/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Contains the implementation of the operations. #define LOG_TAG "Operations" #include "CpuOperationUtils.h" #include "Operations.h" #include "tensorflow/lite/kernels/internal/reference/legacy_reference_ops.h" #include "Tracing.h" namespace android { namespace nn { bool stridedSliceGeneric(const uint8_t* inputData, const Shape& inputShape, const int32_t* beginData, const int32_t* endData, const int32_t* stridesData, int32_t beginMask, int32_t endMask, int32_t shrinkAxisMask, uint8_t* outputData, const Shape& outputShape) { NNTRACE_TRANS("stridedSliceGeneric"); // This Op only supports 1-4D cases and since we use the reference 4D // implementation, the 1-3D tensors are mapped to 4D. const int kMaxDim = 4; std::vector starts; std::vector stops; std::vector strides; int32_t numInputDims = static_cast(getNumberOfDimensions(inputShape)); for (int32_t idx = numInputDims - 1; idx >= 0; --idx) { starts.emplace_back(beginData[idx]); stops.emplace_back(endData[idx]); strides.emplace_back(stridesData[idx]); } for (int i = numInputDims; i < kMaxDim; i++) { starts.emplace_back(0); stops.emplace_back(1); strides.emplace_back(1); } beginMask = ReverseMaskBits(beginMask, numInputDims); endMask = ReverseMaskBits(endMask, numInputDims); shrinkAxisMask = ReverseMaskBits(shrinkAxisMask, numInputDims); if (inputShape.type == OperandType::TENSOR_FLOAT32) { NNTRACE_COMP_SWITCH("reference_ops::StridedSlice::float"); tflite::reference_ops::StridedSlice( reinterpret_cast(inputData), convertShapeToDims(inputShape), beginMask, endMask, shrinkAxisMask, starts, stops, strides, reinterpret_cast(outputData), convertShapeToDims(outputShape)); } else if (inputShape.type == OperandType::TENSOR_FLOAT16) { NNTRACE_COMP_SWITCH("reference_ops::StridedSlice::float16"); tflite::reference_ops::StridedSlice( reinterpret_cast(inputData), convertShapeToDims(inputShape), beginMask, endMask, shrinkAxisMask, starts, stops, strides, reinterpret_cast<_Float16*>(outputData), convertShapeToDims(outputShape)); } else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) { NNTRACE_COMP_SWITCH("reference_ops::StridedSlice::uint8"); tflite::reference_ops::StridedSlice( reinterpret_cast(inputData), convertShapeToDims(inputShape), beginMask, endMask, shrinkAxisMask, starts, stops, strides, reinterpret_cast(outputData), convertShapeToDims(outputShape)); } else { LOG(ERROR) << "Unsupported data type"; return false; } return true; } } // namespace nn } // namespace android