/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include static void BM_MemcpyToFloatFromFloatWithClamping(benchmark::State& state) { const size_t count = state.range(0); const float srcMax = state.range(1); const float absMax = 1.413; std::vector src(count); std::vector dst(count); std::vector expected(count); // Initialize src buffer with deterministic pseudo-random values std::minstd_rand gen(count); std::uniform_real_distribution<> dis(-srcMax, srcMax); for (size_t i = 0; i < count; i++) { src[i] = dis(gen); expected[i] = fmin(absMax, fmax(-absMax, src[i])); } // Run the test while (state.KeepRunning()) { benchmark::DoNotOptimize(src.data()); benchmark::DoNotOptimize(dst.data()); memcpy_to_float_from_float_with_clamping(dst.data(), src.data(), count, 1.413); benchmark::ClobberMemory(); } if (expected != dst) { state.SkipWithError("Incorrect clamping!"); } state.SetComplexityN(state.range(0)); } BENCHMARK(BM_MemcpyToFloatFromFloatWithClamping)->RangeMultiplier(2)->Ranges({{10, 8<<12}, {1, 2}}); static void BM_MemcpyFloat(benchmark::State& state) { const size_t count = state.range(0); std::vector src(count); std::vector dst(count); // Initialize src buffer with deterministic pseudo-random values std::minstd_rand gen(count); std::uniform_real_distribution<> dis; for (size_t i = 0; i < count; i++) { src[i] = dis(gen); } // Run the test while (state.KeepRunning()) { benchmark::DoNotOptimize(src.data()); benchmark::DoNotOptimize(dst.data()); memcpy(dst.data(), src.data(), count * sizeof(float)); benchmark::ClobberMemory(); } if (src != dst) { state.SkipWithError("Incorrect memcpy!"); } state.SetComplexityN(state.range(0)); } BENCHMARK(BM_MemcpyFloat)->RangeMultiplier(2)->Ranges({{10, 8<<12}}); static void BM_MemcpyToFloatFromI16(benchmark::State& state) { const size_t count = state.range(0); std::vector src(count); std::vector dst(count); // Initialize src buffer with deterministic pseudo-random values std::minstd_rand gen(count); std::uniform_int_distribution<> dis(INT16_MIN, INT16_MAX); for (size_t i = 0; i < count; i++) { src[i] = dis(gen); } // Run the test while (state.KeepRunning()) { benchmark::DoNotOptimize(src.data()); benchmark::DoNotOptimize(dst.data()); memcpy_to_float_from_i16(dst.data(), src.data(), count); benchmark::ClobberMemory(); } state.SetComplexityN(state.range(0)); } BENCHMARK(BM_MemcpyToFloatFromI16)->RangeMultiplier(2)->Ranges({{10, 8<<12}}); static void BM_MemcpyToI16FromFloat(benchmark::State& state) { const size_t count = state.range(0); std::vector src(count); std::vector dst(count); // Initialize src buffer with deterministic pseudo-random values std::minstd_rand gen(count); std::uniform_real_distribution<> dis; for (size_t i = 0; i < count; i++) { src[i] = dis(gen); } // Run the test while (state.KeepRunning()) { benchmark::DoNotOptimize(src.data()); benchmark::DoNotOptimize(dst.data()); memcpy_to_i16_from_float(dst.data(), src.data(), count); benchmark::ClobberMemory(); } state.SetComplexityN(state.range(0)); } BENCHMARK(BM_MemcpyToI16FromFloat)->RangeMultiplier(2)->Ranges({{10, 8<<12}}); BENCHMARK_MAIN();