/****************************************************************************** * * Copyright 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ #include "bta_hearing_aid_api.h" #include "bta_gatt_api.h" #include "bta_gatt_queue.h" #include "btm_int.h" #include "device/include/controller.h" #include "embdrv/g722/g722_enc_dec.h" #include "gap_api.h" #include "gatt_api.h" #include "osi/include/properties.h" #include #include #include #include #include using base::Closure; using bluetooth::Uuid; using bluetooth::hearing_aid::ConnectionState; // The MIN_CE_LEN parameter for Connection Parameters based on the current // Connection Interval constexpr uint16_t MIN_CE_LEN_10MS_CI = 0x0006; constexpr uint16_t MIN_CE_LEN_20MS_CI = 0x000C; constexpr uint16_t CONNECTION_INTERVAL_10MS_PARAM = 0x0008; constexpr uint16_t CONNECTION_INTERVAL_20MS_PARAM = 0x0010; void btif_storage_add_hearing_aid(const HearingDevice& dev_info); bool btif_storage_get_hearing_aid_prop( const RawAddress& address, uint8_t* capabilities, uint64_t* hi_sync_id, uint16_t* render_delay, uint16_t* preparation_delay, uint16_t* codecs); constexpr uint8_t CODEC_G722_16KHZ = 0x01; constexpr uint8_t CODEC_G722_24KHZ = 0x02; // audio control point opcodes constexpr uint8_t CONTROL_POINT_OP_START = 0x01; constexpr uint8_t CONTROL_POINT_OP_STOP = 0x02; constexpr uint8_t CONTROL_POINT_OP_STATE_CHANGE = 0x03; constexpr uint8_t STATE_CHANGE_OTHER_SIDE_DISCONNECTED = 0x00; constexpr uint8_t STATE_CHANGE_OTHER_SIDE_CONNECTED = 0x01; constexpr uint8_t STATE_CHANGE_CONN_UPDATE = 0x02; // used to mark current_volume as not yet known, or possibly old constexpr int8_t VOLUME_UNKNOWN = 127; constexpr int8_t VOLUME_MIN = -127; // audio type constexpr uint8_t AUDIOTYPE_UNKNOWN = 0x00; // Status of the other side Hearing Aids device constexpr uint8_t OTHER_SIDE_NOT_STREAMING = 0x00; constexpr uint8_t OTHER_SIDE_IS_STREAMING = 0x01; // This ADD_RENDER_DELAY_INTERVALS is the number of connection intervals when // the audio data packet is send by Audio Engine to when the Hearing Aids device // received it from the air. We assumed that there is 2 data buffer queued from // audio subsystem to bluetooth chip. Then the estimated OTA delay is two // connnection intervals. constexpr uint16_t ADD_RENDER_DELAY_INTERVALS = 4; namespace { // clang-format off Uuid HEARING_AID_UUID = Uuid::FromString("FDF0"); Uuid READ_ONLY_PROPERTIES_UUID = Uuid::FromString("6333651e-c481-4a3e-9169-7c902aad37bb"); Uuid AUDIO_CONTROL_POINT_UUID = Uuid::FromString("f0d4de7e-4a88-476c-9d9f-1937b0996cc0"); Uuid AUDIO_STATUS_UUID = Uuid::FromString("38663f1a-e711-4cac-b641-326b56404837"); Uuid VOLUME_UUID = Uuid::FromString("00e4ca9e-ab14-41e4-8823-f9e70c7e91df"); Uuid LE_PSM_UUID = Uuid::FromString("2d410339-82b6-42aa-b34e-e2e01df8cc1a"); // clang-format on void hearingaid_gattc_callback(tBTA_GATTC_EVT event, tBTA_GATTC* p_data); void encryption_callback(const RawAddress*, tGATT_TRANSPORT, void*, tBTM_STATUS); void read_rssi_cb(void* p_void); inline BT_HDR* malloc_l2cap_buf(uint16_t len) { BT_HDR* msg = (BT_HDR*)osi_malloc(BT_HDR_SIZE + L2CAP_MIN_OFFSET + len /* LE-only, no need for FCS here */); msg->offset = L2CAP_MIN_OFFSET; msg->len = len; return msg; } inline uint8_t* get_l2cap_sdu_start_ptr(BT_HDR* msg) { return (uint8_t*)(msg) + BT_HDR_SIZE + L2CAP_MIN_OFFSET; } class HearingAidImpl; HearingAidImpl* instance; HearingAidAudioReceiver* audioReceiver; class HearingDevices { public: void Add(HearingDevice device) { if (FindByAddress(device.address) != nullptr) return; devices.push_back(device); } void Remove(const RawAddress& address) { for (auto it = devices.begin(); it != devices.end();) { if (it->address != address) { ++it; continue; } it = devices.erase(it); return; } } HearingDevice* FindByAddress(const RawAddress& address) { auto iter = std::find_if(devices.begin(), devices.end(), [&address](const HearingDevice& device) { return device.address == address; }); return (iter == devices.end()) ? nullptr : &(*iter); } HearingDevice* FindByConnId(uint16_t conn_id) { auto iter = std::find_if(devices.begin(), devices.end(), [&conn_id](const HearingDevice& device) { return device.conn_id == conn_id; }); return (iter == devices.end()) ? nullptr : &(*iter); } HearingDevice* FindByGapHandle(uint16_t gap_handle) { auto iter = std::find_if(devices.begin(), devices.end(), [&gap_handle](const HearingDevice& device) { return device.gap_handle == gap_handle; }); return (iter == devices.end()) ? nullptr : &(*iter); } bool IsAnyConnectionUpdateStarted() { for (const auto& d : devices) { if (d.connection_update_status == STARTED) return true; } return false; } void StartRssiLog() { int read_rssi_start_interval_count = 0; for (auto& d : devices) { VLOG(1) << __func__ << ": device=" << d.address << ", read_rssi_count=" << d.read_rssi_count; // Reset the count if (d.read_rssi_count <= 0) { d.read_rssi_count = READ_RSSI_NUM_TRIES; d.num_intervals_since_last_rssi_read = read_rssi_start_interval_count; // Spaced apart the Read RSSI commands to the BT controller. read_rssi_start_interval_count += PERIOD_TO_READ_RSSI_IN_INTERVALS / 2; read_rssi_start_interval_count %= PERIOD_TO_READ_RSSI_IN_INTERVALS; std::deque& rssi_logs = d.audio_stats.rssi_history; if (rssi_logs.size() >= MAX_RSSI_HISTORY) { rssi_logs.pop_front(); } rssi_logs.emplace_back(); } } } size_t size() { return (devices.size()); } std::vector devices; }; static void write_rpt_ctl_cfg_cb(uint16_t conn_id, tGATT_STATUS status, uint16_t handle, void* data) { if (status != GATT_SUCCESS) { LOG(ERROR) << __func__ << ": handle=" << handle << ", conn_id=" << conn_id << ", status=" << loghex(status); } } g722_encode_state_t* encoder_state_left = nullptr; g722_encode_state_t* encoder_state_right = nullptr; inline void encoder_state_init() { if (encoder_state_left != nullptr) { LOG(WARNING) << __func__ << ": encoder already initialized"; return; } encoder_state_left = g722_encode_init(nullptr, 64000, G722_PACKED); encoder_state_right = g722_encode_init(nullptr, 64000, G722_PACKED); } inline void encoder_state_release() { if (encoder_state_left != nullptr) { g722_encode_release(encoder_state_left); encoder_state_left = nullptr; g722_encode_release(encoder_state_right); encoder_state_right = nullptr; } } class HearingAidImpl : public HearingAid { private: // Keep track of whether the Audio Service has resumed audio playback bool audio_running; // For Testing: overwrite the MIN_CE_LEN during connection parameter updates uint16_t overwrite_min_ce_len; public: virtual ~HearingAidImpl() = default; HearingAidImpl(bluetooth::hearing_aid::HearingAidCallbacks* callbacks, Closure initCb) : audio_running(false), overwrite_min_ce_len(0), gatt_if(0), seq_counter(0), current_volume(VOLUME_UNKNOWN), callbacks(callbacks), codec_in_use(0) { default_data_interval_ms = (uint16_t)osi_property_get_int32( "persist.bluetooth.hearingaid.interval", (int32_t)HA_INTERVAL_20_MS); if ((default_data_interval_ms != HA_INTERVAL_10_MS) && (default_data_interval_ms != HA_INTERVAL_20_MS)) { LOG(ERROR) << __func__ << ": invalid interval=" << default_data_interval_ms << "ms. Overwriting back to default"; default_data_interval_ms = HA_INTERVAL_20_MS; } VLOG(2) << __func__ << ", default_data_interval_ms=" << default_data_interval_ms; overwrite_min_ce_len = (uint16_t)osi_property_get_int32( "persist.bluetooth.hearingaidmincelen", 0); if (overwrite_min_ce_len) { LOG(INFO) << __func__ << ": Overwrites MIN_CE_LEN=" << overwrite_min_ce_len; } BTA_GATTC_AppRegister( hearingaid_gattc_callback, base::Bind( [](Closure initCb, uint8_t client_id, uint8_t status) { if (status != GATT_SUCCESS) { LOG(ERROR) << "Can't start Hearing Aid profile - no gatt " "clients left!"; return; } instance->gatt_if = client_id; initCb.Run(); }, initCb)); } uint16_t UpdateBleConnParams(const RawAddress& address) { /* List of parameters that depends on the chosen Connection Interval */ uint16_t min_ce_len; uint16_t connection_interval; switch (default_data_interval_ms) { case HA_INTERVAL_10_MS: min_ce_len = MIN_CE_LEN_10MS_CI; connection_interval = CONNECTION_INTERVAL_10MS_PARAM; break; case HA_INTERVAL_20_MS: min_ce_len = MIN_CE_LEN_20MS_CI; connection_interval = CONNECTION_INTERVAL_20MS_PARAM; break; default: LOG(ERROR) << __func__ << ":Error: invalid default_data_interval_ms=" << default_data_interval_ms; min_ce_len = MIN_CE_LEN_10MS_CI; connection_interval = CONNECTION_INTERVAL_10MS_PARAM; } if (overwrite_min_ce_len != 0) { VLOG(2) << __func__ << ": min_ce_len=" << min_ce_len << " is overwritten to " << overwrite_min_ce_len; min_ce_len = overwrite_min_ce_len; } L2CA_UpdateBleConnParams(address, connection_interval, connection_interval, 0x000A, 0x0064 /*1s*/, min_ce_len, min_ce_len); return connection_interval; } void Connect(const RawAddress& address) override { DVLOG(2) << __func__ << " " << address; hearingDevices.Add(HearingDevice(address, true)); BTA_GATTC_Open(gatt_if, address, true, GATT_TRANSPORT_LE, false); } void AddToWhiteList(const RawAddress& address) override { VLOG(2) << __func__ << " address: " << address; hearingDevices.Add(HearingDevice(address, true)); BTA_GATTC_Open(gatt_if, address, false, GATT_TRANSPORT_LE, false); } void AddFromStorage(const HearingDevice& dev_info, uint16_t is_white_listed) { DVLOG(2) << __func__ << " " << dev_info.address << ", hiSyncId=" << loghex(dev_info.hi_sync_id) << ", isWhiteListed=" << is_white_listed; if (is_white_listed) { hearingDevices.Add(dev_info); // TODO: we should increase the scanning window for few seconds, to get // faster initial connection, same after hearing aid disconnects, i.e. // BTM_BleSetConnScanParams(2048, 1024); /* add device into BG connection to accept remote initiated connection */ BTA_GATTC_Open(gatt_if, dev_info.address, false, GATT_TRANSPORT_LE, false); } callbacks->OnDeviceAvailable(dev_info.capabilities, dev_info.hi_sync_id, dev_info.address); } int GetDeviceCount() { return (hearingDevices.size()); } void OnGattConnected(tGATT_STATUS status, uint16_t conn_id, tGATT_IF client_if, RawAddress address, tBTA_TRANSPORT transport, uint16_t mtu) { VLOG(2) << __func__ << ": address=" << address << ", conn_id=" << conn_id; HearingDevice* hearingDevice = hearingDevices.FindByAddress(address); if (!hearingDevice) { /* When Hearing Aid is quickly disabled and enabled in settings, this case * might happen */ LOG(WARNING) << "Closing connection to non hearing-aid device, address=" << address; BTA_GATTC_Close(conn_id); return; } if (status != GATT_SUCCESS) { if (!hearingDevice->connecting_actively) { // whitelist connection failed, that's ok. return; } LOG(INFO) << "Failed to connect to Hearing Aid device"; hearingDevices.Remove(address); callbacks->OnConnectionState(ConnectionState::DISCONNECTED, address); return; } hearingDevice->connecting_actively = false; hearingDevice->conn_id = conn_id; /* We must update connection parameters one at a time, otherwise anchor * point (start of connection event) for two devices can be too close to * each other. Here, by setting min_ce_len=max_ce_len=X, we force controller * to move anchor point of both connections away from each other, to make * sure we'll be able to fit all the data we want in one connection event. */ bool any_update_pending = hearingDevices.IsAnyConnectionUpdateStarted(); // mark the device as pending connection update. If we don't start the // update now, it'll be started once current device finishes. if (!any_update_pending) { hearingDevice->connection_update_status = STARTED; hearingDevice->requested_connection_interval = UpdateBleConnParams(address); } else { hearingDevice->connection_update_status = AWAITING; } tACL_CONN* p_acl = btm_bda_to_acl(address, BT_TRANSPORT_LE); if (p_acl != nullptr && controller_get_interface()->supports_ble_2m_phy() && HCI_LE_2M_PHY_SUPPORTED(p_acl->peer_le_features)) { LOG(INFO) << address << " set preferred PHY to 2M"; BTM_BleSetPhy(address, PHY_LE_2M, PHY_LE_2M, 0); } // Set data length // TODO(jpawlowski: for 16khz only 87 is required, optimize BTM_SetBleDataLength(address, 167); tBTM_SEC_DEV_REC* p_dev_rec = btm_find_dev(address); if (p_dev_rec) { if (p_dev_rec->sec_state == BTM_SEC_STATE_ENCRYPTING || p_dev_rec->sec_state == BTM_SEC_STATE_AUTHENTICATING) { /* if security collision happened, wait for encryption done * (BTA_GATTC_ENC_CMPL_CB_EVT) */ return; } } /* verify bond */ uint8_t sec_flag = 0; BTM_GetSecurityFlagsByTransport(address, &sec_flag, BT_TRANSPORT_LE); if (sec_flag & BTM_SEC_FLAG_ENCRYPTED) { /* if link has been encrypted */ OnEncryptionComplete(address, true); return; } if (sec_flag & BTM_SEC_FLAG_LKEY_KNOWN) { /* if bonded and link not encrypted */ sec_flag = BTM_BLE_SEC_ENCRYPT; BTM_SetEncryption(address, BTA_TRANSPORT_LE, encryption_callback, nullptr, sec_flag); return; } /* otherwise let it go through */ OnEncryptionComplete(address, true); } void OnConnectionUpdateComplete(uint16_t conn_id, tBTA_GATTC* p_data) { HearingDevice* hearingDevice = hearingDevices.FindByConnId(conn_id); if (!hearingDevice) { DVLOG(2) << "Skipping unknown device, conn_id=" << loghex(conn_id); return; } if (p_data) { if (p_data->conn_update.status == 0) { bool same_conn_interval = (hearingDevice->requested_connection_interval == p_data->conn_update.interval); switch (hearingDevice->connection_update_status) { case COMPLETED: if (!same_conn_interval) { LOG(WARNING) << __func__ << ": Unexpected change. Redo. connection interval=" << p_data->conn_update.interval << ", expected=" << hearingDevice->requested_connection_interval << ", conn_id=" << conn_id << ", connection_update_status=" << hearingDevice->connection_update_status; // Redo this connection interval change. hearingDevice->connection_update_status = AWAITING; } break; case STARTED: if (same_conn_interval) { LOG(INFO) << __func__ << ": Connection update completed. conn_id=" << conn_id << ", device=" << hearingDevice->address; hearingDevice->connection_update_status = COMPLETED; } else { LOG(WARNING) << __func__ << ": Ignored. Different connection interval=" << p_data->conn_update.interval << ", expected=" << hearingDevice->requested_connection_interval << ", conn_id=" << conn_id << ", connection_update_status=" << hearingDevice->connection_update_status; // Wait for the right Connection Update Completion. return; } break; case AWAITING: case NONE: break; } // Inform this side and other side device (if any) of Connection // Updates. std::vector conn_update( {CONTROL_POINT_OP_STATE_CHANGE, STATE_CHANGE_CONN_UPDATE, (uint8_t)p_data->conn_update.interval}); send_state_change_to_other_side(hearingDevice, conn_update); send_state_change(hearingDevice, conn_update); } else { LOG(INFO) << __func__ << ": error status=" << loghex(p_data->conn_update.status) << ", conn_id=" << conn_id << ", device=" << hearingDevice->address << ", connection_update_status=" << hearingDevice->connection_update_status; if (hearingDevice->connection_update_status == STARTED) { // Redo this connection interval change. LOG(ERROR) << __func__ << ": Redo Connection Interval change"; hearingDevice->connection_update_status = AWAITING; } } } else { hearingDevice->connection_update_status = NONE; } for (auto& device : hearingDevices.devices) { if (device.conn_id && (device.connection_update_status == AWAITING)) { device.connection_update_status = STARTED; device.requested_connection_interval = UpdateBleConnParams(device.address); return; } } } // Completion Callback for the RSSI read operation. void OnReadRssiComplete(const RawAddress& address, int8_t rssi_value) { HearingDevice* hearingDevice = hearingDevices.FindByAddress(address); if (!hearingDevice) { LOG(INFO) << "Skipping unknown device" << address; return; } VLOG(1) << __func__ << ": device=" << address << ", rssi=" << (int)rssi_value; if (hearingDevice->read_rssi_count <= 0) { LOG(ERROR) << __func__ << ": device=" << address << ", invalid read_rssi_count=" << hearingDevice->read_rssi_count; return; } rssi_log& last_log_set = hearingDevice->audio_stats.rssi_history.back(); if (hearingDevice->read_rssi_count == READ_RSSI_NUM_TRIES) { // Store the timestamp only for the first one after packet flush clock_gettime(CLOCK_REALTIME, &last_log_set.timestamp); LOG(INFO) << __func__ << ": store time. device=" << address << ", rssi=" << (int)rssi_value; } last_log_set.rssi.emplace_back(rssi_value); hearingDevice->read_rssi_count--; } void OnEncryptionComplete(const RawAddress& address, bool success) { HearingDevice* hearingDevice = hearingDevices.FindByAddress(address); if (!hearingDevice) { DVLOG(2) << "Skipping unknown device" << address; return; } if (!success) { LOG(ERROR) << "encryption failed"; BTA_GATTC_Close(hearingDevice->conn_id); if (hearingDevice->first_connection) { callbacks->OnConnectionState(ConnectionState::DISCONNECTED, address); } return; } DVLOG(2) << __func__ << " " << address; if (hearingDevice->audio_control_point_handle && hearingDevice->audio_status_handle && hearingDevice->audio_status_ccc_handle && hearingDevice->volume_handle && hearingDevice->read_psm_handle) { // Use cached data, jump to read PSM ReadPSM(hearingDevice); } else { hearingDevice->first_connection = true; BTA_GATTC_ServiceSearchRequest(hearingDevice->conn_id, &HEARING_AID_UUID); } } void OnServiceChangeEvent(const RawAddress& address) { HearingDevice* hearingDevice = hearingDevices.FindByAddress(address); if (!hearingDevice) { VLOG(2) << "Skipping unknown device" << address; return; } LOG(INFO) << __func__ << ": address=" << address; hearingDevice->first_connection = true; hearingDevice->service_changed_rcvd = true; BtaGattQueue::Clean(hearingDevice->conn_id); if (hearingDevice->gap_handle) { GAP_ConnClose(hearingDevice->gap_handle); hearingDevice->gap_handle = 0; } } void OnServiceDiscDoneEvent(const RawAddress& address) { HearingDevice* hearingDevice = hearingDevices.FindByAddress(address); if (!hearingDevice) { VLOG(2) << "Skipping unknown device" << address; return; } if (hearingDevice->service_changed_rcvd) { BTA_GATTC_ServiceSearchRequest(hearingDevice->conn_id, &HEARING_AID_UUID); } } void OnServiceSearchComplete(uint16_t conn_id, tGATT_STATUS status) { HearingDevice* hearingDevice = hearingDevices.FindByConnId(conn_id); if (!hearingDevice) { DVLOG(2) << "Skipping unknown device, conn_id=" << loghex(conn_id); return; } // Known device, nothing to do. if (!hearingDevice->first_connection) return; if (status != GATT_SUCCESS) { /* close connection and report service discovery complete with error */ LOG(ERROR) << "Service discovery failed"; if (hearingDevice->first_connection) { callbacks->OnConnectionState(ConnectionState::DISCONNECTED, hearingDevice->address); } return; } const std::list* services = BTA_GATTC_GetServices(conn_id); const gatt::Service* service = nullptr; for (const gatt::Service& tmp : *services) { if (tmp.uuid == Uuid::From16Bit(UUID_SERVCLASS_GATT_SERVER)) { LOG(INFO) << "Found UUID_SERVCLASS_GATT_SERVER, handle=" << loghex(tmp.handle); const gatt::Service* service_changed_service = &tmp; find_server_changed_ccc_handle(conn_id, service_changed_service); } else if (tmp.uuid == HEARING_AID_UUID) { LOG(INFO) << "Found Hearing Aid service, handle=" << loghex(tmp.handle); service = &tmp; } } if (!service) { LOG(ERROR) << "No Hearing Aid service found"; callbacks->OnConnectionState(ConnectionState::DISCONNECTED, hearingDevice->address); return; } for (const gatt::Characteristic& charac : service->characteristics) { if (charac.uuid == READ_ONLY_PROPERTIES_UUID) { if (!btif_storage_get_hearing_aid_prop( hearingDevice->address, &hearingDevice->capabilities, &hearingDevice->hi_sync_id, &hearingDevice->render_delay, &hearingDevice->preparation_delay, &hearingDevice->codecs)) { VLOG(2) << "Reading read only properties " << loghex(charac.value_handle); BtaGattQueue::ReadCharacteristic( conn_id, charac.value_handle, HearingAidImpl::OnReadOnlyPropertiesReadStatic, nullptr); } } else if (charac.uuid == AUDIO_CONTROL_POINT_UUID) { hearingDevice->audio_control_point_handle = charac.value_handle; // store audio control point! } else if (charac.uuid == AUDIO_STATUS_UUID) { hearingDevice->audio_status_handle = charac.value_handle; hearingDevice->audio_status_ccc_handle = find_ccc_handle(conn_id, charac.value_handle); if (!hearingDevice->audio_status_ccc_handle) { LOG(ERROR) << __func__ << ": cannot find Audio Status CCC descriptor"; continue; } LOG(INFO) << __func__ << ": audio_status_handle=" << loghex(charac.value_handle) << ", ccc=" << loghex(hearingDevice->audio_status_ccc_handle); } else if (charac.uuid == VOLUME_UUID) { hearingDevice->volume_handle = charac.value_handle; } else if (charac.uuid == LE_PSM_UUID) { hearingDevice->read_psm_handle = charac.value_handle; } else { LOG(WARNING) << "Unknown characteristic found:" << charac.uuid; } } if (hearingDevice->service_changed_rcvd) { hearingDevice->service_changed_rcvd = false; } ReadPSM(hearingDevice); } void ReadPSM(HearingDevice* hearingDevice) { if (hearingDevice->read_psm_handle) { LOG(INFO) << "Reading PSM " << loghex(hearingDevice->read_psm_handle) << ", device=" << hearingDevice->address; BtaGattQueue::ReadCharacteristic( hearingDevice->conn_id, hearingDevice->read_psm_handle, HearingAidImpl::OnPsmReadStatic, nullptr); } } void OnNotificationEvent(uint16_t conn_id, uint16_t handle, uint16_t len, uint8_t* value) { HearingDevice* device = hearingDevices.FindByConnId(conn_id); if (!device) { LOG(INFO) << __func__ << ": Skipping unknown device, conn_id=" << loghex(conn_id); return; } if (device->audio_status_handle != handle) { LOG(INFO) << __func__ << ": Mismatched handle, " << loghex(device->audio_status_handle) << "!=" << loghex(handle); return; } if (len < 1) { LOG(ERROR) << __func__ << ": Data Length too small, len=" << len << ", expecting at least 1"; return; } if (value[0] != 0) { LOG(INFO) << __func__ << ": Invalid returned status. data=" << loghex(value[0]); return; } LOG(INFO) << __func__ << ": audio status success notification. command_acked=" << device->command_acked; device->command_acked = true; } void OnReadOnlyPropertiesRead(uint16_t conn_id, tGATT_STATUS status, uint16_t handle, uint16_t len, uint8_t* value, void* data) { HearingDevice* hearingDevice = hearingDevices.FindByConnId(conn_id); if (!hearingDevice) { DVLOG(2) << __func__ << "unknown conn_id=" << loghex(conn_id); return; } VLOG(2) << __func__ << " " << base::HexEncode(value, len); uint8_t* p = value; uint8_t version; STREAM_TO_UINT8(version, p); if (version != 0x01) { LOG(WARNING) << "Unknown version: " << loghex(version); return; } // version 0x01 of read only properties: if (len < 17) { LOG(WARNING) << "Read only properties too short: " << loghex(len); return; } uint8_t capabilities; STREAM_TO_UINT8(capabilities, p); hearingDevice->capabilities = capabilities; bool side = capabilities & CAPABILITY_SIDE; bool standalone = capabilities & CAPABILITY_BINAURAL; VLOG(2) << __func__ << " capabilities: " << (side ? "right" : "left") << ", " << (standalone ? "binaural" : "monaural"); if (capabilities & CAPABILITY_RESERVED) { LOG(WARNING) << __func__ << " reserved capabilities are set"; } STREAM_TO_UINT64(hearingDevice->hi_sync_id, p); VLOG(2) << __func__ << " hiSyncId: " << loghex(hearingDevice->hi_sync_id); uint8_t feature_map; STREAM_TO_UINT8(feature_map, p); STREAM_TO_UINT16(hearingDevice->render_delay, p); VLOG(2) << __func__ << " render delay: " << loghex(hearingDevice->render_delay); STREAM_TO_UINT16(hearingDevice->preparation_delay, p); VLOG(2) << __func__ << " preparation delay: " << loghex(hearingDevice->preparation_delay); uint16_t codecs; STREAM_TO_UINT16(codecs, p); hearingDevice->codecs = codecs; VLOG(2) << __func__ << " supported codecs: " << loghex(codecs); if (codecs & (1 << CODEC_G722_16KHZ)) VLOG(2) << "\tG722@16kHz"; if (codecs & (1 << CODEC_G722_24KHZ)) VLOG(2) << "\tG722@24kHz"; if (!(codecs & (1 << CODEC_G722_16KHZ))) { LOG(WARNING) << __func__ << " Mandatory codec, G722@16kHz not supported"; } } uint16_t CalcCompressedAudioPacketSize(uint16_t codec_type, int connection_interval) { int sample_rate; const int sample_bit_rate = 16; /* 16 bits per sample */ const int compression_ratio = 4; /* G.722 has a 4:1 compression ratio */ if (codec_type == CODEC_G722_24KHZ) { sample_rate = 24000; } else { sample_rate = 16000; } // compressed_data_packet_size is the size in bytes of the compressed audio // data buffer that is generated for each connection interval. uint32_t compressed_data_packet_size = (sample_rate * connection_interval * (sample_bit_rate / 8) / compression_ratio) / 1000; return ((uint16_t)compressed_data_packet_size); } void ChooseCodec(const HearingDevice& hearingDevice) { if (codec_in_use) return; // use the best codec available for this pair of devices. uint16_t codecs = hearingDevice.codecs; if (hearingDevice.hi_sync_id != 0) { for (const auto& device : hearingDevices.devices) { if (device.hi_sync_id != hearingDevice.hi_sync_id) continue; codecs &= device.codecs; } } if ((codecs & (1 << CODEC_G722_24KHZ)) && controller_get_interface()->supports_ble_2m_phy() && default_data_interval_ms == HA_INTERVAL_10_MS) { codec_in_use = CODEC_G722_24KHZ; } else if (codecs & (1 << CODEC_G722_16KHZ)) { codec_in_use = CODEC_G722_16KHZ; } } void OnAudioStatus(uint16_t conn_id, tGATT_STATUS status, uint16_t handle, uint16_t len, uint8_t* value, void* data) { LOG(INFO) << __func__ << " " << base::HexEncode(value, len); } void OnPsmRead(uint16_t conn_id, tGATT_STATUS status, uint16_t handle, uint16_t len, uint8_t* value, void* data) { HearingDevice* hearingDevice = hearingDevices.FindByConnId(conn_id); if (!hearingDevice) { DVLOG(2) << "Skipping unknown read event, conn_id=" << loghex(conn_id); return; } if (status != GATT_SUCCESS) { LOG(ERROR) << "Error reading PSM for device" << hearingDevice->address; return; } if (len > 2) { LOG(ERROR) << "Bad PSM length"; return; } uint16_t psm = *((uint16_t*)value); VLOG(2) << "read psm:" << loghex(psm); ConnectSocket(hearingDevice, psm); } void ConnectSocket(HearingDevice* hearingDevice, uint16_t psm) { tL2CAP_CFG_INFO cfg_info = tL2CAP_CFG_INFO{.mtu = 512}; SendEnableServiceChangedInd(hearingDevice); uint8_t service_id = hearingDevice->isLeft() ? BTM_SEC_SERVICE_HEARING_AID_LEFT : BTM_SEC_SERVICE_HEARING_AID_RIGHT; uint16_t gap_handle = GAP_ConnOpen( "", service_id, false, &hearingDevice->address, psm, 514 /* MPS */, &cfg_info, nullptr, BTM_SEC_NONE /* TODO: request security ? */, L2CAP_FCR_LE_COC_MODE, HearingAidImpl::GapCallbackStatic, BT_TRANSPORT_LE); if (gap_handle == GAP_INVALID_HANDLE) { LOG(ERROR) << "UNABLE TO GET gap_handle"; return; } hearingDevice->gap_handle = gap_handle; LOG(INFO) << "Successfully sent GAP connect request"; } static void OnReadOnlyPropertiesReadStatic(uint16_t conn_id, tGATT_STATUS status, uint16_t handle, uint16_t len, uint8_t* value, void* data) { if (instance) instance->OnReadOnlyPropertiesRead(conn_id, status, handle, len, value, data); } static void OnAudioStatusStatic(uint16_t conn_id, tGATT_STATUS status, uint16_t handle, uint16_t len, uint8_t* value, void* data) { if (instance) instance->OnAudioStatus(conn_id, status, handle, len, value, data); } static void OnPsmReadStatic(uint16_t conn_id, tGATT_STATUS status, uint16_t handle, uint16_t len, uint8_t* value, void* data) { if (instance) instance->OnPsmRead(conn_id, status, handle, len, value, data); } /* CoC Socket is ready */ void OnGapConnection(const RawAddress& address) { HearingDevice* hearingDevice = hearingDevices.FindByAddress(address); if (!hearingDevice) { LOG(INFO) << "Device not connected to profile" << address; return; } if (hearingDevice->first_connection) { /* add device into BG connection to accept remote initiated connection */ BTA_GATTC_Open(gatt_if, address, false, GATT_TRANSPORT_LE, false); btif_storage_add_hearing_aid(*hearingDevice); hearingDevice->first_connection = false; } LOG(INFO) << __func__ << ": audio_status_handle=" << loghex(hearingDevice->audio_status_handle) << ", audio_status_ccc_handle=" << loghex(hearingDevice->audio_status_ccc_handle); /* Register and enable the Audio Status Notification */ tGATT_STATUS register_status; register_status = BTA_GATTC_RegisterForNotifications( gatt_if, address, hearingDevice->audio_status_handle); if (register_status != GATT_SUCCESS) { LOG(ERROR) << __func__ << ": BTA_GATTC_RegisterForNotifications failed, status=" << loghex(register_status); return; } std::vector value(2); uint8_t* ptr = value.data(); UINT16_TO_STREAM(ptr, GATT_CHAR_CLIENT_CONFIG_NOTIFICATION); BtaGattQueue::WriteDescriptor( hearingDevice->conn_id, hearingDevice->audio_status_ccc_handle, std::move(value), GATT_WRITE, write_rpt_ctl_cfg_cb, nullptr); ChooseCodec(*hearingDevice); SendStart(hearingDevice); if (audio_running) { // Inform the other side (if any) of this connection std::vector inform_conn_state( {CONTROL_POINT_OP_STATE_CHANGE, STATE_CHANGE_OTHER_SIDE_CONNECTED}); send_state_change_to_other_side(hearingDevice, inform_conn_state); } hearingDevice->accepting_audio = true; LOG(INFO) << __func__ << ": address=" << address << ", hi_sync_id=" << loghex(hearingDevice->hi_sync_id) << ", codec_in_use=" << loghex(codec_in_use) << ", audio_running=" << audio_running; StartSendingAudio(*hearingDevice); callbacks->OnDeviceAvailable(hearingDevice->capabilities, hearingDevice->hi_sync_id, address); callbacks->OnConnectionState(ConnectionState::CONNECTED, address); } void StartSendingAudio(const HearingDevice& hearingDevice) { VLOG(0) << __func__ << ": device=" << hearingDevice.address; if (encoder_state_left == nullptr) { encoder_state_init(); seq_counter = 0; // use the best codec avaliable for this pair of devices. uint16_t codecs = hearingDevice.codecs; if (hearingDevice.hi_sync_id != 0) { for (const auto& device : hearingDevices.devices) { if (device.hi_sync_id != hearingDevice.hi_sync_id) continue; codecs &= device.codecs; } } CodecConfiguration codec; if (codec_in_use == CODEC_G722_24KHZ) { codec.sample_rate = 24000; } else { codec.sample_rate = 16000; } codec.bit_rate = 16; codec.data_interval_ms = default_data_interval_ms; uint16_t delay_report_ms = 0; if (hearingDevice.render_delay != 0) { delay_report_ms = hearingDevice.render_delay + (ADD_RENDER_DELAY_INTERVALS * default_data_interval_ms); } HearingAidAudioSource::Start(codec, audioReceiver, delay_report_ms); } } void OnAudioSuspend(const std::function& stop_audio_ticks) { CHECK(stop_audio_ticks) << "stop_audio_ticks is empty"; if (!audio_running) { LOG(WARNING) << __func__ << ": Unexpected audio suspend"; } else { LOG(INFO) << __func__ << ": audio_running=" << audio_running; } audio_running = false; stop_audio_ticks(); std::vector stop({CONTROL_POINT_OP_STOP}); for (auto& device : hearingDevices.devices) { if (!device.accepting_audio) continue; if (!device.playback_started) { LOG(WARNING) << __func__ << ": Playback not started, skip send Stop cmd, device=" << device.address; } else { LOG(INFO) << __func__ << ": send Stop cmd, device=" << device.address; device.playback_started = false; device.command_acked = false; BtaGattQueue::WriteCharacteristic(device.conn_id, device.audio_control_point_handle, stop, GATT_WRITE, nullptr, nullptr); } } } void OnAudioResume(const std::function& start_audio_ticks) { CHECK(start_audio_ticks) << "start_audio_ticks is empty"; if (audio_running) { LOG(ERROR) << __func__ << ": Unexpected Audio Resume"; } else { LOG(INFO) << __func__ << ": audio_running=" << audio_running; } for (auto& device : hearingDevices.devices) { if (!device.accepting_audio) continue; audio_running = true; SendStart(&device); } if (!audio_running) { LOG(INFO) << __func__ << ": No device (0/" << GetDeviceCount() << ") ready to start"; return; } // TODO: shall we also reset the encoder ? encoder_state_release(); encoder_state_init(); seq_counter = 0; start_audio_ticks(); } uint8_t GetOtherSideStreamStatus(HearingDevice* this_side_device) { for (auto& device : hearingDevices.devices) { if ((device.address == this_side_device->address) || (device.hi_sync_id != this_side_device->hi_sync_id)) { continue; } if (audio_running && (device.conn_id != 0)) { return (OTHER_SIDE_IS_STREAMING); } else { return (OTHER_SIDE_NOT_STREAMING); } } return (OTHER_SIDE_NOT_STREAMING); } void SendEnableServiceChangedInd(HearingDevice* device) { VLOG(2) << __func__ << " Enable " << device->address << "service changed ind."; std::vector value(2); uint8_t* ptr = value.data(); UINT16_TO_STREAM(ptr, GATT_CHAR_CLIENT_CONFIG_INDICTION); BtaGattQueue::WriteDescriptor( device->conn_id, device->service_changed_ccc_handle, std::move(value), GATT_WRITE, nullptr, nullptr); } void SendStart(HearingDevice* device) { std::vector start({CONTROL_POINT_OP_START, codec_in_use, AUDIOTYPE_UNKNOWN, (uint8_t)current_volume, OTHER_SIDE_NOT_STREAMING}); if (!audio_running) { if (!device->playback_started) { LOG(INFO) << __func__ << ": Skip Send Start since audio is not running, device=" << device->address; } else { LOG(ERROR) << __func__ << ": Audio not running but Playback has started, device=" << device->address; } return; } if (current_volume == VOLUME_UNKNOWN) start[3] = (uint8_t)VOLUME_MIN; if (device->playback_started) { LOG(ERROR) << __func__ << ": Playback already started, skip send Start cmd, device=" << device->address; } else { start[4] = GetOtherSideStreamStatus(device); LOG(INFO) << __func__ << ": send Start cmd, volume=" << loghex(start[3]) << ", audio type=" << loghex(start[2]) << ", device=" << device->address << ", other side streaming=" << loghex(start[4]); device->playback_started = true; device->command_acked = false; BtaGattQueue::WriteCharacteristic(device->conn_id, device->audio_control_point_handle, start, GATT_WRITE, nullptr, nullptr); } } void OnAudioDataReady(const std::vector& data) { /* For now we assume data comes in as 16bit per sample 16kHz PCM stereo */ DVLOG(2) << __func__; int num_samples = data.size() / (2 /*bytes_per_sample*/ * 2 /*number of channels*/); // The G.722 codec accept only even number of samples for encoding if (num_samples % 2 != 0) LOG(FATAL) << "num_samples is not even: " << num_samples; // TODO: we should cache left/right and current state, instad of recomputing // it for each packet, 100 times a second. HearingDevice* left = nullptr; HearingDevice* right = nullptr; for (auto& device : hearingDevices.devices) { if (!device.accepting_audio) continue; if (device.isLeft()) left = &device; else right = &device; } if (left == nullptr && right == nullptr) { LOG(WARNING) << __func__ << ": No more (0/" << GetDeviceCount() << ") devices ready"; DoDisconnectAudioStop(); return; } std::vector chan_left; std::vector chan_right; if (left == nullptr || right == nullptr) { for (int i = 0; i < num_samples; i++) { const uint8_t* sample = data.data() + i * 4; int16_t left = (int16_t)((*(sample + 1) << 8) + *sample) >> 1; sample += 2; int16_t right = (int16_t)((*(sample + 1) << 8) + *sample) >> 1; uint16_t mono_data = (int16_t)(((uint32_t)left + (uint32_t)right) >> 1); chan_left.push_back(mono_data); chan_right.push_back(mono_data); } } else { for (int i = 0; i < num_samples; i++) { const uint8_t* sample = data.data() + i * 4; uint16_t left = (int16_t)((*(sample + 1) << 8) + *sample) >> 1; chan_left.push_back(left); sample += 2; uint16_t right = (int16_t)((*(sample + 1) << 8) + *sample) >> 1; chan_right.push_back(right); } } // TODO: monural, binarual check // divide encoded data into packets, add header, send. // TODO: make those buffers static and global to prevent constant // reallocations // TODO: this should basically fit the encoded data, tune the size later std::vector encoded_data_left; if (left) { // TODO: instead of a magic number, we need to figure out the correct // buffer size encoded_data_left.resize(4000); int encoded_size = g722_encode(encoder_state_left, encoded_data_left.data(), (const int16_t*)chan_left.data(), chan_left.size()); encoded_data_left.resize(encoded_size); uint16_t cid = GAP_ConnGetL2CAPCid(left->gap_handle); uint16_t packets_to_flush = L2CA_FlushChannel(cid, L2CAP_FLUSH_CHANS_GET); if (packets_to_flush) { VLOG(2) << left->address << " skipping " << packets_to_flush << " packets"; left->audio_stats.packet_flush_count += packets_to_flush; left->audio_stats.frame_flush_count++; hearingDevices.StartRssiLog(); } // flush all packets stuck in queue L2CA_FlushChannel(cid, 0xffff); check_and_do_rssi_read(left); } std::vector encoded_data_right; if (right) { // TODO: instead of a magic number, we need to figure out the correct // buffer size encoded_data_right.resize(4000); int encoded_size = g722_encode(encoder_state_right, encoded_data_right.data(), (const int16_t*)chan_right.data(), chan_right.size()); encoded_data_right.resize(encoded_size); uint16_t cid = GAP_ConnGetL2CAPCid(right->gap_handle); uint16_t packets_to_flush = L2CA_FlushChannel(cid, L2CAP_FLUSH_CHANS_GET); if (packets_to_flush) { VLOG(2) << right->address << " skipping " << packets_to_flush << " packets"; right->audio_stats.packet_flush_count += packets_to_flush; right->audio_stats.frame_flush_count++; hearingDevices.StartRssiLog(); } // flush all packets stuck in queue L2CA_FlushChannel(cid, 0xffff); check_and_do_rssi_read(right); } size_t encoded_data_size = std::max(encoded_data_left.size(), encoded_data_right.size()); uint16_t packet_size = CalcCompressedAudioPacketSize(codec_in_use, default_data_interval_ms); for (size_t i = 0; i < encoded_data_size; i += packet_size) { if (left) { left->audio_stats.packet_send_count++; SendAudio(encoded_data_left.data() + i, packet_size, left); } if (right) { right->audio_stats.packet_send_count++; SendAudio(encoded_data_right.data() + i, packet_size, right); } seq_counter++; } if (left) left->audio_stats.frame_send_count++; if (right) right->audio_stats.frame_send_count++; } void SendAudio(uint8_t* encoded_data, uint16_t packet_size, HearingDevice* hearingAid) { if (!hearingAid->playback_started || !hearingAid->command_acked) { VLOG(2) << __func__ << ": Playback stalled, device=" << hearingAid->address << ", cmd send=" << hearingAid->playback_started << ", cmd acked=" << hearingAid->command_acked; return; } BT_HDR* audio_packet = malloc_l2cap_buf(packet_size + 1); uint8_t* p = get_l2cap_sdu_start_ptr(audio_packet); *p = seq_counter; p++; memcpy(p, encoded_data, packet_size); DVLOG(2) << hearingAid->address << " : " << base::HexEncode(p, packet_size); uint16_t result = GAP_ConnWriteData(hearingAid->gap_handle, audio_packet); if (result != BT_PASS) { LOG(ERROR) << " Error sending data: " << loghex(result); } } void GapCallback(uint16_t gap_handle, uint16_t event, tGAP_CB_DATA* data) { HearingDevice* hearingDevice = hearingDevices.FindByGapHandle(gap_handle); if (!hearingDevice) { LOG(INFO) << "Skipping unknown device, gap_handle=" << gap_handle; return; } switch (event) { case GAP_EVT_CONN_OPENED: { RawAddress address = *GAP_ConnGetRemoteAddr(gap_handle); uint16_t tx_mtu = GAP_ConnGetRemMtuSize(gap_handle); LOG(INFO) << "GAP_EVT_CONN_OPENED " << address << ", tx_mtu=" << tx_mtu; OnGapConnection(address); break; } // TODO: handle properly! case GAP_EVT_CONN_CLOSED: LOG(INFO) << __func__ << ": GAP_EVT_CONN_CLOSED: " << hearingDevice->address << ", playback_started=" << hearingDevice->playback_started; hearingDevice->accepting_audio = false; hearingDevice->gap_handle = 0; hearingDevice->playback_started = false; hearingDevice->command_acked = false; break; case GAP_EVT_CONN_DATA_AVAIL: { DVLOG(2) << "GAP_EVT_CONN_DATA_AVAIL"; // only data we receive back from hearing aids are some stats, not // really important, but useful now for debugging. uint32_t bytes_to_read = 0; GAP_GetRxQueueCnt(gap_handle, &bytes_to_read); std::vector buffer(bytes_to_read); uint16_t bytes_read = 0; // TODO:GAP_ConnReadData should accpet uint32_t for length! GAP_ConnReadData(gap_handle, buffer.data(), buffer.size(), &bytes_read); if (bytes_read < 4) { LOG(WARNING) << " Wrong data length"; return; } uint8_t* p = buffer.data(); DVLOG(1) << "stats from the hearing aid:"; for (size_t i = 0; i + 4 <= buffer.size(); i += 4) { uint16_t event_counter, frame_index; STREAM_TO_UINT16(event_counter, p); STREAM_TO_UINT16(frame_index, p); DVLOG(1) << "event_counter=" << event_counter << " frame_index: " << frame_index; } break; } case GAP_EVT_TX_EMPTY: DVLOG(2) << "GAP_EVT_TX_EMPTY"; break; case GAP_EVT_CONN_CONGESTED: DVLOG(2) << "GAP_EVT_CONN_CONGESTED"; // TODO: make it into function HearingAidAudioSource::Stop(); // TODO: kill the encoder only if all hearing aids are down. // g722_encode_release(encoder_state); // encoder_state_left = nulllptr; // encoder_state_right = nulllptr; break; case GAP_EVT_CONN_UNCONGESTED: DVLOG(2) << "GAP_EVT_CONN_UNCONGESTED"; break; case GAP_EVT_LE_COC_CREDITS: { auto& tmp = data->coc_credits; DVLOG(2) << "GAP_EVT_LE_COC_CREDITS, for device: " << hearingDevice->address << " added" << tmp.credits_received << " credit_count: " << tmp.credit_count; break; } } } static void GapCallbackStatic(uint16_t gap_handle, uint16_t event, tGAP_CB_DATA* data) { if (instance) instance->GapCallback(gap_handle, event, data); } void DumpRssi(int fd, const HearingDevice& device) { const struct AudioStats* stats = &device.audio_stats; if (stats->rssi_history.size() <= 0) { dprintf(fd, " No RSSI history for %s:\n", device.address.ToString().c_str()); return; } dprintf(fd, " RSSI history for %s:\n", device.address.ToString().c_str()); dprintf(fd, " Time of RSSI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9\n"); for (auto& rssi_logs : stats->rssi_history) { if (rssi_logs.rssi.size() <= 0) { break; } char eventtime[20]; char temptime[20]; struct tm* tstamp = localtime(&rssi_logs.timestamp.tv_sec); if (!strftime(temptime, sizeof(temptime), "%H:%M:%S", tstamp)) { LOG(ERROR) << __func__ << ": strftime fails. tm_sec=" << tstamp->tm_sec << ", tm_min=" << tstamp->tm_min << ", tm_hour=" << tstamp->tm_hour; strlcpy(temptime, "UNKNOWN TIME", sizeof(temptime)); } snprintf(eventtime, sizeof(eventtime), "%s.%03ld", temptime, rssi_logs.timestamp.tv_nsec / 1000000); dprintf(fd, " %s: ", eventtime); for (auto rssi_value : rssi_logs.rssi) { dprintf(fd, " %04d", rssi_value); } dprintf(fd, "\n"); } } void Dump(int fd) { std::stringstream stream; for (const auto& device : hearingDevices.devices) { bool side = device.capabilities & CAPABILITY_SIDE; bool standalone = device.capabilities & CAPABILITY_BINAURAL; stream << " " << device.address.ToString() << " " << (device.accepting_audio ? "" : "not ") << "connected" << "\n " << (standalone ? "binaural" : "monaural") << " " << (side ? "right" : "left") << " " << loghex(device.hi_sync_id) << std::endl; stream << " Packet counts (enqueued/flushed) : " << device.audio_stats.packet_send_count << " / " << device.audio_stats.packet_flush_count << "\n Frame counts (enqueued/flushed) : " << device.audio_stats.frame_send_count << " / " << device.audio_stats.frame_flush_count << std::endl; DumpRssi(fd, device); } dprintf(fd, "%s", stream.str().c_str()); } void Disconnect(const RawAddress& address) override { DVLOG(2) << __func__; HearingDevice* hearingDevice = hearingDevices.FindByAddress(address); if (!hearingDevice) { LOG(INFO) << "Device not connected to profile" << address; return; } VLOG(2) << __func__ << ": " << address; bool connected = hearingDevice->accepting_audio; LOG(INFO) << "GAP_EVT_CONN_CLOSED: " << hearingDevice->address << ", playback_started=" << hearingDevice->playback_started << ", accepting_audio=" << hearingDevice->accepting_audio; if (hearingDevice->connecting_actively) { // cancel pending direct connect BTA_GATTC_CancelOpen(gatt_if, address, true); } // Removes all registrations for connection. BTA_GATTC_CancelOpen(0, address, false); // Inform the other side (if any) of this disconnection std::vector inform_disconn_state( {CONTROL_POINT_OP_STATE_CHANGE, STATE_CHANGE_OTHER_SIDE_DISCONNECTED}); send_state_change_to_other_side(hearingDevice, inform_disconn_state); DoDisconnectCleanUp(hearingDevice); hearingDevices.Remove(address); if (!connected) { return; } callbacks->OnConnectionState(ConnectionState::DISCONNECTED, address); for (const auto& device : hearingDevices.devices) { if (device.accepting_audio) return; } LOG(INFO) << __func__ << ": No more (0/" << GetDeviceCount() << ") devices ready"; DoDisconnectAudioStop(); } void OnGattDisconnected(tGATT_STATUS status, uint16_t conn_id, tGATT_IF client_if, RawAddress remote_bda, tBTA_GATT_REASON reason) { HearingDevice* hearingDevice = hearingDevices.FindByConnId(conn_id); if (!hearingDevice) { VLOG(2) << "Skipping unknown device disconnect, conn_id=" << loghex(conn_id); return; } VLOG(2) << __func__ << ": conn_id=" << loghex(conn_id) << ", reason=" << loghex(reason) << ", remote_bda=" << remote_bda; // Inform the other side (if any) of this disconnection std::vector inform_disconn_state( {CONTROL_POINT_OP_STATE_CHANGE, STATE_CHANGE_OTHER_SIDE_DISCONNECTED}); send_state_change_to_other_side(hearingDevice, inform_disconn_state); DoDisconnectCleanUp(hearingDevice); // Keep this hearing aid in the list, and allow to reconnect back. callbacks->OnConnectionState(ConnectionState::DISCONNECTED, remote_bda); for (const auto& device : hearingDevices.devices) { if (device.accepting_audio) return; } LOG(INFO) << __func__ << ": No more (0/" << GetDeviceCount() << ") devices ready"; DoDisconnectAudioStop(); } void DoDisconnectCleanUp(HearingDevice* hearingDevice) { if (hearingDevice->connection_update_status != COMPLETED) { LOG(INFO) << __func__ << ": connection update not completed. Current=" << hearingDevice->connection_update_status << ", device=" << hearingDevice->address; if (hearingDevice->connection_update_status == STARTED) { OnConnectionUpdateComplete(hearingDevice->conn_id, NULL); } } hearingDevice->connection_update_status = NONE; if (hearingDevice->conn_id) { BtaGattQueue::Clean(hearingDevice->conn_id); BTA_GATTC_Close(hearingDevice->conn_id); hearingDevice->conn_id = 0; } if (hearingDevice->gap_handle) { GAP_ConnClose(hearingDevice->gap_handle); hearingDevice->gap_handle = 0; } hearingDevice->accepting_audio = false; LOG(INFO) << __func__ << ": device=" << hearingDevice->address << ", playback_started=" << hearingDevice->playback_started; hearingDevice->playback_started = false; hearingDevice->command_acked = false; } void DoDisconnectAudioStop() { HearingAidAudioSource::Stop(); audio_running = false; encoder_state_release(); current_volume = VOLUME_UNKNOWN; } void SetVolume(int8_t volume) override { VLOG(2) << __func__ << ": " << +volume; current_volume = volume; for (HearingDevice& device : hearingDevices.devices) { if (!device.accepting_audio) continue; std::vector volume_value({static_cast(volume)}); BtaGattQueue::WriteCharacteristic(device.conn_id, device.volume_handle, volume_value, GATT_WRITE_NO_RSP, nullptr, nullptr); } } void CleanUp() { BTA_GATTC_AppDeregister(gatt_if); for (HearingDevice& device : hearingDevices.devices) { DoDisconnectCleanUp(&device); } hearingDevices.devices.clear(); encoder_state_release(); } private: uint8_t gatt_if; uint8_t seq_counter; /* current volume gain for the hearing aids*/ int8_t current_volume; bluetooth::hearing_aid::HearingAidCallbacks* callbacks; /* currently used codec */ uint8_t codec_in_use; uint16_t default_data_interval_ms; HearingDevices hearingDevices; void find_server_changed_ccc_handle(uint16_t conn_id, const gatt::Service* service) { HearingDevice* hearingDevice = hearingDevices.FindByConnId(conn_id); if (!hearingDevice) { DVLOG(2) << "Skipping unknown device, conn_id=" << loghex(conn_id); return; } for (const gatt::Characteristic& charac : service->characteristics) { if (charac.uuid == Uuid::From16Bit(GATT_UUID_GATT_SRV_CHGD)) { hearingDevice->service_changed_ccc_handle = find_ccc_handle(conn_id, charac.value_handle); if (!hearingDevice->service_changed_ccc_handle) { LOG(ERROR) << __func__ << ": cannot find service changed CCC descriptor"; continue; } LOG(INFO) << __func__ << " service_changed_ccc=" << loghex(hearingDevice->service_changed_ccc_handle); break; } } } // Find the handle for the client characteristics configuration of a given // characteristics uint16_t find_ccc_handle(uint16_t conn_id, uint16_t char_handle) { const gatt::Characteristic* p_char = BTA_GATTC_GetCharacteristic(conn_id, char_handle); if (!p_char) { LOG(WARNING) << __func__ << ": No such characteristic: " << char_handle; return 0; } for (const gatt::Descriptor& desc : p_char->descriptors) { if (desc.uuid == Uuid::From16Bit(GATT_UUID_CHAR_CLIENT_CONFIG)) return desc.handle; } return 0; } void send_state_change(HearingDevice* device, std::vector payload) { if (device->conn_id != 0) { if (device->service_changed_rcvd) { LOG(INFO) << __func__ << ": service discover is in progress, skip send State Change cmd."; return; } // Send the data packet LOG(INFO) << __func__ << ": Send State Change. device=" << device->address << ", status=" << loghex(payload[1]); BtaGattQueue::WriteCharacteristic( device->conn_id, device->audio_control_point_handle, payload, GATT_WRITE_NO_RSP, nullptr, nullptr); } } void send_state_change_to_other_side(HearingDevice* this_side_device, std::vector payload) { for (auto& device : hearingDevices.devices) { if ((device.address == this_side_device->address) || (device.hi_sync_id != this_side_device->hi_sync_id)) { continue; } send_state_change(&device, payload); } } void check_and_do_rssi_read(HearingDevice* device) { if (device->read_rssi_count > 0) { device->num_intervals_since_last_rssi_read++; if (device->num_intervals_since_last_rssi_read >= PERIOD_TO_READ_RSSI_IN_INTERVALS) { device->num_intervals_since_last_rssi_read = 0; VLOG(1) << __func__ << ": device=" << device->address; BTM_ReadRSSI(device->address, read_rssi_cb); } } } }; void read_rssi_cb(void* p_void) { tBTM_RSSI_RESULT* p_result = (tBTM_RSSI_RESULT*)p_void; if (!p_result) return; if ((instance) && (p_result->status == BTM_SUCCESS)) { instance->OnReadRssiComplete(p_result->rem_bda, p_result->rssi); } } void hearingaid_gattc_callback(tBTA_GATTC_EVT event, tBTA_GATTC* p_data) { VLOG(2) << __func__ << " event = " << +event; if (p_data == nullptr) return; switch (event) { case BTA_GATTC_DEREG_EVT: break; case BTA_GATTC_OPEN_EVT: { if (!instance) return; tBTA_GATTC_OPEN& o = p_data->open; instance->OnGattConnected(o.status, o.conn_id, o.client_if, o.remote_bda, o.transport, o.mtu); break; } case BTA_GATTC_CLOSE_EVT: { if (!instance) return; tBTA_GATTC_CLOSE& c = p_data->close; instance->OnGattDisconnected(c.status, c.conn_id, c.client_if, c.remote_bda, c.reason); } break; case BTA_GATTC_SEARCH_CMPL_EVT: if (!instance) return; instance->OnServiceSearchComplete(p_data->search_cmpl.conn_id, p_data->search_cmpl.status); break; case BTA_GATTC_NOTIF_EVT: if (!instance) return; if (!p_data->notify.is_notify || p_data->notify.len > GATT_MAX_ATTR_LEN) { LOG(ERROR) << __func__ << ": rejected BTA_GATTC_NOTIF_EVT. is_notify=" << p_data->notify.is_notify << ", len=" << p_data->notify.len; break; } instance->OnNotificationEvent(p_data->notify.conn_id, p_data->notify.handle, p_data->notify.len, p_data->notify.value); break; case BTA_GATTC_ENC_CMPL_CB_EVT: if (!instance) return; instance->OnEncryptionComplete(p_data->enc_cmpl.remote_bda, true); break; case BTA_GATTC_CONN_UPDATE_EVT: if (!instance) return; instance->OnConnectionUpdateComplete(p_data->conn_update.conn_id, p_data); break; case BTA_GATTC_SRVC_CHG_EVT: if (!instance) return; instance->OnServiceChangeEvent(p_data->remote_bda); break; case BTA_GATTC_SRVC_DISC_DONE_EVT: if (!instance) return; instance->OnServiceDiscDoneEvent(p_data->remote_bda); break; default: break; } } void encryption_callback(const RawAddress* address, tGATT_TRANSPORT, void*, tBTM_STATUS status) { if (instance) { instance->OnEncryptionComplete(*address, status == BTM_SUCCESS ? true : false); } } class HearingAidAudioReceiverImpl : public HearingAidAudioReceiver { public: void OnAudioDataReady(const std::vector& data) override { if (instance) instance->OnAudioDataReady(data); } void OnAudioSuspend(const std::function& stop_audio_ticks) override { if (instance) instance->OnAudioSuspend(stop_audio_ticks); } void OnAudioResume(const std::function& start_audio_ticks) override { if (instance) instance->OnAudioResume(start_audio_ticks); } }; HearingAidAudioReceiverImpl audioReceiverImpl; } // namespace void HearingAid::Initialize( bluetooth::hearing_aid::HearingAidCallbacks* callbacks, Closure initCb) { if (instance) { LOG(ERROR) << "Already initialized!"; } audioReceiver = &audioReceiverImpl; instance = new HearingAidImpl(callbacks, initCb); HearingAidAudioSource::Initialize(); } bool HearingAid::IsHearingAidRunning() { return instance; } HearingAid* HearingAid::Get() { CHECK(instance); return instance; }; void HearingAid::AddFromStorage(const HearingDevice& dev_info, uint16_t is_white_listed) { if (!instance) { LOG(ERROR) << "Not initialized yet"; } instance->AddFromStorage(dev_info, is_white_listed); }; int HearingAid::GetDeviceCount() { if (!instance) { LOG(INFO) << __func__ << ": Not initialized yet"; return 0; } return (instance->GetDeviceCount()); } void HearingAid::CleanUp() { // Must stop audio source to make sure it doesn't call any of callbacks on our // soon to be null instance HearingAidAudioSource::Stop(); HearingAidImpl* ptr = instance; instance = nullptr; HearingAidAudioSource::CleanUp(); ptr->CleanUp(); delete ptr; }; void HearingAid::DebugDump(int fd) { dprintf(fd, "Hearing Aid Manager:\n"); if (instance) instance->Dump(fd); HearingAidAudioSource::DebugDump(fd); dprintf(fd, "\n"); }