt_prev_runnable_sum; __entry->grp_nt_ps = rq->grp_time.nt_prev_runnable_sum; __entry->pl = rq->walt_stats.pred_demands_sum; __entry->load = load; __entry->big_task_rotation = big_task_rotation; ), TP_printk("cpu=%d policy=%d ed_task_pid=%d aggr_grp_load=%llu freq_aggr_thresh=%llu tt_load=%llu rq_ps=%llu grp_rq_ps=%llu nt_ps=%llu grp_nt_ps=%llu pl=%llu load=%llu big_task_rotation=%d", __entry->cpu, __entry->policy, __entry->ed_task_pid, __entry->aggr_grp_load, __entry->freq_aggr_thresh, __entry->tt_load, __entry->rq_ps, __entry->grp_rq_ps, __entry->nt_ps, __entry->grp_nt_ps, __entry->pl, __entry->load, __entry->big_task_rotation) ); #endif #ifdef CONFIG_SMP TRACE_EVENT(sched_cpu_util, TP_PROTO(int cpu), TP_ARGS(cpu), TP_STRUCT__entry( __field(unsigned int, cpu ) __field(unsigned int, nr_running ) __field(long, cpu_util ) __field(long, cpu_util_cum ) __field(unsigned int, capacity_curr ) __field(unsigned int, capacity ) __field(unsigned int, capacity_orig ) __field(int, idle_state ) __field(u64, irqload ) ), TP_fast_assign( __entry->cpu = cpu; __entry->nr_running = cpu_rq(cpu)->nr_running; __entry->cpu_util = cpu_util(cpu); __entry->cpu_util_cum = cpu_util_cum(cpu, 0); __entry->capacity_curr = capacity_curr_of(cpu); __entry->capacity = capacity_of(cpu); __entry->capacity_orig = capacity_orig_of(cpu); __entry->idle_state = idle_get_state_idx(cpu_rq(cpu)); __entry->irqload = sched_irqload(cpu); ), TP_printk("cpu=%d nr_running=%d cpu_util=%ld cpu_util_cum=%ld capacity_curr=%u capacity=%u capacity_orig=%u idle_state=%d irqload=%llu", __entry->cpu, __entry->nr_running, __entry->cpu_util, __entry->cpu_util_cum, __entry->capacity_curr, __entry->capacity, __entry->capacity_orig, __entry->idle_state, __entry->irqload) ); TRACE_EVENT(sched_energy_diff, TP_PROTO(struct task_struct *p, int prev_cpu, unsigned int prev_energy, int next_cpu, unsigned int next_energy, int backup_cpu, unsigned int backup_energy), TP_ARGS(p, prev_cpu, prev_energy, next_cpu, next_energy, backup_cpu, backup_energy), TP_STRUCT__entry( __field(int, pid ) __field(int, prev_cpu ) __field(int, prev_energy ) __field(int, next_cpu ) __field(int, next_energy ) __field(int, backup_cpu ) __field(int, backup_energy ) ), TP_fast_assign( __entry->pid = p->pid; __entry->prev_cpu = prev_cpu; __entry->prev_energy = prev_energy; __entry->next_cpu = next_cpu; __entry->next_energy = next_energy; __entry->backup_cpu = backup_cpu; __entry->backup_energy = backup_energy; ), TP_printk("pid=%d prev_cpu=%d prev_energy=%u next_cpu=%d next_energy=%u backup_cpu=%d backup_energy=%u", __entry->pid, __entry->prev_cpu, __entry->prev_energy, __entry->next_cpu, __entry->next_energy, __entry->backup_cpu, __entry->backup_energy) ); TRACE_EVENT(sched_task_util, TP_PROTO(struct task_struct *p, int next_cpu, int backup_cpu, int target_cpu, bool need_idle, int fastpath, bool placement_boost, int rtg_cpu, u64 start_t), TP_ARGS(p, next_cpu, backup_cpu, target_cpu, need_idle, fastpath, placement_boost, rtg_cpu, start_t), TP_STRUCT__entry( __field(int, pid ) __array(char, comm, TASK_COMM_LEN ) __field(unsigned long, util ) __field(int, prev_cpu ) __field(int, next_cpu ) __field(int, backup_cpu ) __field(int, target_cpu ) __field(bool, need_idle ) __field(int, fastpath ) __field(bool, placement_boost ) __field(int, rtg_cpu ) __field(u64, latency ) ), TP_fast_assign( __entry->pid = p->pid; memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->util = task_util(p); __entry->prev_cpu = task_cpu(p); __entry->next_cpu = next_cpu; __entry->backup_cpu = backup_cpu; __entry->target_cpu = target_cpu; __entry->need_idle = need_idle; __entry->fastpath = fastpath; __entry->placement_boost = placement_boost; __entry->rtg_cpu = rtg_cpu; __entry->latency = (sched_clock() - start_t); ), TP_printk("pid=%d comm=%s util=%lu prev_cpu=%d next_cpu=%d backup_cpu=%d target_cpu=%d need_idle=%d fastpath=%d placement_boost=%d rtg_cpu=%d latency=%llu", __entry->pid, __entry->comm, __entry->util, __entry->prev_cpu, __entry->next_cpu, __entry->backup_cpu, __entry->target_cpu, __entry->need_idle, __entry->fastpath, __entry->placement_boost, __entry->rtg_cpu, __entry->latency) ); #endif /* * Tracepoint for waking up a task: */ DECLARE_EVENT_CLASS(sched_wakeup_template, TP_PROTO(struct task_struct *p), TP_ARGS(__perf_task(p)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, success ) __field( int, target_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; __entry->success = 1; /* rudiment, kill when possible */ __entry->target_cpu = task_cpu(p); ), TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d", __entry->comm, __entry->pid, __entry->prio, __entry->target_cpu) ); /* * Tracepoint called when waking a task; this tracepoint is guaranteed to be * called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_waking, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG. * It it not always called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waking up a new task: */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new, TP_PROTO(struct task_struct *p), TP_ARGS(p)); #ifdef CREATE_TRACE_POINTS static inline long __trace_sched_switch_state(bool preempt, struct task_struct *p) { #ifdef CONFIG_SCHED_DEBUG BUG_ON(p != current); #endif /* CONFIG_SCHED_DEBUG */ /* * Preemption ignores task state, therefore preempted tasks are always * RUNNING (we will not have dequeued if state != RUNNING). */ return preempt ? TASK_RUNNING | TASK_STATE_MAX : p->state; } #endif /* CREATE_TRACE_POINTS */ /* * Tracepoint for task switches, performed by the scheduler: */ TRACE_EVENT(sched_switch, TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next), TP_ARGS(preempt, prev, next), TP_STRUCT__entry( __array( char, prev_comm, TASK_COMM_LEN ) __field( pid_t, prev_pid ) __field( int, prev_prio ) __field( long, prev_state ) __array( char, next_comm, TASK_COMM_LEN ) __field( pid_t, next_pid ) __field( int, next_prio ) ), TP_fast_assign( memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN); __entry->prev_pid = prev->pid; __entry->prev_prio = prev->prio; __entry->prev_state = __trace_sched_switch_state(preempt, prev); memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN); __entry->next_pid = next->pid; __entry->next_prio = next->prio; ), TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d", __entry->prev_comm, __entry->prev_pid, __entry->prev_prio, __entry->prev_state & (TASK_STATE_MAX-1) ? __print_flags(__entry->prev_state & (TASK_STATE_MAX-1), "|", { 1, "S"} , { 2, "D" }, { 4, "T" }, { 8, "t" }, { 16, "Z" }, { 32, "X" }, { 64, "x" }, { 128, "K" }, { 256, "W" }, { 512, "P" }, { 1024, "N" }) : "R", __entry->prev_state & TASK_STATE_MAX ? "+" : "", __entry->next_comm, __entry->next_pid, __entry->next_prio) ); /* * Tracepoint for a task being migrated: */ TRACE_EVENT(sched_migrate_task, TP_PROTO(struct task_struct *p, int dest_cpu, unsigned int load), TP_ARGS(p, dest_cpu, load), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field(unsigned int, load ) __field( int, orig_cpu ) __field( int, dest_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; __entry->load = load; __entry->orig_cpu = task_cpu(p); __entry->dest_cpu = dest_cpu; ), TP_printk("comm=%s pid=%d prio=%d load=%d orig_cpu=%d dest_cpu=%d", __entry->comm, __entry->pid, __entry->prio, __entry->load, __entry->orig_cpu, __entry->dest_cpu) ); /* * Tracepoint for a CPU going offline/online: */ TRACE_EVENT(sched_cpu_hotplug, TP_PROTO(int affected_cpu, int error, int status), TP_ARGS(affected_cpu, error, status), TP_STRUCT__entry( __field( int, affected_cpu ) __field( int, error ) __field( int, status ) ), TP_fast_assign( __entry->affected_cpu = affected_cpu; __entry->error = error; __entry->status = status; ), TP_printk("cpu %d %s error=%d", __entry->affected_cpu, __entry->status ? "online" : "offline", __entry->error) ); /* * Tracepoint for load balancing: */ #if NR_CPUS > 32 #error "Unsupported NR_CPUS for lb tracepoint." #endif TRACE_EVENT(sched_load_balance, TP_PROTO(int cpu, enum cpu_idle_type idle, int balance, unsigned long group_mask, int busiest_nr_running, unsigned long imbalance, unsigned int env_flags, int ld_moved, unsigned int balance_interval), TP_ARGS(cpu, idle, balance, group_mask, busiest_nr_running, imbalance, env_flags, ld_moved, balance_interval), TP_STRUCT__entry( __field( int, cpu) __field( enum cpu_idle_type, idle) __field( int, balance) __field( unsigned long, group_mask) __field( int, busiest_nr_running) __field( unsigned long, imbalance) __field( unsigned int, env_flags) __field( int, ld_moved) __field( unsigned int, balance_interval) ), TP_fast_assign( __entry->cpu = cpu; __entry->idle = idle; __entry->balance = balance; __entry->group_mask = group_mask; __entry->busiest_nr_running = busiest_nr_running; __entry->imbalance = imbalance; __entry->env_flags = env_flags; __entry->ld_moved = ld_moved; __entry->balance_interval = balance_interval; ), TP_printk("cpu=%d state=%s balance=%d group=%#lx busy_nr=%d imbalance=%ld flags=%#x ld_moved=%d bal_int=%d", __entry->cpu, __entry->idle == CPU_IDLE ? "idle" : (__entry->idle == CPU_NEWLY_IDLE ? "newly_idle" : "busy"), __entry->balance, __entry->group_mask, __entry->busiest_nr_running, __entry->imbalance, __entry->env_flags, __entry->ld_moved, __entry->balance_interval) ); DECLARE_EVENT_CLASS(sched_process_template, TP_PROTO(struct task_struct *p), TP_ARGS(p), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for freeing a task: */ DEFINE_EVENT(sched_process_template, sched_process_free, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a task exiting: */ DEFINE_EVENT(sched_process_template, sched_process_exit, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waiting on task to unschedule: */ DEFINE_EVENT(sched_process_template, sched_wait_task, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a waiting task: */ TRACE_EVENT(sched_process_wait, TP_PROTO(struct pid *pid), TP_ARGS(pid), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, current->comm, TASK_COMM_LEN); __entry->pid = pid_nr(pid); __entry->prio = current->prio; ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for do_fork: */ TRACE_EVENT(sched_process_fork, TP_PROTO(struct task_struct *parent, struct task_struct *child), TP_ARGS(parent, child), TP_STRUCT__entry( __array( char, parent_comm, TASK_COMM_LEN ) __field( pid_t, parent_pid ) __array( char, child_comm, TASK_COMM_LEN ) __field( pid_t, child_pid ) ), TP_fast_assign( memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN); __entry->parent_pid = parent->pid; memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN); __entry->child_pid = child->pid; ), TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d", __entry->parent_comm, __entry->parent_pid, __entry->child_comm, __entry->child_pid) ); /* * Tracepoint for exec: */ TRACE_EVENT(sched_process_exec, TP_PROTO(struct task_struct *p, pid_t old_pid, struct linux_binprm *bprm), TP_ARGS(p, old_pid, bprm), TP_STRUCT__entry( __string( filename, bprm->filename ) __field( pid_t, pid ) __field( pid_t, old_pid ) ), TP_fast_assign( __assign_str(filename, bprm->filename); __entry->pid = p->pid; __entry->old_pid = old_pid; ), TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename), __entry->pid, __entry->old_pid) ); /* * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE * adding sched_stat support to SCHED_FIFO/RR would be welcome. */ DECLARE_EVENT_CLASS(sched_stat_template, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(__perf_task(tsk), __perf_count(delay)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, delay ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->delay = delay; ), TP_printk("comm=%s pid=%d delay=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->delay) ); /* * Tracepoint for accounting wait time (time the task is runnable * but not actually running due to scheduler contention). */ DEFINE_EVENT(sched_stat_template, sched_stat_wait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting sleep time (time the task is not runnable, * including iowait, see below). */ DEFINE_EVENT(sched_stat_template, sched_stat_sleep, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting iowait time (time the task is not runnable * due to waiting on IO to complete). */ DEFINE_EVENT(sched_stat_template, sched_stat_iowait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting blocked time (time the task is in uninterruptible). */ DEFINE_EVENT(sched_stat_template, sched_stat_blocked, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for recording the cause of uninterruptible sleep. */ TRACE_EVENT(sched_blocked_reason, TP_PROTO(struct task_struct *tsk), TP_ARGS(tsk), TP_STRUCT__entry( __field( pid_t, pid ) __field( void*, caller ) __field( bool, io_wait ) ), TP_fast_assign( __entry->pid = tsk->pid; __entry->caller = (void*)get_wchan(tsk); __entry->io_wait = tsk->in_iowait; ), TP_printk("pid=%d iowait=%d caller=%pS", __entry->pid, __entry->io_wait, __entry->caller) ); /* * Tracepoint for accounting runtime (time the task is executing * on a CPU). */ DECLARE_EVENT_CLASS(sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, __perf_count(runtime), vruntime), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, runtime ) __field( u64, vruntime ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->runtime = runtime; __entry->vruntime = vruntime; ), TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->runtime, (unsigned long long)__entry->vruntime) ); DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, runtime, vruntime)); /* * Tracepoint for showing priority inheritance modifying a tasks * priority. */ TRACE_EVENT(sched_pi_setprio, TP_PROTO(struct task_struct *tsk, int newprio), TP_ARGS(tsk, newprio), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, oldprio ) __field( int, newprio ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->oldprio = tsk->prio; __entry->newprio = newprio; ), TP_printk("comm=%s pid=%d oldprio=%d newprio=%d", __entry->comm, __entry->pid, __entry->oldprio, __entry->newprio) ); #ifdef CONFIG_DETECT_HUNG_TASK TRACE_EVENT(sched_process_hang, TP_PROTO(struct task_struct *tsk), TP_ARGS(tsk), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); #endif /* CONFIG_DETECT_HUNG_TASK */ DECLARE_EVENT_CLASS(sched_move_task_template, TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu), TP_ARGS(tsk, src_cpu, dst_cpu), TP_STRUCT__entry( __field( pid_t, pid ) __field( pid_t, tgid ) __field( pid_t, ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->pid = task_pid_nr(tsk); __entry->tgid = task_tgid_nr(tsk); __entry->ngid = task_numa_group_id(tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_cpu = dst_cpu; __entry->dst_nid = cpu_to_node(dst_cpu); ), TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d", __entry->pid, __entry->tgid, __entry->ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_cpu, __entry->dst_nid) ); /* * Tracks migration of tasks from one runqueue to another. Can be used to * detect if automatic NUMA balancing is bouncing between nodes */ DEFINE_EVENT(sched_move_task_template, sched_move_numa, TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu), TP_ARGS(tsk, src_cpu, dst_cpu) ); DEFINE_EVENT(sched_move_task_template, sched_stick_numa, TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu), TP_ARGS(tsk, src_cpu, dst_cpu) ); TRACE_EVENT(sched_swap_numa, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu), TP_STRUCT__entry( __field( pid_t, src_pid ) __field( pid_t, src_tgid ) __field( pid_t, src_ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( pid_t, dst_pid ) __field( pid_t, dst_tgid ) __field( pid_t, dst_ngid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->src_pid = task_pid_nr(src_tsk); __entry->src_tgid = task_tgid_nr(src_tsk); __entry->src_ngid = task_numa_group_id(src_tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_pid = task_pid_nr(dst_tsk); __entry->dst_tgid = task_tgid_nr(dst_tsk); __entry->dst_ngid = task_numa_group_id(dst_tsk); __entry->dst_cpu = dst_cpu; __entry->dst_nid = cpu_to_node(dst_cpu); ), TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d", __entry->src_pid, __entry->src_tgid, __entry->src_ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid, __entry->dst_cpu, __entry->dst_nid) ); /* * Tracepoint for waking a polling cpu without an IPI. */ TRACE_EVENT(sched_wake_idle_without_ipi, TP_PROTO(int cpu), TP_ARGS(cpu), TP_STRUCT__entry( __field( int, cpu ) ), TP_fast_assign( __entry->cpu = cpu; ), TP_printk("cpu=%d", __entry->cpu) ); TRACE_EVENT(sched_contrib_scale_f, TP_PROTO(int cpu, unsigned long freq_scale_factor, unsigned long cpu_scale_factor), TP_ARGS(cpu, freq_scale_factor, cpu_scale_factor), TP_STRUCT__entry( __field(int, cpu) __field(unsigned long, freq_scale_factor) __field(unsigned long, cpu_scale_factor) ), TP_fast_assign( __entry->cpu = cpu; __entry->freq_scale_factor = freq_scale_factor; __entry->cpu_scale_factor = cpu_scale_factor; ), TP_printk("cpu=%d freq_scale_factor=%lu cpu_scale_factor=%lu", __entry->cpu, __entry->freq_scale_factor, __entry->cpu_scale_factor) ); #ifdef CONFIG_SMP #ifdef CONFIG_SCHED_WALT extern unsigned int sysctl_sched_use_walt_cpu_util; extern unsigned int sysctl_sched_use_walt_task_util; extern unsigned int sched_ravg_window; extern unsigned int walt_disabled; #endif /* * Tracepoint for accounting sched averages for tasks. */ TRACE_EVENT(sched_load_avg_task, TP_PROTO(struct task_struct *tsk, struct sched_avg *avg, void *_ravg), TP_ARGS(tsk, avg, _ravg), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, cpu ) __field( unsigned long, load_avg ) __field( unsigned long, util_avg ) __field( unsigned long, util_avg_pelt ) __field( u32, util_avg_walt ) __field( u64, load_sum ) __field( u32, util_sum ) __field( u32, period_contrib ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->cpu = task_cpu(tsk); __entry->load_avg = avg->load_avg; __entry->util_avg = avg->util_avg; __entry->load_sum = avg->load_sum; __entry->util_sum = avg->util_sum; __entry->period_contrib = avg->period_contrib; __entry->util_avg_pelt = avg->util_avg; __entry->util_avg_walt = 0; #ifdef CONFIG_SCHED_WALT __entry->util_avg_walt = ((struct ravg*)_ravg)->demand / (sched_ravg_window >> SCHED_CAPACITY_SHIFT); if (!walt_disabled && sysctl_sched_use_walt_task_util) __entry->util_avg = __entry->util_avg_walt; #endif ), TP_printk("comm=%s pid=%d cpu=%d load_avg=%lu util_avg=%lu " "util_avg_pelt=%lu util_avg_walt=%u load_sum=%llu" " util_sum=%u period_contrib=%u", __entry->comm, __entry->pid, __entry->cpu, __entry->load_avg, __entry->util_avg, __entry->util_avg_pelt, __entry->util_avg_walt, (u64)__entry->load_sum, (u32)__entry->util_sum, (u32)__entry->period_contrib) ); /* * Tracepoint for accounting sched averages for cpus. */ TRACE_EVENT(sched_load_avg_cpu, TP_PROTO(int cpu, struct cfs_rq *cfs_rq), TP_ARGS(cpu, cfs_rq), TP_STRUCT__entry( __field( int, cpu ) __field( unsigned long, load_avg ) __field( unsigned long, util_avg ) __field( unsigned long, util_avg_pelt ) __field( u32, util_avg_walt ) ), TP_fast_assign( __entry->cpu = cpu; __entry->load_avg = cfs_rq->avg.load_avg; __entry->util_avg = cfs_rq->avg.util_avg; __entry->util_avg_pelt = cfs_rq->avg.util_avg; __entry->util_avg_walt = 0; #ifdef CONFIG_SCHED_WALT __entry->util_avg_walt = div64_ul(cpu_rq(cpu)->prev_runnable_sum, sched_ravg_window >> SCHED_CAPACITY_SHIFT); if (!walt_disabled && sysctl_sched_use_walt_cpu_util) __entry->util_avg = __entry->util_avg_walt; #endif ), TP_printk("cpu=%d load_avg=%lu util_avg=%lu " "util_avg_pelt=%lu util_avg_walt=%u", __entry->cpu, __entry->load_avg, __entry->util_avg, __entry->util_avg_pelt, __entry->util_avg_walt) ); /* * Tracepoint for sched_tune_config settings */ TRACE_EVENT(sched_tune_config, TP_PROTO(int boost), TP_ARGS(boost), TP_STRUCT__entry( __field( int, boost ) ), TP_fast_assign( __entry->boost = boost; ), TP_printk("boost=%d ", __entry->boost) ); /* * Tracepoint for accounting CPU boosted utilization */ TRACE_EVENT(sched_boost_cpu, TP_PROTO(int cpu, unsigned long util, long margin), TP_ARGS(cpu, util, margin), TP_STRUCT__entry( __field( int, cpu ) __field( unsigned long, util ) __field(long, margin ) ), TP_fast_assign( __entry->cpu = cpu; __entry->util = util; __entry->margin = margin; ), TP_printk("cpu=%d util=%lu margin=%ld", __entry->cpu, __entry->util, __entry->margin) ); /* * Tracepoint for schedtune_tasks_update */ TRACE_EVENT(sched_tune_tasks_update, TP_PROTO(struct task_struct *tsk, int cpu, int tasks, int idx, int boost, int max_boost), TP_ARGS(tsk, cpu, tasks, idx, boost, max_boost), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, cpu ) __field( int, tasks ) __field( int, idx ) __field( int, boost ) __field( int, max_boost ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->cpu = cpu; __entry->tasks = tasks; __entry->idx = idx; __entry->boost = boost; __entry->max_boost = max_boost; ), TP_printk("pid=%d comm=%s " "cpu=%d tasks=%d idx=%d boost=%d max_boost=%d", __entry->pid, __entry->comm, __entry->cpu, __entry->tasks, __entry->idx, __entry->boost, __entry->max_boost) ); /* * Tracepoint for schedtune_boostgroup_update */ TRACE_EVENT(sched_tune_boostgroup_update, TP_PROTO(int cpu, int variation, int max_boost), TP_ARGS(cpu, variation, max_boost), TP_STRUCT__entry( __field( int, cpu ) __field( int, variation ) __field( int, max_boost ) ), TP_fast_assign( __entry->cpu = cpu; __entry->variation = variation; __entry->max_boost = max_boost; ), TP_printk("cpu=%d variation=%d max_boost=%d", __entry->cpu, __entry->variation, __entry->max_boost) ); /* * Tracepoint for accounting task boosted utilization */ TRACE_EVENT(sched_boost_task, TP_PROTO(struct task_struct *tsk, unsigned long util, long margin), TP_ARGS(tsk, util, margin), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( unsigned long, util ) __field( long, margin ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->util = util; __entry->margin = margin; ), TP_printk("comm=%s pid=%d util=%lu margin=%ld", __entry->comm, __entry->pid, __entry->util, __entry->margin) ); /* * Tracepoint for find_best_target */ TRACE_EVENT(sched_find_best_target, TP_PROTO(struct task_struct *tsk, bool prefer_idle, unsigned long min_util, int start_cpu, int best_idle, int best_active, int target), TP_ARGS(tsk, prefer_idle, min_util, start_cpu, best_idle, best_active, target), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( unsigned long, min_util ) __field( bool, prefer_idle ) __field( int, start_cpu ) __field( int, best_idle ) __field( int, best_active ) __field( int, target ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->min_util = min_util; __entry->prefer_idle = prefer_idle; __entry->start_cpu = start_cpu; __entry->best_idle = best_idle; __entry->best_active = best_active; __entry->target = target; ), TP_printk("pid=%d comm=%s prefer_idle=%d start_cpu=%d " "best_idle=%d best_active=%d target=%d", __entry->pid, __entry->comm, __entry->prefer_idle, __entry->start_cpu, __entry->best_idle, __entry->best_active, __entry->target) ); TRACE_EVENT(sched_group_energy, TP_PROTO(int cpu, long group_util, u64 total_nrg, int busy_nrg, int idle_nrg, int grp_idle_idx, int new_capacity), TP_ARGS(cpu, group_util, total_nrg, busy_nrg, idle_nrg, grp_idle_idx, new_capacity), TP_STRUCT__entry( __field(int, cpu) __field(long, group_util) __field(u64, total_nrg) __field(int, busy_nrg) __field(int, idle_nrg) __field(int, grp_idle_idx) __field(int, new_capacity) ), TP_fast_assign( __entry->cpu = cpu; __entry->group_util = group_util; __entry->total_nrg = total_nrg; __entry->busy_nrg = busy_nrg; __entry->idle_nrg = idle_nrg; __entry->grp_idle_idx = grp_idle_idx; __entry->new_capacity = new_capacity; ), TP_printk("cpu=%d group_util=%ld total_nrg=%llu busy_nrg=%d idle_nrg=%d grp_idle_idx=%d new_capacity=%d", __entry->cpu, __entry->group_util, __entry->total_nrg, __entry->busy_nrg, __entry->idle_nrg, __entry->grp_idle_idx, __entry->new_capacity) ); /* * Tracepoint for schedtune_tasks_update */ TRACE_EVENT(sched_tune_filter, TP_PROTO(int nrg_delta, int cap_delta, int nrg_gain, int cap_gain, int payoff, int region), TP_ARGS(nrg_delta, cap_delta, nrg_gain, cap_gain, payoff, region), TP_STRUCT__entry( __field( int, nrg_delta ) __field( int, cap_delta ) __field( int, nrg_gain ) __field( int, cap_gain ) __field( int, payoff ) __field( int, region ) ), TP_fast_assign( __entry->nrg_delta = nrg_delta; __entry->cap_delta = cap_delta; __entry->nrg_gain = nrg_gain; __entry->cap_gain = cap_gain; __entry->payoff = payoff; __entry->region = region; ), TP_printk("nrg_delta=%d cap_delta=%d nrg_gain=%d cap_gain=%d payoff=%d region=%d", __entry->nrg_delta, __entry->cap_delta, __entry->nrg_gain, __entry->cap_gain, __entry->payoff, __entry->region) ); /* * Tracepoint for system overutilized flag */ TRACE_EVENT(sched_overutilized, TP_PROTO(bool overutilized), TP_ARGS(overutilized), TP_STRUCT__entry( __field( bool, overutilized ) ), TP_fast_assign( __entry->overutilized = overutilized; ), TP_printk("overutilized=%d", __entry->overutilized ? 1 : 0) ); #endif TRACE_EVENT(sched_get_nr_running_avg, TP_PROTO(int avg, int big_avg, int iowait_avg, unsigned int max_nr, unsigned int big_max_nr), TP_ARGS(avg, big_avg, iowait_avg, max_nr, big_max_nr), TP_STRUCT__entry( __field( int, avg ) __field( int, big_avg ) __field( int, iowait_avg ) __field( unsigned int, max_nr ) __field( unsigned int, big_max_nr ) ), TP_fast_assign( __entry->avg = avg; __entry->big_avg = big_avg; __entry->iowait_avg = iowait_avg; __entry->max_nr = max_nr; __entry->big_max_nr = big_max_nr; ), TP_printk("avg=%d big_avg=%d iowait_avg=%d max_nr=%u big_max_nr=%u", __entry->avg, __entry->big_avg, __entry->iowait_avg, __entry->max_nr, __entry->big_max_nr) ); TRACE_EVENT(core_ctl_eval_need, TP_PROTO(unsigned int cpu, unsigned int old_need, unsigned int new_need, unsigned int updated), TP_ARGS(cpu, old_need, new_need, updated), TP_STRUCT__entry( __field(u32, cpu) __field(u32, old_need) __field(u32, new_need) __field(u32, updated) ), TP_fast_assign( __entry->cpu = cpu; __entry->old_need = old_need; __entry->new_need = new_need; __entry->updated = updated; ), TP_printk("cpu=%u, old_need=%u, new_need=%u, updated=%u", __entry->cpu, __entry->old_need, __entry->new_need, __entry->updated) ); TRACE_EVENT(core_ctl_set_busy, TP_PROTO(unsigned int cpu, unsigned int busy, unsigned int old_is_busy, unsigned int is_busy), TP_ARGS(cpu, busy, old_is_busy, is_busy), TP_STRUCT__entry( __field(u32, cpu) __field(u32, busy) __field(u32, old_is_busy) __field(u32, is_busy) __field(bool, high_irqload) ), TP_fast_assign( __entry->cpu = cpu; __entry->busy = busy; __entry->old_is_busy = old_is_busy; __entry->is_busy = is_busy; __entry->high_irqload = sched_cpu_high_irqload(cpu); ), TP_printk("cpu=%u, busy=%u, old_is_busy=%u, new_is_busy=%u high_irqload=%d", __entry->cpu, __entry->busy, __entry->old_is_busy, __entry->is_busy, __entry->high_irqload) ); TRACE_EVENT(core_ctl_set_boost, TP_PROTO(u32 refcount, s32 ret), TP_ARGS(refcount, ret), TP_STRUCT__entry( __field(u32, refcount) __field(s32, ret) ), TP_fast_assign( __entry->refcount = refcount; __entry->ret = ret; ), TP_printk("refcount=%u, ret=%d", __entry->refcount, __entry->ret) ); /* * sched_isolate - called when cores are isolated/unisolated * * @acutal_mask: mask of cores actually isolated/unisolated * @req_mask: mask of cores requested isolated/unisolated * @online_mask: cpu online mask * @time: amount of time in us it took to isolate/unisolate * @isolate: 1 if isolating, 0 if unisolating * */ TRACE_EVENT(sched_isolate, TP_PROTO(unsigned int requested_cpu, unsigned int isolated_cpus, u64 start_time, unsigned char isolate), TP_ARGS(requested_cpu, isolated_cpus, start_time, isolate), TP_STRUCT__entry( __field(u32, requested_cpu) __field(u32, isolated_cpus) __field(u32, time) __field(unsigned char, isolate) ), TP_fast_assign( __entry->requested_cpu = requested_cpu; __entry->isolated_cpus = isolated_cpus; __entry->time = div64_u64(sched_clock() - start_time, 1000); __entry->isolate = isolate; ), TP_printk("iso cpu=%u cpus=0x%x time=%u us isolated=%d", __entry->requested_cpu, __entry->isolated_cpus, __entry->time, __entry->isolate) ); TRACE_EVENT(sched_preempt_disable, TP_PROTO(u64 delta, bool irqs_disabled, unsigned long caddr0, unsigned long caddr1, unsigned long caddr2, unsigned long caddr3), TP_ARGS(delta, irqs_disabled, caddr0, caddr1, caddr2, caddr3), TP_STRUCT__entry( __field(u64, delta) __field(bool, irqs_disabled) __field(void*, caddr0) __field(void*, caddr1) __field(void*, caddr2) __field(void*, caddr3) ), TP_fast_assign( __entry->delta = delta; __entry->irqs_disabled = irqs_disabled; __entry->caddr0 = (void *)caddr0; __entry->caddr1 = (void *)caddr1; __entry->caddr2 = (void *)caddr2; __entry->caddr3 = (void *)caddr3; ), TP_printk("delta=%llu(ns) irqs_d=%d Callers:(%pf<-%pf<-%pf<-%pf)", __entry->delta, __entry->irqs_disabled, __entry->caddr0, __entry->caddr1, __entry->caddr2, __entry->caddr3) ); #endif /* _TRACE_SCHED_H */ /* This part must be outside protection */ #include