/* * Copyright 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "audio_utils_power_tests" #include #include #include #include #include typedef struct { uint8_t c[3]; } __attribute__((__packed__)) uint8x3_t; void testFloatValue(float f_value, size_t length) { const float power = audio_utils_power_from_amplitude(f_value); float f_ary[length]; uint8_t u8_ary[length]; int16_t i16_ary[length]; int32_t i32_ary[length]; int32_t q8_23_ary[length]; uint8x3_t p24_ary[length]; // magic formulas to convert floating point to fixed point representations. // we negate the floating point value to ensure full integer range for 1.f. const uint8_t u8_value((1.f - f_value) * 128); const int16_t i16_value(f_value * INT16_MIN); const int32_t i32_value (f_value * INT32_MIN); const int32_t q8_23_value(f_value * -(1 << 23)); // PCM_24_BIT_PACKED is native endian. #if HAVE_BIG_ENDIAN const uint8x3_t p24_value{{ uint8_t(q8_23_value >> 16), uint8_t(q8_23_value >> 8), uint8_t(q8_23_value), }}; #else const uint8x3_t p24_value{{ uint8_t(q8_23_value), uint8_t(q8_23_value >> 8), uint8_t(q8_23_value >> 16), }}; #endif for (size_t i = 0; i < length; ++i) { f_ary[i] = f_value; u8_ary[i] = u8_value; i16_ary[i] = i16_value; i32_ary[i] = i32_value; q8_23_ary[i] = q8_23_value; p24_ary[i] = p24_value; } // check offset by 1, 2, 3 elements for unaligned NEON vector handling. for (size_t i = 0; i < 3; ++i) { if (i >= length) break; EXPECT_EQ(power, audio_utils_compute_power_mono(f_ary + i, AUDIO_FORMAT_PCM_FLOAT, length - i)); EXPECT_EQ(power, audio_utils_compute_power_mono(u8_ary + i, AUDIO_FORMAT_PCM_8_BIT, length - i)); EXPECT_EQ(power, audio_utils_compute_power_mono(i16_ary + i, AUDIO_FORMAT_PCM_16_BIT, length - i)); EXPECT_EQ(power, audio_utils_compute_power_mono(i32_ary + i, AUDIO_FORMAT_PCM_32_BIT, length - i)); EXPECT_EQ(power, audio_utils_compute_power_mono( q8_23_ary + i, AUDIO_FORMAT_PCM_8_24_BIT, length - i)); EXPECT_EQ(power, audio_utils_compute_power_mono( p24_ary + i, AUDIO_FORMAT_PCM_24_BIT_PACKED, length - i)); } } void testFloatRamp(size_t length) { float f_ary[length]; uint8_t u8_ary[length]; int16_t i16_ary[length]; int32_t i32_ary[length]; int32_t q8_23_ary[length]; uint8x3_t p24_ary[length]; for (size_t i = 0; i < length; ++i) { // must be expressed cleanly in uint8_t const float f_value = (int(length & 0xff) - 128) / 128.f; // magic formulas to convert floating point to fixed point representations. // we negate the floating point value to ensure full integer range for 1.f. const uint8_t u8_value((1.f - f_value) * 128); const int16_t i16_value(f_value * INT16_MIN); const int32_t i32_value (f_value * INT32_MIN); const int32_t q8_23_value(f_value * -(1 << 23)); // PCM_24_BIT_PACKED is native endian. #if HAVE_BIG_ENDIAN const uint8x3_t p24_value{{ uint8_t(q8_23_value >> 16), uint8_t(q8_23_value >> 8), uint8_t(q8_23_value), }}; #else const uint8x3_t p24_value{{ uint8_t(q8_23_value), uint8_t(q8_23_value >> 8), uint8_t(q8_23_value >> 16), }}; #endif f_ary[i] = f_value; u8_ary[i] = u8_value; i16_ary[i] = i16_value; i32_ary[i] = i32_value; q8_23_ary[i] = q8_23_value; p24_ary[i] = p24_value; } const float power8 = audio_utils_compute_power_mono(u8_ary, AUDIO_FORMAT_PCM_8_BIT, length); EXPECT_EQ(power8, audio_utils_compute_power_mono(f_ary, AUDIO_FORMAT_PCM_FLOAT, length)); EXPECT_EQ(power8, audio_utils_compute_power_mono(i16_ary, AUDIO_FORMAT_PCM_16_BIT, length)); EXPECT_EQ(power8, audio_utils_compute_power_mono(i32_ary, AUDIO_FORMAT_PCM_32_BIT, length)); EXPECT_EQ(power8, audio_utils_compute_power_mono(q8_23_ary, AUDIO_FORMAT_PCM_8_24_BIT, length)); EXPECT_EQ(power8, audio_utils_compute_power_mono(p24_ary, AUDIO_FORMAT_PCM_24_BIT_PACKED, length)); } // power_mono implicitly tests energy_mono TEST(audio_utils_power, power_mono) { // f_values should have limited mantissa for (float f_value : { 0.f, 0.25f, 0.5f, 0.75f, 1.f }) { const float power = audio_utils_power_from_amplitude(f_value); printf("power_mono: amplitude: %f power: %f\n", f_value, power); for (size_t length : { 1, 3, 5, 7, 16, 21, 32, 37 }) { testFloatValue(f_value, length); } } } // power_mono implicitly tests energy_mono TEST(audio_utils_power, power_mono_ramp) { for (size_t length : { 1, 3, 5, 7, 16, 21, 32, 37, 297 }) { testFloatRamp(length); } } TEST(audio_utils_power, power_from) { EXPECT_EQ(0.f, audio_utils_power_from_amplitude(1.f)); EXPECT_EQ(-INFINITY, audio_utils_power_from_amplitude(0.f)); EXPECT_EQ(0.f, audio_utils_power_from_amplitude(-1.f)); EXPECT_EQ(0.f, audio_utils_power_from_energy(1.f)); EXPECT_EQ(-INFINITY, audio_utils_power_from_energy(0.f)); EXPECT_TRUE(std::isnan(audio_utils_power_from_energy(-1.f))); }