/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Contains the implementation of the operations. #define LOG_TAG "Operations" #include "CpuOperationUtils.h" #include "Operations.h" #include "tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "Tracing.h" namespace android { namespace nn { bool copyData(const void* inputData, const Shape& inputShape, void* outputData, const Shape& outputShape) { NNTRACE_COMP("copyData"); size_t count = nonExtensionOperandSizeOfData(inputShape.type, inputShape.dimensions); memcpy(outputData, inputData, count); return true; } template bool depthToSpaceGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, T* outputData, const Shape& outputShape) { NNTRACE_COMP("optimized_ops::DepthToSpace"); tflite::optimized_ops::DepthToSpace(inputData, convertShapeToDims(inputShape), blockSize, outputData, convertShapeToDims(outputShape)); return true; } template bool depthToSpaceGeneric(const float* inputData, const Shape& inputShape, int32_t blockSize, float* outputData, const Shape& outputShape); template bool depthToSpaceGeneric<_Float16>(const _Float16* inputData, const Shape& inputShape, int32_t blockSize, _Float16* outputData, const Shape& outputShape); template bool depthToSpaceGeneric(const uint8_t* inputData, const Shape& inputShape, int32_t blockSize, uint8_t* outputData, const Shape& outputShape); template bool spaceToDepthGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, T* outputData, const Shape& outputShape) { NNTRACE_COMP("optimized_ops::SpaceToDepth"); tflite::optimized_ops::SpaceToDepth(inputData, convertShapeToDims(inputShape), blockSize, outputData, convertShapeToDims(outputShape)); return true; } template bool spaceToDepthGeneric(const float* inputData, const Shape& inputShape, int32_t blockSize, float* outputData, const Shape& outputShape); template bool spaceToDepthGeneric<_Float16>(const _Float16* inputData, const Shape& inputShape, int32_t blockSize, _Float16* outputData, const Shape& outputShape); template bool spaceToDepthGeneric(const uint8_t* inputData, const Shape& inputShape, int32_t blockSize, uint8_t* outputData, const Shape& outputShape); template bool padGeneric(const T* inputData, const Shape& inputShape, const int32_t* paddings, T padValue, T* outputData, const Shape& outputShape) { NNTRACE_TRANS("padGeneric"); // Based on // http://google3/third_party/tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h?l=6194&rcl=213557260 // TFLite runtime calls are currently fixed at 4 dimensions. Copy inputs so // we can pad them to 4 dims (yes, we are "padding the padding"). int32_t numInputDims = static_cast(getNumberOfDimensions(inputShape)); NN_OPS_CHECK(numInputDims <= 4); std::vector leftPaddings(4 - numInputDims, 0); std::vector rightPaddings(4 - numInputDims, 0); for (int32_t i = 0; i < numInputDims; ++i) { leftPaddings.push_back(paddings[i * 2]); rightPaddings.push_back(paddings[i * 2 + 1]); } const int leftBPadding = leftPaddings[0]; const int leftHPadding = leftPaddings[1]; const int leftWPadding = leftPaddings[2]; const int leftDPadding = leftPaddings[3]; const int rightBPadding = rightPaddings[0]; const int rightHPadding = rightPaddings[1]; const int rightWPadding = rightPaddings[2]; const int rightDPadding = rightPaddings[3]; const auto extInputShape = tflite::RuntimeShape::ExtendedShape(4, convertShapeToTflshape(inputShape)); const auto extOutputShape = tflite::RuntimeShape::ExtendedShape(4, convertShapeToTflshape(outputShape)); const int outputBatch = extOutputShape.Dims(0); const int outputHeight = extOutputShape.Dims(1); const int outputWidth = extOutputShape.Dims(2); const int outputDepth = extOutputShape.Dims(3); const int inputDepth = extInputShape.Dims(3); NNTRACE_COMP_SWITCH("padGeneric"); if (leftBPadding != 0) { tflite::optimized_ops::TypedMemset( outputData, padValue, leftBPadding * outputHeight * outputWidth * outputDepth); } for (int outB = leftBPadding; outB < outputBatch - rightBPadding; ++outB) { if (leftHPadding != 0) { tflite::optimized_ops::TypedMemset( outputData + tflite::Offset(extOutputShape, outB, 0, 0, 0), padValue, leftHPadding * outputWidth * outputDepth); } for (int outH = leftHPadding; outH < outputHeight - rightHPadding; ++outH) { if (leftWPadding != 0) { tflite::optimized_ops::TypedMemset( outputData + tflite::Offset(extOutputShape, outB, outH, 0, 0), padValue, leftWPadding * outputDepth); } for (int outW = leftWPadding; outW < outputWidth - rightWPadding; ++outW) { if (leftDPadding != 0) { tflite::optimized_ops::TypedMemset( outputData + tflite::Offset(extOutputShape, outB, outH, outW, 0), padValue, leftDPadding); } T* out = outputData + tflite::Offset(extOutputShape, outB, outH, outW, leftDPadding); const T* in = inputData + tflite::Offset(extInputShape, outB - leftBPadding, outH - leftHPadding, outW - leftWPadding, 0); memcpy(out, in, inputDepth * sizeof(T)); if (rightDPadding != 0) { tflite::optimized_ops::TypedMemset( outputData + tflite::Offset(extOutputShape, outB, outH, outW, outputDepth - rightDPadding), padValue, rightDPadding); } } if (rightWPadding != 0) { tflite::optimized_ops::TypedMemset( outputData + tflite::Offset(extOutputShape, outB, outH, outputWidth - rightWPadding, 0), padValue, rightWPadding * outputDepth); } } if (rightHPadding != 0) { tflite::optimized_ops::TypedMemset( outputData + tflite::Offset(extOutputShape, outB, outputHeight - rightHPadding, 0, 0), padValue, rightHPadding * outputWidth * outputDepth); } } if (rightBPadding != 0) { tflite::optimized_ops::TypedMemset( outputData + tflite::Offset(extOutputShape, outputBatch - rightBPadding, 0, 0, 0), padValue, rightBPadding * outputHeight * outputWidth * outputDepth); } return true; } template bool padGeneric(const float* inputData, const Shape& inputShape, const int32_t* paddings, float padValue, float* outputData, const Shape& outputShape); template bool padGeneric<_Float16>(const _Float16* inputData, const Shape& inputShape, const int32_t* paddings, _Float16 padValue, _Float16* outputData, const Shape& outputShape); template bool padGeneric(const uint8_t* inputData, const Shape& inputShape, const int32_t* paddings, uint8_t padValue, uint8_t* outputData, const Shape& outputShape); template bool batchToSpaceGeneric(const T* inputData, const Shape& inputShape, const int32_t* blockSize, T* outputData, const Shape& outputShape) { // Needed by low level implementation, but not really used. tflite::Dims<4> blockSizeDim, cropsDim; const int32 crops[4] = {0, 0, 0, 0}; NNTRACE_COMP("optimized_ops::BatchToSpaceND"); tflite::optimized_ops::BatchToSpaceND(inputData, convertShapeToDims(inputShape), blockSize, blockSizeDim, crops, cropsDim, outputData, convertShapeToDims(outputShape)); return true; } template bool batchToSpaceGeneric(const float* inputData, const Shape& inputShape, const int32_t* blockSize, float* outputData, const Shape& outputShape); template bool batchToSpaceGeneric<_Float16>(const _Float16* inputData, const Shape& inputShape, const int32_t* blockSize, _Float16* outputData, const Shape& outputShape); template bool batchToSpaceGeneric(const uint8_t* inputData, const Shape& inputShape, const int32_t* blockSize, uint8_t* outputData, const Shape& outputShape); template bool spaceToBatchGeneric(const T* inputData, const Shape& inputShape, const int32_t* blockSize, const int32_t* padding, const Shape& paddingShape, T* outputData, const Shape& outputShape) { // Needed by low level implementation, but not really used. tflite::RuntimeShape blockSizeDim; NNTRACE_COMP("optimized_ops::SpaceToBatchND"); tflite::optimized_ops::SpaceToBatchND( {.output_offset = outputShape.offset}, convertShapeToTflshape(inputShape), inputData, blockSizeDim, blockSize, convertShapeToTflshape(paddingShape), padding, convertShapeToTflshape(outputShape), outputData); return true; } template bool spaceToBatchGeneric(const float* inputData, const Shape& inputShape, const int32_t* blockSize, const int32_t* padding, const Shape& paddingShape, float* outputData, const Shape& outputShape); template bool spaceToBatchGeneric<_Float16>(const _Float16* inputData, const Shape& inputShape, const int32_t* blockSize, const int32_t* padding, const Shape& paddingShape, _Float16* outputData, const Shape& outputShape); template bool spaceToBatchGeneric(const uint8_t* inputData, const Shape& inputShape, const int32_t* blockSize, const int32_t* padding, const Shape& paddingShape, uint8_t* outputData, const Shape& outputShape); } // namespace nn } // namespace android