/* Copyright (c) 2014-2019, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iceregs.h" #define TZ_SYSCALL_CREATE_SMC_ID(o, s, f) \ ((uint32_t)((((o & 0x3f) << 24) | (s & 0xff) << 8) | (f & 0xff))) #define TZ_OWNER_QSEE_OS 50 #define TZ_SVC_KEYSTORE 5 /* Keystore management */ #define TZ_OS_KS_RESTORE_KEY_ID \ TZ_SYSCALL_CREATE_SMC_ID(TZ_OWNER_QSEE_OS, TZ_SVC_KEYSTORE, 0x06) #define TZ_SYSCALL_CREATE_PARAM_ID_0 0 #define TZ_OS_KS_RESTORE_KEY_ID_PARAM_ID \ TZ_SYSCALL_CREATE_PARAM_ID_0 #define TZ_OS_KS_RESTORE_KEY_CONFIG_ID \ TZ_SYSCALL_CREATE_SMC_ID(TZ_OWNER_QSEE_OS, TZ_SVC_KEYSTORE, 0x06) #define TZ_OS_KS_RESTORE_KEY_CONFIG_ID_PARAM_ID \ TZ_SYSCALL_CREATE_PARAM_ID_1(TZ_SYSCALL_PARAM_TYPE_VAL) #define ICE_REV(x, y) (((x) & ICE_CORE_##y##_REV_MASK) >> ICE_CORE_##y##_REV) #define QCOM_UFS_ICE_DEV "iceufs" #define QCOM_SDCC_ICE_DEV "icesdcc" #define QCOM_ICE_TYPE_NAME_LEN 8 #define QCOM_ICE_MAX_BIST_CHECK_COUNT 100 #define QCOM_ICE_UFS 10 #define QCOM_ICE_SDCC 20 struct ice_clk_info { struct list_head list; struct clk *clk; const char *name; u32 max_freq; u32 min_freq; u32 curr_freq; bool enabled; }; struct qcom_ice_bus_vote { uint32_t client_handle; uint32_t curr_vote; int min_bw_vote; int max_bw_vote; int saved_vote; bool is_max_bw_needed; struct device_attribute max_bus_bw; }; static LIST_HEAD(ice_devices); /* * ICE HW device structure. */ struct ice_device { struct list_head list; struct device *pdev; struct cdev cdev; dev_t device_no; struct class *driver_class; void __iomem *mmio; struct resource *res; int irq; bool is_ice_enabled; bool is_ice_disable_fuse_blown; ice_error_cb error_cb; void *host_controller_data; /* UFS/EMMC/other? */ struct list_head clk_list_head; u32 ice_hw_version; bool is_ice_clk_available; char ice_instance_type[QCOM_ICE_TYPE_NAME_LEN]; struct regulator *reg; bool is_regulator_available; struct qcom_ice_bus_vote bus_vote; ktime_t ice_reset_start_time; ktime_t ice_reset_complete_time; }; static int qti_ice_setting_config(struct request *req, struct platform_device *pdev, struct ice_crypto_setting *crypto_data, struct ice_data_setting *setting) { struct ice_device *ice_dev = NULL; ice_dev = platform_get_drvdata(pdev); if (!ice_dev) { pr_debug("%s no ICE device\n", __func__); /* make the caller finish peacfully */ return 0; } if (ice_dev->is_ice_disable_fuse_blown) { pr_err("%s ICE disabled fuse is blown\n", __func__); return -EPERM; } if (!setting) return -EINVAL; if ((short)(crypto_data->key_index) >= 0) { memcpy(&setting->crypto_data, crypto_data, sizeof(setting->crypto_data)); if (rq_data_dir(req) == WRITE) setting->encr_bypass = false; else if (rq_data_dir(req) == READ) setting->decr_bypass = false; else { /* Should I say BUG_ON */ setting->encr_bypass = true; setting->decr_bypass = true; } } return 0; } static int qcom_ice_enable_clocks(struct ice_device *, bool); #ifdef CONFIG_MSM_BUS_SCALING static int qcom_ice_set_bus_vote(struct ice_device *ice_dev, int vote) { int err = 0; if (vote != ice_dev->bus_vote.curr_vote) { err = msm_bus_scale_client_update_request( ice_dev->bus_vote.client_handle, vote); if (err) { dev_err(ice_dev->pdev, "%s:failed:client_handle=0x%x, vote=%d, err=%d\n", __func__, ice_dev->bus_vote.client_handle, vote, err); goto out; } ice_dev->bus_vote.curr_vote = vote; } out: return err; } static int qcom_ice_get_bus_vote(struct ice_device *ice_dev, const char *speed_mode) { struct device *dev = ice_dev->pdev; struct device_node *np = dev->of_node; int err; const char *key = "qcom,bus-vector-names"; if (!speed_mode) { err = -EINVAL; goto out; } if (ice_dev->bus_vote.is_max_bw_needed && !!strcmp(speed_mode, "MIN")) err = of_property_match_string(np, key, "MAX"); else err = of_property_match_string(np, key, speed_mode); out: if (err < 0) dev_err(dev, "%s: Invalid %s mode %d\n", __func__, speed_mode, err); return err; } static int qcom_ice_bus_register(struct ice_device *ice_dev) { int err = 0; struct msm_bus_scale_pdata *bus_pdata; struct device *dev = ice_dev->pdev; struct platform_device *pdev = to_platform_device(dev); struct device_node *np = dev->of_node; bus_pdata = msm_bus_cl_get_pdata(pdev); if (!bus_pdata) { dev_err(dev, "%s: failed to get bus vectors\n", __func__); err = -ENODATA; goto out; } err = of_property_count_strings(np, "qcom,bus-vector-names"); if (err < 0 || err != bus_pdata->num_usecases) { dev_err(dev, "%s: Error = %d with qcom,bus-vector-names\n", __func__, err); goto out; } err = 0; ice_dev->bus_vote.client_handle = msm_bus_scale_register_client(bus_pdata); if (!ice_dev->bus_vote.client_handle) { dev_err(dev, "%s: msm_bus_scale_register_client failed\n", __func__); err = -EFAULT; goto out; } /* cache the vote index for minimum and maximum bandwidth */ ice_dev->bus_vote.min_bw_vote = qcom_ice_get_bus_vote(ice_dev, "MIN"); ice_dev->bus_vote.max_bw_vote = qcom_ice_get_bus_vote(ice_dev, "MAX"); out: return err; } #else static int qcom_ice_set_bus_vote(struct ice_device *ice_dev, int vote) { return 0; } static int qcom_ice_get_bus_vote(struct ice_device *ice_dev, const char *speed_mode) { return 0; } static int qcom_ice_bus_register(struct ice_device *ice_dev) { return 0; } #endif /* CONFIG_MSM_BUS_SCALING */ static int qcom_ice_get_vreg(struct ice_device *ice_dev) { int ret = 0; if (!ice_dev->is_regulator_available) return 0; if (ice_dev->reg) return 0; ice_dev->reg = devm_regulator_get(ice_dev->pdev, "vdd-hba"); if (IS_ERR(ice_dev->reg)) { ret = PTR_ERR(ice_dev->reg); dev_err(ice_dev->pdev, "%s: %s get failed, err=%d\n", __func__, "vdd-hba-supply", ret); } return ret; } static void qcom_ice_config_proc_ignore(struct ice_device *ice_dev) { u32 regval; if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 2 && ICE_REV(ice_dev->ice_hw_version, MINOR) == 0 && ICE_REV(ice_dev->ice_hw_version, STEP) == 0) { regval = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_ADVANCED_CONTROL); regval |= 0x800; qcom_ice_writel(ice_dev, regval, QCOM_ICE_REGS_ADVANCED_CONTROL); /* Ensure register is updated */ mb(); } } static void qcom_ice_low_power_mode_enable(struct ice_device *ice_dev) { u32 regval; regval = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_ADVANCED_CONTROL); /* * Enable low power mode sequence * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0 */ regval |= 0x7000; qcom_ice_writel(ice_dev, regval, QCOM_ICE_REGS_ADVANCED_CONTROL); /* * Ensure previous instructions was completed before issuing next * ICE initialization/optimization instruction */ mb(); } static void qcom_ice_enable_test_bus_config(struct ice_device *ice_dev) { /* * Configure & enable ICE_TEST_BUS_REG to reflect ICE intr lines * MAIN_TEST_BUS_SELECTOR = 0 (ICE_CONFIG) * TEST_BUS_REG_EN = 1 (ENABLE) */ u32 regval; if (ICE_REV(ice_dev->ice_hw_version, MAJOR) >= 2) return; regval = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_TEST_BUS_CONTROL); regval &= 0x0FFFFFFF; /* TBD: replace 0x2 with define in iceregs.h */ regval |= 0x2; qcom_ice_writel(ice_dev, regval, QCOM_ICE_REGS_TEST_BUS_CONTROL); /* * Ensure previous instructions was completed before issuing next * ICE initialization/optimization instruction */ mb(); } static void qcom_ice_optimization_enable(struct ice_device *ice_dev) { u32 regval; regval = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_ADVANCED_CONTROL); if (ICE_REV(ice_dev->ice_hw_version, MAJOR) >= 2) regval |= 0xD807100; else if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 1) regval |= 0x3F007100; /* ICE Optimizations Enable Sequence */ udelay(5); /* [0]-0, [1]-0, [2]-8, [3]-E, [4]-0, [5]-0, [6]-F, [7]-A */ qcom_ice_writel(ice_dev, regval, QCOM_ICE_REGS_ADVANCED_CONTROL); /* * Ensure previous instructions was completed before issuing next * ICE initialization/optimization instruction */ mb(); /* ICE HPG requires sleep before writing */ udelay(5); if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 1) { regval = 0; regval = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_ENDIAN_SWAP); regval |= 0xF; qcom_ice_writel(ice_dev, regval, QCOM_ICE_REGS_ENDIAN_SWAP); /* * Ensure previous instructions were completed before issue * next ICE commands */ mb(); } } static int qcom_ice_wait_bist_status(struct ice_device *ice_dev) { int count; u32 reg; /* Poll until all BIST bits are reset */ for (count = 0; count < QCOM_ICE_MAX_BIST_CHECK_COUNT; count++) { reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_BIST_STATUS); if (!(reg & ICE_BIST_STATUS_MASK)) break; udelay(50); } if (reg) return -ETIMEDOUT; return 0; } static int qcom_ice_enable(struct ice_device *ice_dev) { unsigned int reg; int ret = 0; if ((ICE_REV(ice_dev->ice_hw_version, MAJOR) > 2) || ((ICE_REV(ice_dev->ice_hw_version, MAJOR) == 2) && (ICE_REV(ice_dev->ice_hw_version, MINOR) >= 1))) ret = qcom_ice_wait_bist_status(ice_dev); if (ret) { dev_err(ice_dev->pdev, "BIST status error (%d)\n", ret); return ret; } /* Starting ICE v3 enabling is done at storage controller (UFS/SDCC) */ if (ICE_REV(ice_dev->ice_hw_version, MAJOR) >= 3) return 0; /* * To enable ICE, perform following * 1. Set IGNORE_CONTROLLER_RESET to USE in ICE_RESET register * 2. Disable GLOBAL_BYPASS bit in ICE_CONTROL register */ reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_RESET); if (ICE_REV(ice_dev->ice_hw_version, MAJOR) >= 2) reg &= 0x0; else if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 1) reg &= ~0x100; qcom_ice_writel(ice_dev, reg, QCOM_ICE_REGS_RESET); /* * Ensure previous instructions was completed before issuing next * ICE initialization/optimization instruction */ mb(); reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_CONTROL); if (ICE_REV(ice_dev->ice_hw_version, MAJOR) >= 2) reg &= 0xFFFE; else if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 1) reg &= ~0x7; qcom_ice_writel(ice_dev, reg, QCOM_ICE_REGS_CONTROL); /* * Ensure previous instructions was completed before issuing next * ICE initialization/optimization instruction */ mb(); if ((ICE_REV(ice_dev->ice_hw_version, MAJOR) > 2) || ((ICE_REV(ice_dev->ice_hw_version, MAJOR) == 2) && (ICE_REV(ice_dev->ice_hw_version, MINOR) >= 1))) { reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_BYPASS_STATUS); if ((reg & 0x80000000) != 0x0) { pr_err("%s: Bypass failed for ice = %pK", __func__, (void *)ice_dev); WARN_ON(1); } } return 0; } static int qcom_ice_verify_ice(struct ice_device *ice_dev) { unsigned int rev; unsigned int maj_rev, min_rev, step_rev; rev = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_VERSION); maj_rev = (rev & ICE_CORE_MAJOR_REV_MASK) >> ICE_CORE_MAJOR_REV; min_rev = (rev & ICE_CORE_MINOR_REV_MASK) >> ICE_CORE_MINOR_REV; step_rev = (rev & ICE_CORE_STEP_REV_MASK) >> ICE_CORE_STEP_REV; if (maj_rev > ICE_CORE_CURRENT_MAJOR_VERSION) { pr_err("%s: Unknown QC ICE device at %lu, rev %d.%d.%d\n", __func__, (unsigned long)ice_dev->mmio, maj_rev, min_rev, step_rev); return -ENODEV; } ice_dev->ice_hw_version = rev; dev_info(ice_dev->pdev, "QC ICE %d.%d.%d device found @0x%pK\n", maj_rev, min_rev, step_rev, ice_dev->mmio); return 0; } static void qcom_ice_enable_intr(struct ice_device *ice_dev) { unsigned int reg; reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_NON_SEC_IRQ_MASK); reg &= ~QCOM_ICE_NON_SEC_IRQ_MASK; qcom_ice_writel(ice_dev, reg, QCOM_ICE_REGS_NON_SEC_IRQ_MASK); /* * Ensure previous instructions was completed before issuing next * ICE initialization/optimization instruction */ mb(); } static void qcom_ice_disable_intr(struct ice_device *ice_dev) { unsigned int reg; reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_NON_SEC_IRQ_MASK); reg |= QCOM_ICE_NON_SEC_IRQ_MASK; qcom_ice_writel(ice_dev, reg, QCOM_ICE_REGS_NON_SEC_IRQ_MASK); /* * Ensure previous instructions was completed before issuing next * ICE initialization/optimization instruction */ mb(); } static irqreturn_t qcom_ice_isr(int isr, void *data) { irqreturn_t retval = IRQ_NONE; u32 status; struct ice_device *ice_dev = data; status = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_NON_SEC_IRQ_STTS); if (status) { ice_dev->error_cb(ice_dev->host_controller_data, status); /* Interrupt has been handled. Clear the IRQ */ qcom_ice_writel(ice_dev, status, QCOM_ICE_REGS_NON_SEC_IRQ_CLR); /* Ensure instruction is completed */ mb(); retval = IRQ_HANDLED; } return retval; } static void qcom_ice_parse_ice_instance_type(struct platform_device *pdev, struct ice_device *ice_dev) { int ret = -1; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const char *type; ret = of_property_read_string_index(np, "qcom,instance-type", 0, &type); if (ret) { pr_err("%s: Could not get ICE instance type\n", __func__); goto out; } strlcpy(ice_dev->ice_instance_type, type, QCOM_ICE_TYPE_NAME_LEN); out: return; } static int qcom_ice_parse_clock_info(struct platform_device *pdev, struct ice_device *ice_dev) { int ret = -1, cnt, i, len; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; char *name; struct ice_clk_info *clki; u32 *clkfreq = NULL; if (!np) goto out; cnt = of_property_count_strings(np, "clock-names"); if (cnt <= 0) { dev_info(dev, "%s: Unable to find clocks, assuming enabled\n", __func__); ret = cnt; goto out; } if (!of_get_property(np, "qcom,op-freq-hz", &len)) { dev_info(dev, "qcom,op-freq-hz property not specified\n"); goto out; } len = len/sizeof(*clkfreq); if (len != cnt) goto out; clkfreq = devm_kzalloc(dev, len * sizeof(*clkfreq), GFP_KERNEL); if (!clkfreq) { ret = -ENOMEM; goto out; } ret = of_property_read_u32_array(np, "qcom,op-freq-hz", clkfreq, len); INIT_LIST_HEAD(&ice_dev->clk_list_head); for (i = 0; i < cnt; i++) { ret = of_property_read_string_index(np, "clock-names", i, (const char **)&name); if (ret) goto out; clki = devm_kzalloc(dev, sizeof(*clki), GFP_KERNEL); if (!clki) { ret = -ENOMEM; goto out; } clki->max_freq = clkfreq[i]; clki->name = kstrdup(name, GFP_KERNEL); list_add_tail(&clki->list, &ice_dev->clk_list_head); } out: if (clkfreq) devm_kfree(dev, (void *)clkfreq); return ret; } static int qcom_ice_get_device_tree_data(struct platform_device *pdev, struct ice_device *ice_dev) { struct device *dev = &pdev->dev; int rc = -1; int irq; ice_dev->res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!ice_dev->res) { pr_err("%s: No memory available for IORESOURCE\n", __func__); return -ENOMEM; } ice_dev->mmio = devm_ioremap_resource(dev, ice_dev->res); if (IS_ERR(ice_dev->mmio)) { rc = PTR_ERR(ice_dev->mmio); pr_err("%s: Error = %d mapping ICE io memory\n", __func__, rc); goto out; } if (!of_parse_phandle(pdev->dev.of_node, "vdd-hba-supply", 0)) { pr_err("%s: No vdd-hba-supply regulator, assuming not needed\n", __func__); ice_dev->is_regulator_available = false; } else { ice_dev->is_regulator_available = true; } ice_dev->is_ice_clk_available = of_property_read_bool( (&pdev->dev)->of_node, "qcom,enable-ice-clk"); if (ice_dev->is_ice_clk_available) { rc = qcom_ice_parse_clock_info(pdev, ice_dev); if (rc) { pr_err("%s: qcom_ice_parse_clock_info failed (%d)\n", __func__, rc); goto err_dev; } } /* ICE interrupts is only relevant for v2.x */ irq = platform_get_irq(pdev, 0); if (irq >= 0) { rc = devm_request_irq(dev, irq, qcom_ice_isr, 0, dev_name(dev), ice_dev); if (rc) { pr_err("%s: devm_request_irq irq=%d failed (%d)\n", __func__, irq, rc); goto err_dev; } ice_dev->irq = irq; pr_info("ICE IRQ = %d\n", ice_dev->irq); } else { dev_dbg(dev, "IRQ resource not available\n"); } qcom_ice_parse_ice_instance_type(pdev, ice_dev); return 0; err_dev: if (rc && ice_dev->mmio) devm_iounmap(dev, ice_dev->mmio); out: return rc; } /* * ICE HW instance can exist in UFS or eMMC based storage HW * Userspace does not know what kind of ICE it is dealing with. * Though userspace can find which storage device it is booting * from but all kind of storage types dont support ICE from * beginning. So ICE device is created for user space to ping * if ICE exist for that kind of storage */ static const struct file_operations qcom_ice_fops = { .owner = THIS_MODULE, }; static int register_ice_device(struct ice_device *ice_dev) { int rc = 0; unsigned int baseminor = 0; unsigned int count = 1; struct device *class_dev; int is_sdcc_ice = !strcmp(ice_dev->ice_instance_type, "sdcc"); rc = alloc_chrdev_region(&ice_dev->device_no, baseminor, count, is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV); if (rc < 0) { pr_err("alloc_chrdev_region failed %d for %s\n", rc, is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV); return rc; } ice_dev->driver_class = class_create(THIS_MODULE, is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV); if (IS_ERR(ice_dev->driver_class)) { rc = -ENOMEM; pr_err("class_create failed %d for %s\n", rc, is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV); goto exit_unreg_chrdev_region; } class_dev = device_create(ice_dev->driver_class, NULL, ice_dev->device_no, NULL, is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV); if (!class_dev) { pr_err("class_device_create failed %d for %s\n", rc, is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV); rc = -ENOMEM; goto exit_destroy_class; } cdev_init(&ice_dev->cdev, &qcom_ice_fops); ice_dev->cdev.owner = THIS_MODULE; rc = cdev_add(&ice_dev->cdev, MKDEV(MAJOR(ice_dev->device_no), 0), 1); if (rc < 0) { pr_err("cdev_add failed %d for %s\n", rc, is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV); goto exit_destroy_device; } return 0; exit_destroy_device: device_destroy(ice_dev->driver_class, ice_dev->device_no); exit_destroy_class: class_destroy(ice_dev->driver_class); exit_unreg_chrdev_region: unregister_chrdev_region(ice_dev->device_no, 1); return rc; } static int qcom_ice_probe(struct platform_device *pdev) { struct ice_device *ice_dev; int rc = 0; if (!pdev) { pr_err("%s: Invalid platform_device passed\n", __func__); return -EINVAL; } ice_dev = kzalloc(sizeof(struct ice_device), GFP_KERNEL); if (!ice_dev) { rc = -ENOMEM; pr_err("%s: Error %d allocating memory for ICE device:\n", __func__, rc); goto out; } ice_dev->pdev = &pdev->dev; if (!ice_dev->pdev) { rc = -EINVAL; pr_err("%s: Invalid device passed in platform_device\n", __func__); goto err_ice_dev; } if (pdev->dev.of_node) rc = qcom_ice_get_device_tree_data(pdev, ice_dev); else { rc = -EINVAL; pr_err("%s: ICE device node not found\n", __func__); } if (rc) goto err_ice_dev; pr_debug("%s: Registering ICE device\n", __func__); rc = register_ice_device(ice_dev); if (rc) { pr_err("create character device failed.\n"); goto err_ice_dev; } /* * If ICE is enabled here, it would be waste of power. * We would enable ICE when first request for crypto * operation arrives. */ ice_dev->is_ice_enabled = false; platform_set_drvdata(pdev, ice_dev); list_add_tail(&ice_dev->list, &ice_devices); goto out; err_ice_dev: kfree(ice_dev); out: return rc; } static int qcom_ice_remove(struct platform_device *pdev) { struct ice_device *ice_dev; ice_dev = (struct ice_device *)platform_get_drvdata(pdev); if (!ice_dev) return 0; qcom_ice_disable_intr(ice_dev); device_init_wakeup(&pdev->dev, false); if (ice_dev->mmio) iounmap(ice_dev->mmio); list_del_init(&ice_dev->list); kfree(ice_dev); return 1; } static int qcom_ice_suspend(struct platform_device *pdev) { return 0; } static int qcom_ice_restore_config(void) { struct scm_desc desc = {0}; int ret; /* * TZ would check KEYS_RAM_RESET_COMPLETED status bit before processing * restore config command. This would prevent two calls from HLOS to TZ * One to check KEYS_RAM_RESET_COMPLETED status bit second to restore * config */ desc.arginfo = TZ_OS_KS_RESTORE_KEY_ID_PARAM_ID; ret = scm_call2(TZ_OS_KS_RESTORE_KEY_ID, &desc); if (ret) pr_err("%s: Error: 0x%x\n", __func__, ret); return ret; } static int qcom_ice_restore_key_config(struct ice_device *ice_dev) { struct scm_desc desc = {0}; int ret = -1; /* For ice 3, key configuration needs to be restored in case of reset */ desc.arginfo = TZ_OS_KS_RESTORE_KEY_CONFIG_ID_PARAM_ID; if (!strcmp(ice_dev->ice_instance_type, "sdcc")) desc.args[0] = QCOM_ICE_SDCC; if (!strcmp(ice_dev->ice_instance_type, "ufs")) desc.args[0] = QCOM_ICE_UFS; ret = scm_call2(TZ_OS_KS_RESTORE_KEY_CONFIG_ID, &desc); if (ret) pr_err("%s: Error: 0x%x\n", __func__, ret); return ret; } static int qcom_ice_init_clocks(struct ice_device *ice) { int ret = -EINVAL; struct ice_clk_info *clki = NULL; struct device *dev = ice->pdev; struct list_head *head = &ice->clk_list_head; if (!head || list_empty(head)) { dev_err(dev, "%s:ICE Clock list null/empty\n", __func__); goto out; } list_for_each_entry(clki, head, list) { if (!clki->name) continue; clki->clk = devm_clk_get(dev, clki->name); if (IS_ERR(clki->clk)) { ret = PTR_ERR(clki->clk); dev_err(dev, "%s: %s clk get failed, %d\n", __func__, clki->name, ret); goto out; } /* Not all clocks would have a rate to be set */ ret = 0; if (clki->max_freq) { ret = clk_set_rate(clki->clk, clki->max_freq); if (ret) { dev_err(dev, "%s: %s clk set rate(%dHz) failed, %d\n", __func__, clki->name, clki->max_freq, ret); goto out; } clki->curr_freq = clki->max_freq; dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, clki->name, clk_get_rate(clki->clk)); } } out: return ret; } static int qcom_ice_enable_clocks(struct ice_device *ice, bool enable) { int ret = 0; struct ice_clk_info *clki = NULL; struct device *dev = ice->pdev; struct list_head *head = &ice->clk_list_head; if (!head || list_empty(head)) { dev_err(dev, "%s:ICE Clock list null/empty\n", __func__); ret = -EINVAL; goto out; } if (!ice->is_ice_clk_available) { dev_err(dev, "%s:ICE Clock not available\n", __func__); ret = -EINVAL; goto out; } list_for_each_entry(clki, head, list) { if (!clki->name) continue; if (enable) ret = clk_prepare_enable(clki->clk); else clk_disable_unprepare(clki->clk); if (ret) { dev_err(dev, "Unable to %s ICE core clk\n", enable?"enable":"disable"); goto out; } } out: return ret; } static int qcom_ice_secure_ice_init(struct ice_device *ice_dev) { /* We need to enable source for ICE secure interrupts */ int ret = 0; u32 regval; regval = scm_io_read((unsigned long)ice_dev->res + QCOM_ICE_LUT_KEYS_ICE_SEC_IRQ_MASK); regval &= ~QCOM_ICE_SEC_IRQ_MASK; ret = scm_io_write((unsigned long)ice_dev->res + QCOM_ICE_LUT_KEYS_ICE_SEC_IRQ_MASK, regval); /* * Ensure previous instructions was completed before issuing next * ICE initialization/optimization instruction */ mb(); if (!ret) pr_err("%s: failed(0x%x) to init secure ICE config\n", __func__, ret); return ret; } static int qcom_ice_update_sec_cfg(struct ice_device *ice_dev) { int ret = 0, scm_ret = 0; /* scm command buffer structure */ struct qcom_scm_cmd_buf { unsigned int device_id; unsigned int spare; } cbuf = {0}; /* * Ideally, we should check ICE version to decide whether to proceed or * or not. Since version wont be available when this function is called * we need to depend upon is_ice_clk_available to decide */ if (ice_dev->is_ice_clk_available) goto out; /* * Store dev_id in ice_device structure so that emmc/ufs cases can be * handled properly */ #define RESTORE_SEC_CFG_CMD 0x2 #define ICE_TZ_DEV_ID 20 cbuf.device_id = ICE_TZ_DEV_ID; ret = scm_restore_sec_cfg(cbuf.device_id, cbuf.spare, &scm_ret); if (ret || scm_ret) { pr_err("%s: failed, ret %d scm_ret %d\n", __func__, ret, scm_ret); if (!ret) ret = scm_ret; } out: return ret; } static int qcom_ice_finish_init(struct ice_device *ice_dev) { unsigned int reg; int err = 0; if (!ice_dev) { pr_err("%s: Null data received\n", __func__); err = -ENODEV; goto out; } if (ice_dev->is_ice_clk_available) { err = qcom_ice_init_clocks(ice_dev); if (err) goto out; err = qcom_ice_bus_register(ice_dev); if (err) goto out; } /* * It is possible that ICE device is not probed when host is probed * This would cause host probe to be deferred. When probe for host is * deferred, it can cause power collapse for host and that can wipe * configurations of host & ice. It is prudent to restore the config */ err = qcom_ice_update_sec_cfg(ice_dev); if (err) goto out; err = qcom_ice_verify_ice(ice_dev); if (err) goto out; /* if ICE_DISABLE_FUSE is blown, return immediately * Currently, FORCE HW Keys are also disabled, since * there is no use case for their usage neither in FDE * nor in PFE */ reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_FUSE_SETTING); reg &= (ICE_FUSE_SETTING_MASK | ICE_FORCE_HW_KEY0_SETTING_MASK | ICE_FORCE_HW_KEY1_SETTING_MASK); if (reg) { ice_dev->is_ice_disable_fuse_blown = true; pr_err("%s: Error: ICE_ERROR_HW_DISABLE_FUSE_BLOWN\n", __func__); err = -EPERM; goto out; } /* TZ side of ICE driver would handle secure init of ICE HW from v2 */ if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 1 && !qcom_ice_secure_ice_init(ice_dev)) { pr_err("%s: Error: ICE_ERROR_ICE_TZ_INIT_FAILED\n", __func__); err = -EFAULT; goto out; } qcom_ice_low_power_mode_enable(ice_dev); qcom_ice_optimization_enable(ice_dev); qcom_ice_config_proc_ignore(ice_dev); qcom_ice_enable_test_bus_config(ice_dev); qcom_ice_enable(ice_dev); ice_dev->is_ice_enabled = true; qcom_ice_enable_intr(ice_dev); out: return err; } static int qcom_ice_init(struct platform_device *pdev, void *host_controller_data, ice_error_cb error_cb) { /* * A completion event for host controller would be triggered upon * initialization completion * When ICE is initialized, it would put ICE into Global Bypass mode * When any request for data transfer is received, it would enable * the ICE for that particular request */ struct ice_device *ice_dev; ice_dev = platform_get_drvdata(pdev); if (!ice_dev) { pr_err("%s: invalid device\n", __func__); return -EINVAL; } ice_dev->error_cb = error_cb; ice_dev->host_controller_data = host_controller_data; return qcom_ice_finish_init(ice_dev); } static int qcom_ice_finish_power_collapse(struct ice_device *ice_dev) { int err = 0; if (ice_dev->is_ice_disable_fuse_blown) { err = -EPERM; goto out; } if (ice_dev->is_ice_enabled) { /* * ICE resets into global bypass mode with optimization and * low power mode disabled. Hence we need to redo those seq's. */ qcom_ice_low_power_mode_enable(ice_dev); qcom_ice_enable_test_bus_config(ice_dev); qcom_ice_optimization_enable(ice_dev); qcom_ice_enable(ice_dev); if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 1) { /* * When ICE resets, it wipes all of keys from LUTs * ICE driver should call TZ to restore keys */ if (qcom_ice_restore_config()) { err = -EFAULT; goto out; } /* * ICE looses its key configuration when UFS is reset, * restore it */ } else if (ICE_REV(ice_dev->ice_hw_version, MAJOR) > 2) { err = qcom_ice_restore_key_config(ice_dev); if (err) goto out; /* * for PFE case, clear the cached ICE key table, * this will force keys to be reconfigured * per each next transaction */ pfk_clear_on_reset(); } } ice_dev->ice_reset_complete_time = ktime_get(); out: return err; } static int qcom_ice_resume(struct platform_device *pdev) { /* * ICE is power collapsed when storage controller is power collapsed * ICE resume function is responsible for: * ICE HW enabling sequence * Key restoration * A completion event should be triggered * upon resume completion * Storage driver will be fully operational only * after receiving this event */ struct ice_device *ice_dev; ice_dev = platform_get_drvdata(pdev); if (!ice_dev) return -EINVAL; if (ice_dev->is_ice_clk_available) { /* * Storage is calling this function after power collapse which * would put ICE into GLOBAL_BYPASS mode. Make sure to enable * ICE */ qcom_ice_enable(ice_dev); } return 0; } static void qcom_ice_dump_test_bus(struct ice_device *ice_dev) { u32 reg = 0x1; u32 val; u8 bus_selector; u8 stream_selector; pr_err("ICE TEST BUS DUMP:\n"); for (bus_selector = 0; bus_selector <= 0xF; bus_selector++) { reg = 0x1; /* enable test bus */ reg |= bus_selector << 28; if (bus_selector == 0xD) continue; qcom_ice_writel(ice_dev, reg, QCOM_ICE_REGS_TEST_BUS_CONTROL); /* * make sure test bus selector is written before reading * the test bus register */ mb(); val = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_TEST_BUS_REG); pr_err("ICE_TEST_BUS_CONTROL: 0x%08x | ICE_TEST_BUS_REG: 0x%08x\n", reg, val); } pr_err("ICE TEST BUS DUMP (ICE_STREAM1_DATAPATH_TEST_BUS):\n"); for (stream_selector = 0; stream_selector <= 0xF; stream_selector++) { reg = 0xD0000001; /* enable stream test bus */ reg |= stream_selector << 16; qcom_ice_writel(ice_dev, reg, QCOM_ICE_REGS_TEST_BUS_CONTROL); /* * make sure test bus selector is written before reading * the test bus register */ mb(); val = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_TEST_BUS_REG); pr_err("ICE_TEST_BUS_CONTROL: 0x%08x | ICE_TEST_BUS_REG: 0x%08x\n", reg, val); } } static void qcom_ice_debug(struct platform_device *pdev) { struct ice_device *ice_dev; if (!pdev) { pr_err("%s: Invalid params passed\n", __func__); goto out; } ice_dev = platform_get_drvdata(pdev); if (!ice_dev) { pr_err("%s: No ICE device available\n", __func__); goto out; } if (!ice_dev->is_ice_enabled) { pr_err("%s: ICE device is not enabled\n", __func__); goto out; } pr_err("%s: =========== REGISTER DUMP (%pK)===========\n", ice_dev->ice_instance_type, ice_dev); pr_err("%s: ICE Control: 0x%08x | ICE Reset: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_CONTROL), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_RESET)); pr_err("%s: ICE Version: 0x%08x | ICE FUSE: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_VERSION), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_FUSE_SETTING)); pr_err("%s: ICE Param1: 0x%08x | ICE Param2: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_PARAMETERS_1), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_PARAMETERS_2)); pr_err("%s: ICE Param3: 0x%08x | ICE Param4: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_PARAMETERS_3), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_PARAMETERS_4)); pr_err("%s: ICE Param5: 0x%08x | ICE IRQ STTS: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_PARAMETERS_5), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_NON_SEC_IRQ_STTS)); pr_err("%s: ICE IRQ MASK: 0x%08x | ICE IRQ CLR: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_NON_SEC_IRQ_MASK), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_NON_SEC_IRQ_CLR)); if (ICE_REV(ice_dev->ice_hw_version, MAJOR) > 2) { pr_err("%s: ICE INVALID CCFG ERR STTS: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_INVALID_CCFG_ERR_STTS)); } if ((ICE_REV(ice_dev->ice_hw_version, MAJOR) > 2) || ((ICE_REV(ice_dev->ice_hw_version, MAJOR) == 2) && (ICE_REV(ice_dev->ice_hw_version, MINOR) >= 1))) { pr_err("%s: ICE BIST Sts: 0x%08x | ICE Bypass Sts: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_BIST_STATUS), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_BYPASS_STATUS)); } pr_err("%s: ICE ADV CTRL: 0x%08x | ICE ENDIAN SWAP: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_ADVANCED_CONTROL), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_ENDIAN_SWAP)); pr_err("%s: ICE_STM1_ERR_SYND1: 0x%08x | ICE_STM1_ERR_SYND2: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_ERROR_SYNDROME1), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_ERROR_SYNDROME2)); pr_err("%s: ICE_STM2_ERR_SYND1: 0x%08x | ICE_STM2_ERR_SYND2: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_ERROR_SYNDROME1), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_ERROR_SYNDROME2)); pr_err("%s: ICE_STM1_COUNTER1: 0x%08x | ICE_STM1_COUNTER2: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS1), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS2)); pr_err("%s: ICE_STM1_COUNTER3: 0x%08x | ICE_STM1_COUNTER4: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS3), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS4)); pr_err("%s: ICE_STM2_COUNTER1: 0x%08x | ICE_STM2_COUNTER2: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS1), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS2)); pr_err("%s: ICE_STM2_COUNTER3: 0x%08x | ICE_STM2_COUNTER4: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS3), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS4)); pr_err("%s: ICE_STM1_CTR5_MSB: 0x%08x | ICE_STM1_CTR5_LSB: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS5_MSB), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS5_LSB)); pr_err("%s: ICE_STM1_CTR6_MSB: 0x%08x | ICE_STM1_CTR6_LSB: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS6_MSB), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS6_LSB)); pr_err("%s: ICE_STM1_CTR7_MSB: 0x%08x | ICE_STM1_CTR7_LSB: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS7_MSB), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS7_LSB)); pr_err("%s: ICE_STM1_CTR8_MSB: 0x%08x | ICE_STM1_CTR8_LSB: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS8_MSB), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS8_LSB)); pr_err("%s: ICE_STM1_CTR9_MSB: 0x%08x | ICE_STM1_CTR9_LSB: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS9_MSB), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS9_LSB)); pr_err("%s: ICE_STM2_CTR5_MSB: 0x%08x | ICE_STM2_CTR5_LSB: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS5_MSB), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS5_LSB)); pr_err("%s: ICE_STM2_CTR6_MSB: 0x%08x | ICE_STM2_CTR6_LSB: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS6_MSB), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS6_LSB)); pr_err("%s: ICE_STM2_CTR7_MSB: 0x%08x | ICE_STM2_CTR7_LSB: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS7_MSB), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS7_LSB)); pr_err("%s: ICE_STM2_CTR8_MSB: 0x%08x | ICE_STM2_CTR8_LSB: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS8_MSB), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS8_LSB)); pr_err("%s: ICE_STM2_CTR9_MSB: 0x%08x | ICE_STM2_CTR9_LSB: 0x%08x\n", ice_dev->ice_instance_type, qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS9_MSB), qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS9_LSB)); qcom_ice_dump_test_bus(ice_dev); pr_err("%s: ICE reset start time: %llu ICE reset done time: %llu\n", ice_dev->ice_instance_type, (unsigned long long)ice_dev->ice_reset_start_time.tv64, (unsigned long long)ice_dev->ice_reset_complete_time.tv64); if (ktime_to_us(ktime_sub(ice_dev->ice_reset_complete_time, ice_dev->ice_reset_start_time)) > 0) pr_err("%s: Time taken for reset: %lu\n", ice_dev->ice_instance_type, (unsigned long)ktime_to_us(ktime_sub( ice_dev->ice_reset_complete_time, ice_dev->ice_reset_start_time))); out: return; } static int qcom_ice_reset(struct platform_device *pdev) { struct ice_device *ice_dev; ice_dev = platform_get_drvdata(pdev); if (!ice_dev) { pr_err("%s: INVALID ice_dev\n", __func__); return -EINVAL; } ice_dev->ice_reset_start_time = ktime_get(); return qcom_ice_finish_power_collapse(ice_dev); } static int qcom_ice_config_start(struct platform_device *pdev, struct request *req, struct ice_data_setting *setting, bool async) { struct ice_crypto_setting *crypto_data; struct ice_crypto_setting pfk_crypto_data = {0}; union map_info *info; int ret = 0; bool is_pfe = false; if (!pdev || !req) { pr_err("%s: Invalid params passed\n", __func__); return -EINVAL; } /* * It is not an error to have a request with no bio * Such requests must bypass ICE. So first set bypass and then * return if bio is not available in request */ if (setting) { setting->encr_bypass = true; setting->decr_bypass = true; } if (!req->bio) { /* It is not an error to have a request with no bio */ return 0; } //pr_err("%s bio is %pK\n", __func__, req->bio); ret = pfk_load_key_start(req->bio, &pfk_crypto_data, &is_pfe, async); if (is_pfe) { if (ret) { if (ret != -EBUSY && ret != -EAGAIN) pr_err("%s error %d while configuring ice key for PFE\n", __func__, ret); return ret; } return qti_ice_setting_config(req, pdev, &pfk_crypto_data, setting); } /* * info field in req->end_io_data could be used by mulitple dm or * non-dm entities. To ensure that we are running operation on dm * based request, check BIO_DONT_FREE flag */ if (bio_flagged(req->bio, BIO_INLINECRYPT)) { info = dm_get_rq_mapinfo(req); if (!info) { pr_debug("%s info not available in request\n", __func__); return 0; } crypto_data = (struct ice_crypto_setting *)info->ptr; if (!crypto_data) { pr_err("%s crypto_data not available in request\n", __func__); return -EINVAL; } return qti_ice_setting_config(req, pdev, crypto_data, setting); } /* * It is not an error. If target is not req-crypt based, all request * from storage driver would come here to check if there is any ICE * setting required */ return 0; } EXPORT_SYMBOL(qcom_ice_config_start); static int qcom_ice_config_end(struct request *req) { int ret = 0; bool is_pfe = false; if (!req) { pr_err("%s: Invalid params passed\n", __func__); return -EINVAL; } if (!req->bio) { /* It is not an error to have a request with no bio */ return 0; } ret = pfk_load_key_end(req->bio, &is_pfe); if (is_pfe) { if (ret != 0) pr_err("%s error %d while end configuring ice key for PFE\n", __func__, ret); return ret; } return 0; } EXPORT_SYMBOL(qcom_ice_config_end); static int qcom_ice_status(struct platform_device *pdev) { struct ice_device *ice_dev; unsigned int test_bus_reg_status; if (!pdev) { pr_err("%s: Invalid params passed\n", __func__); return -EINVAL; } ice_dev = platform_get_drvdata(pdev); if (!ice_dev) return -ENODEV; if (!ice_dev->is_ice_enabled) return -ENODEV; test_bus_reg_status = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_TEST_BUS_REG); return !!(test_bus_reg_status & QCOM_ICE_TEST_BUS_REG_NON_SECURE_INTR); } struct qcom_ice_variant_ops qcom_ice_ops = { .name = "qcom", .init = qcom_ice_init, .reset = qcom_ice_reset, .resume = qcom_ice_resume, .suspend = qcom_ice_suspend, .config_start = qcom_ice_config_start, .config_end = qcom_ice_config_end, .status = qcom_ice_status, .debug = qcom_ice_debug, }; struct platform_device *qcom_ice_get_pdevice(struct device_node *node) { struct platform_device *ice_pdev = NULL; struct ice_device *ice_dev = NULL; if (!node) { pr_err("%s: invalid node %pK", __func__, node); goto out; } if (!of_device_is_available(node)) { pr_err("%s: device unavailable\n", __func__); goto out; } if (list_empty(&ice_devices)) { pr_err("%s: invalid device list\n", __func__); ice_pdev = ERR_PTR(-EPROBE_DEFER); goto out; } list_for_each_entry(ice_dev, &ice_devices, list) { if (ice_dev->pdev->of_node == node) { pr_info("%s: found ice device %pK\n", __func__, ice_dev); ice_pdev = to_platform_device(ice_dev->pdev); break; } } if (ice_pdev) pr_info("%s: matching platform device %pK\n", __func__, ice_pdev); out: return ice_pdev; } static struct ice_device *get_ice_device_from_storage_type (const char *storage_type) { struct ice_device *ice_dev = NULL; if (list_empty(&ice_devices)) { pr_err("%s: invalid device list\n", __func__); ice_dev = ERR_PTR(-EPROBE_DEFER); goto out; } list_for_each_entry(ice_dev, &ice_devices, list) { if (!strcmp(ice_dev->ice_instance_type, storage_type)) { pr_debug("%s: ice device %pK\n", __func__, ice_dev); return ice_dev; } } out: return NULL; } static int enable_ice_setup(struct ice_device *ice_dev) { int ret = -1, vote; /* Setup Regulator */ if (ice_dev->is_regulator_available) { if (qcom_ice_get_vreg(ice_dev)) { pr_err("%s: Could not get regulator\n", __func__); goto out; } ret = regulator_enable(ice_dev->reg); if (ret) { pr_err("%s:%pK: Could not enable regulator\n", __func__, ice_dev); goto out; } } /* Setup Clocks */ if (qcom_ice_enable_clocks(ice_dev, true)) { pr_err("%s:%pK:%s Could not enable clocks\n", __func__, ice_dev, ice_dev->ice_instance_type); goto out_reg; } /* Setup Bus Vote */ vote = qcom_ice_get_bus_vote(ice_dev, "MAX"); if (vote < 0) goto out_clocks; ret = qcom_ice_set_bus_vote(ice_dev, vote); if (ret) { pr_err("%s:%pK: failed %d\n", __func__, ice_dev, ret); goto out_clocks; } return ret; out_clocks: qcom_ice_enable_clocks(ice_dev, false); out_reg: if (ice_dev->is_regulator_available) { if (qcom_ice_get_vreg(ice_dev)) { pr_err("%s: Could not get regulator\n", __func__); goto out; } ret = regulator_disable(ice_dev->reg); if (ret) { pr_err("%s:%pK: Could not disable regulator\n", __func__, ice_dev); goto out; } } out: return ret; } static int disable_ice_setup(struct ice_device *ice_dev) { int ret = -1, vote; /* Setup Bus Vote */ vote = qcom_ice_get_bus_vote(ice_dev, "MIN"); if (vote < 0) { pr_err("%s:%pK: Unable to get bus vote\n", __func__, ice_dev); goto out_disable_clocks; } ret = qcom_ice_set_bus_vote(ice_dev, vote); if (ret) pr_err("%s:%pK: failed %d\n", __func__, ice_dev, ret); out_disable_clocks: /* Setup Clocks */ if (qcom_ice_enable_clocks(ice_dev, false)) pr_err("%s:%pK:%s Could not disable clocks\n", __func__, ice_dev, ice_dev->ice_instance_type); /* Setup Regulator */ if (ice_dev->is_regulator_available) { if (qcom_ice_get_vreg(ice_dev)) { pr_err("%s: Could not get regulator\n", __func__); goto out; } ret = regulator_disable(ice_dev->reg); if (ret) { pr_err("%s:%pK: Could not disable regulator\n", __func__, ice_dev); goto out; } } out: return ret; } int qcom_ice_setup_ice_hw(const char *storage_type, int enable) { int ret = -1; struct ice_device *ice_dev = NULL; ice_dev = get_ice_device_from_storage_type(storage_type); if (ice_dev == ERR_PTR(-EPROBE_DEFER)) return -EPROBE_DEFER; if (!ice_dev || (ice_dev->is_ice_enabled == false)) return ret; if (enable) return enable_ice_setup(ice_dev); else return disable_ice_setup(ice_dev); } struct qcom_ice_variant_ops *qcom_ice_get_variant_ops(struct device_node *node) { return &qcom_ice_ops; } EXPORT_SYMBOL(qcom_ice_get_variant_ops); /* Following struct is required to match device with driver from dts file */ static const struct of_device_id qcom_ice_match[] = { { .compatible = "qcom,ice" }, {}, }; MODULE_DEVICE_TABLE(of, qcom_ice_match); static struct platform_driver qcom_ice_driver = { .probe = qcom_ice_probe, .remove = qcom_ice_remove, .driver = { .owner = THIS_MODULE, .name = "qcom_ice", .of_match_table = qcom_ice_match, }, }; module_platform_driver(qcom_ice_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("QTI Inline Crypto Engine driver");