/* * Copyright (c) 2012-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Debug Flag Definitions */ enum { QPNP_VREG_DEBUG_REQUEST = BIT(0), /* Show requests */ QPNP_VREG_DEBUG_DUPLICATE = BIT(1), /* Show duplicate requests */ QPNP_VREG_DEBUG_INIT = BIT(2), /* Show state after probe */ QPNP_VREG_DEBUG_WRITES = BIT(3), /* Show SPMI writes */ QPNP_VREG_DEBUG_READS = BIT(4), /* Show SPMI reads */ QPNP_VREG_DEBUG_OCP = BIT(5), /* Show VS OCP IRQ events */ }; static int qpnp_vreg_debug_mask; module_param_named( debug_mask, qpnp_vreg_debug_mask, int, 0600 ); #define vreg_err(vreg, fmt, ...) \ pr_err("%s: " fmt, vreg->rdesc.name, ##__VA_ARGS__) /* These types correspond to unique register layouts. */ enum qpnp_regulator_logical_type { QPNP_REGULATOR_LOGICAL_TYPE_SMPS, QPNP_REGULATOR_LOGICAL_TYPE_LDO, QPNP_REGULATOR_LOGICAL_TYPE_VS, QPNP_REGULATOR_LOGICAL_TYPE_BOOST, QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS, QPNP_REGULATOR_LOGICAL_TYPE_BOOST_BYP, QPNP_REGULATOR_LOGICAL_TYPE_LN_LDO, QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS, QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS, QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO, QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS2, }; enum qpnp_regulator_type { QPNP_REGULATOR_TYPE_BUCK = 0x03, QPNP_REGULATOR_TYPE_LDO = 0x04, QPNP_REGULATOR_TYPE_VS = 0x05, QPNP_REGULATOR_TYPE_BOOST = 0x1B, QPNP_REGULATOR_TYPE_FTS = 0x1C, QPNP_REGULATOR_TYPE_BOOST_BYP = 0x1F, QPNP_REGULATOR_TYPE_ULT_LDO = 0x21, QPNP_REGULATOR_TYPE_ULT_BUCK = 0x22, }; enum qpnp_regulator_subtype { QPNP_REGULATOR_SUBTYPE_GP_CTL = 0x08, QPNP_REGULATOR_SUBTYPE_RF_CTL = 0x09, QPNP_REGULATOR_SUBTYPE_N50 = 0x01, QPNP_REGULATOR_SUBTYPE_N150 = 0x02, QPNP_REGULATOR_SUBTYPE_N300 = 0x03, QPNP_REGULATOR_SUBTYPE_N600 = 0x04, QPNP_REGULATOR_SUBTYPE_N1200 = 0x05, QPNP_REGULATOR_SUBTYPE_N600_ST = 0x06, QPNP_REGULATOR_SUBTYPE_N1200_ST = 0x07, QPNP_REGULATOR_SUBTYPE_N300_ST = 0x15, QPNP_REGULATOR_SUBTYPE_P50 = 0x08, QPNP_REGULATOR_SUBTYPE_P150 = 0x09, QPNP_REGULATOR_SUBTYPE_P300 = 0x0A, QPNP_REGULATOR_SUBTYPE_P600 = 0x0B, QPNP_REGULATOR_SUBTYPE_P1200 = 0x0C, QPNP_REGULATOR_SUBTYPE_LN = 0x10, QPNP_REGULATOR_SUBTYPE_LV_P50 = 0x28, QPNP_REGULATOR_SUBTYPE_LV_P150 = 0x29, QPNP_REGULATOR_SUBTYPE_LV_P300 = 0x2A, QPNP_REGULATOR_SUBTYPE_LV_P600 = 0x2B, QPNP_REGULATOR_SUBTYPE_LV_P1200 = 0x2C, QPNP_REGULATOR_SUBTYPE_LV100 = 0x01, QPNP_REGULATOR_SUBTYPE_LV300 = 0x02, QPNP_REGULATOR_SUBTYPE_MV300 = 0x08, QPNP_REGULATOR_SUBTYPE_MV500 = 0x09, QPNP_REGULATOR_SUBTYPE_HDMI = 0x10, QPNP_REGULATOR_SUBTYPE_OTG = 0x11, QPNP_REGULATOR_SUBTYPE_5V_BOOST = 0x01, QPNP_REGULATOR_SUBTYPE_FTS_CTL = 0x08, QPNP_REGULATOR_SUBTYPE_FTS2p5_CTL = 0x09, QPNP_REGULATOR_SUBTYPE_FTS426 = 0x0A, QPNP_REGULATOR_SUBTYPE_BB_2A = 0x01, QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL1 = 0x0D, QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL2 = 0x0E, QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL3 = 0x0F, QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL4 = 0x10, }; /* First common register layout used by older devices */ enum qpnp_common_regulator_registers { QPNP_COMMON_REG_DIG_MAJOR_REV = 0x01, QPNP_COMMON_REG_TYPE = 0x04, QPNP_COMMON_REG_SUBTYPE = 0x05, QPNP_COMMON_REG_VOLTAGE_RANGE = 0x40, QPNP_COMMON_REG_VOLTAGE_SET = 0x41, QPNP_COMMON_REG_MODE = 0x45, QPNP_COMMON_REG_ENABLE = 0x46, QPNP_COMMON_REG_PULL_DOWN = 0x48, QPNP_COMMON_REG_STEP_CTRL = 0x61, }; /* * Second common register layout used by newer devices * Note that some of the registers from the first common layout remain * unchanged and their definition is not duplicated. */ enum qpnp_common2_regulator_registers { QPNP_COMMON2_REG_VOLTAGE_LSB = 0x40, QPNP_COMMON2_REG_VOLTAGE_MSB = 0x41, QPNP_COMMON2_REG_MODE = 0x45, QPNP_COMMON2_REG_STEP_CTRL = 0x61, }; enum qpnp_ldo_registers { QPNP_LDO_REG_SOFT_START = 0x4C, }; enum qpnp_vs_registers { QPNP_VS_REG_OCP = 0x4A, QPNP_VS_REG_SOFT_START = 0x4C, }; enum qpnp_boost_registers { QPNP_BOOST_REG_CURRENT_LIMIT = 0x4A, }; enum qpnp_boost_byp_registers { QPNP_BOOST_BYP_REG_CURRENT_LIMIT = 0x4B, }; /* Used for indexing into ctrl_reg. These are offets from 0x40 */ enum qpnp_common_control_register_index { QPNP_COMMON_IDX_VOLTAGE_RANGE = 0, QPNP_COMMON_IDX_VOLTAGE_SET = 1, QPNP_COMMON_IDX_MODE = 5, QPNP_COMMON_IDX_ENABLE = 6, }; enum qpnp_common2_control_register_index { QPNP_COMMON2_IDX_VOLTAGE_LSB = 0, QPNP_COMMON2_IDX_VOLTAGE_MSB = 1, QPNP_COMMON2_IDX_MODE = 5, }; /* Common regulator control register layout */ #define QPNP_COMMON_ENABLE_MASK 0x80 #define QPNP_COMMON_ENABLE 0x80 #define QPNP_COMMON_DISABLE 0x00 #define QPNP_COMMON_ENABLE_FOLLOW_HW_EN3_MASK 0x08 #define QPNP_COMMON_ENABLE_FOLLOW_HW_EN2_MASK 0x04 #define QPNP_COMMON_ENABLE_FOLLOW_HW_EN1_MASK 0x02 #define QPNP_COMMON_ENABLE_FOLLOW_HW_EN0_MASK 0x01 #define QPNP_COMMON_ENABLE_FOLLOW_ALL_MASK 0x0F /* First common regulator mode register layout */ #define QPNP_COMMON_MODE_HPM_MASK 0x80 #define QPNP_COMMON_MODE_AUTO_MASK 0x40 #define QPNP_COMMON_MODE_BYPASS_MASK 0x20 #define QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK 0x10 #define QPNP_COMMON_MODE_FOLLOW_HW_EN3_MASK 0x08 #define QPNP_COMMON_MODE_FOLLOW_HW_EN2_MASK 0x04 #define QPNP_COMMON_MODE_FOLLOW_HW_EN1_MASK 0x02 #define QPNP_COMMON_MODE_FOLLOW_HW_EN0_MASK 0x01 #define QPNP_COMMON_MODE_FOLLOW_ALL_MASK 0x1F /* Second common regulator mode register values */ #define QPNP_COMMON2_MODE_BYPASS 3 #define QPNP_COMMON2_MODE_RETENTION 4 #define QPNP_COMMON2_MODE_LPM 5 #define QPNP_COMMON2_MODE_AUTO 6 #define QPNP_COMMON2_MODE_HPM 7 #define QPNP_COMMON2_MODE_MASK 0x07 /* Common regulator pull down control register layout */ #define QPNP_COMMON_PULL_DOWN_ENABLE_MASK 0x80 /* LDO regulator current limit control register layout */ #define QPNP_LDO_CURRENT_LIMIT_ENABLE_MASK 0x80 /* LDO regulator soft start control register layout */ #define QPNP_LDO_SOFT_START_ENABLE_MASK 0x80 /* VS regulator over current protection control register layout */ #define QPNP_VS_OCP_OVERRIDE 0x01 #define QPNP_VS_OCP_NO_OVERRIDE 0x00 /* VS regulator soft start control register layout */ #define QPNP_VS_SOFT_START_ENABLE_MASK 0x80 #define QPNP_VS_SOFT_START_SEL_MASK 0x03 /* Boost regulator current limit control register layout */ #define QPNP_BOOST_CURRENT_LIMIT_ENABLE_MASK 0x80 #define QPNP_BOOST_CURRENT_LIMIT_MASK 0x07 #define QPNP_VS_OCP_DEFAULT_MAX_RETRIES 10 #define QPNP_VS_OCP_DEFAULT_RETRY_DELAY_MS 30 #define QPNP_VS_OCP_FALL_DELAY_US 90 #define QPNP_VS_OCP_FAULT_DELAY_US 20000 #define QPNP_FTSMPS_STEP_CTRL_STEP_MASK 0x18 #define QPNP_FTSMPS_STEP_CTRL_STEP_SHIFT 3 #define QPNP_FTSMPS_STEP_CTRL_DELAY_MASK 0x07 #define QPNP_FTSMPS_STEP_CTRL_DELAY_SHIFT 0 /* Clock rate in kHz of the FTSMPS regulator reference clock. */ #define QPNP_FTSMPS_CLOCK_RATE 19200 /* Minimum voltage stepper delay for each step. */ #define QPNP_FTSMPS_STEP_DELAY 8 /* * The ratio QPNP_FTSMPS_STEP_MARGIN_NUM/QPNP_FTSMPS_STEP_MARGIN_DEN is used to * adjust the step rate in order to account for oscillator variance. */ #define QPNP_FTSMPS_STEP_MARGIN_NUM 4 #define QPNP_FTSMPS_STEP_MARGIN_DEN 5 #define QPNP_FTSMPS2_STEP_CTRL_DELAY_MASK 0x03 #define QPNP_FTSMPS2_STEP_CTRL_DELAY_SHIFT 0 /* Clock rate in kHz of the FTSMPS2 regulator reference clock. */ #define QPNP_FTSMPS2_CLOCK_RATE 4800 /* Minimum voltage stepper delay for each step. */ #define QPNP_FTSMPS2_STEP_DELAY 2 /* * The ratio QPNP_FTSMPS2_STEP_MARGIN_NUM/QPNP_FTSMPS2_STEP_MARGIN_DEN is used * to adjust the step rate in order to account for oscillator variance. */ #define QPNP_FTSMPS2_STEP_MARGIN_NUM 10 #define QPNP_FTSMPS2_STEP_MARGIN_DEN 11 /* * This voltage in uV is returned by get_voltage functions when there is no way * to determine the current voltage level. It is needed because the regulator * framework treats a 0 uV voltage as an error. */ #define VOLTAGE_UNKNOWN 1 /* VSET value to decide the range of ULT SMPS */ #define ULT_SMPS_RANGE_SPLIT 0x60 /** * struct qpnp_voltage_range - regulator set point voltage mapping description * @min_uV: Minimum programmable output voltage resulting from * set point register value 0x00 * @max_uV: Maximum programmable output voltage * @step_uV: Output voltage increase resulting from the set point * register value increasing by 1 * @set_point_min_uV: Minimum allowed voltage * @set_point_max_uV: Maximum allowed voltage. This may be tweaked in order * to pick which range should be used in the case of * overlapping set points. * @n_voltages: Number of preferred voltage set points present in this * range * @range_sel: Voltage range register value corresponding to this range * * The following relationships must be true for the values used in this struct: * (max_uV - min_uV) % step_uV == 0 * (set_point_min_uV - min_uV) % step_uV == 0* * (set_point_max_uV - min_uV) % step_uV == 0* * n_voltages = (set_point_max_uV - set_point_min_uV) / step_uV + 1 * * *Note, set_point_min_uV == set_point_max_uV == 0 is allowed in order to * specify that the voltage range has meaning, but is not preferred. */ struct qpnp_voltage_range { int min_uV; int max_uV; int step_uV; int set_point_min_uV; int set_point_max_uV; unsigned int n_voltages; u8 range_sel; }; /* * The ranges specified in the qpnp_voltage_set_points struct must be listed * so that range[i].set_point_max_uV < range[i+1].set_point_min_uV. */ struct qpnp_voltage_set_points { struct qpnp_voltage_range *range; int count; unsigned int n_voltages; }; struct qpnp_regulator_mapping { enum qpnp_regulator_type type; enum qpnp_regulator_subtype subtype; enum qpnp_regulator_logical_type logical_type; u32 revision_min; u32 revision_max; struct regulator_ops *ops; struct qpnp_voltage_set_points *set_points; int hpm_min_load; }; struct qpnp_regulator { struct regulator_desc rdesc; struct delayed_work ocp_work; struct platform_device *pdev; struct regmap *regmap; struct regulator_dev *rdev; struct qpnp_voltage_set_points *set_points; enum qpnp_regulator_logical_type logical_type; int enable_time; int ocp_enable; int ocp_irq; int ocp_count; int ocp_max_retries; int ocp_retry_delay_ms; int system_load; int hpm_min_load; int slew_rate; u32 write_count; u32 prev_write_count; ktime_t vs_enable_time; u16 base_addr; /* ctrl_reg provides a shadow copy of register values 0x40 to 0x47. */ u8 ctrl_reg[8]; u8 init_mode; }; #define QPNP_VREG_MAP(_type, _subtype, _dig_major_min, _dig_major_max, \ _logical_type, _ops_val, _set_points_val, _hpm_min_load) \ { \ .type = QPNP_REGULATOR_TYPE_##_type, \ .subtype = QPNP_REGULATOR_SUBTYPE_##_subtype, \ .revision_min = _dig_major_min, \ .revision_max = _dig_major_max, \ .logical_type = QPNP_REGULATOR_LOGICAL_TYPE_##_logical_type, \ .ops = &qpnp_##_ops_val##_ops, \ .set_points = &_set_points_val##_set_points, \ .hpm_min_load = _hpm_min_load, \ } #define VOLTAGE_RANGE(_range_sel, _min_uV, _set_point_min_uV, \ _set_point_max_uV, _max_uV, _step_uV) \ { \ .min_uV = _min_uV, \ .max_uV = _max_uV, \ .set_point_min_uV = _set_point_min_uV, \ .set_point_max_uV = _set_point_max_uV, \ .step_uV = _step_uV, \ .range_sel = _range_sel, \ } #define SET_POINTS(_ranges) \ { \ .range = _ranges, \ .count = ARRAY_SIZE(_ranges), \ } /* * These tables contain the physically available PMIC regulator voltage setpoint * ranges. Where two ranges overlap in hardware, one of the ranges is trimmed * to ensure that the setpoints available to software are monotonically * increasing and unique. The set_voltage callback functions expect these * properties to hold. */ static struct qpnp_voltage_range pldo_ranges[] = { VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500), VOLTAGE_RANGE(3, 1500000, 1550000, 3075000, 3075000, 25000), VOLTAGE_RANGE(4, 1750000, 3100000, 4900000, 4900000, 50000), }; static struct qpnp_voltage_range nldo1_ranges[] = { VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500), }; static struct qpnp_voltage_range nldo2_ranges[] = { VOLTAGE_RANGE(0, 375000, 0, 0, 1537500, 12500), VOLTAGE_RANGE(1, 375000, 375000, 768750, 768750, 6250), VOLTAGE_RANGE(2, 750000, 775000, 1537500, 1537500, 12500), }; static struct qpnp_voltage_range nldo3_ranges[] = { VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500), VOLTAGE_RANGE(1, 375000, 0, 0, 1537500, 12500), VOLTAGE_RANGE(2, 750000, 0, 0, 1537500, 12500), }; static struct qpnp_voltage_range ln_ldo_ranges[] = { VOLTAGE_RANGE(1, 690000, 690000, 1110000, 1110000, 60000), VOLTAGE_RANGE(0, 1380000, 1380000, 2220000, 2220000, 120000), }; static struct qpnp_voltage_range smps_ranges[] = { VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500), VOLTAGE_RANGE(1, 1550000, 1575000, 3125000, 3125000, 25000), }; static struct qpnp_voltage_range ftsmps_ranges[] = { VOLTAGE_RANGE(0, 0, 350000, 1275000, 1275000, 5000), VOLTAGE_RANGE(1, 0, 1280000, 2040000, 2040000, 10000), }; static struct qpnp_voltage_range ftsmps2p5_ranges[] = { VOLTAGE_RANGE(0, 80000, 350000, 1355000, 1355000, 5000), VOLTAGE_RANGE(1, 160000, 1360000, 2200000, 2200000, 10000), }; static struct qpnp_voltage_range boost_ranges[] = { VOLTAGE_RANGE(0, 4000000, 4000000, 5550000, 5550000, 50000), }; static struct qpnp_voltage_range boost_byp_ranges[] = { VOLTAGE_RANGE(0, 2500000, 2500000, 5200000, 5650000, 50000), }; static struct qpnp_voltage_range ult_lo_smps_ranges[] = { VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500), VOLTAGE_RANGE(1, 750000, 0, 0, 1525000, 25000), }; static struct qpnp_voltage_range ult_ho_smps_ranges[] = { VOLTAGE_RANGE(0, 1550000, 1550000, 2325000, 2325000, 25000), }; static struct qpnp_voltage_range ult_nldo_ranges[] = { VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500), }; static struct qpnp_voltage_range ult_pldo_ranges[] = { VOLTAGE_RANGE(0, 1750000, 1750000, 3337500, 3337500, 12500), }; static struct qpnp_voltage_range ftsmps426_ranges[] = { VOLTAGE_RANGE(0, 0, 320000, 1352000, 1352000, 4000), }; static struct qpnp_voltage_set_points pldo_set_points = SET_POINTS(pldo_ranges); static struct qpnp_voltage_set_points nldo1_set_points = SET_POINTS(nldo1_ranges); static struct qpnp_voltage_set_points nldo2_set_points = SET_POINTS(nldo2_ranges); static struct qpnp_voltage_set_points nldo3_set_points = SET_POINTS(nldo3_ranges); static struct qpnp_voltage_set_points ln_ldo_set_points = SET_POINTS(ln_ldo_ranges); static struct qpnp_voltage_set_points smps_set_points = SET_POINTS(smps_ranges); static struct qpnp_voltage_set_points ftsmps_set_points = SET_POINTS(ftsmps_ranges); static struct qpnp_voltage_set_points ftsmps2p5_set_points = SET_POINTS(ftsmps2p5_ranges); static struct qpnp_voltage_set_points boost_set_points = SET_POINTS(boost_ranges); static struct qpnp_voltage_set_points boost_byp_set_points = SET_POINTS(boost_byp_ranges); static struct qpnp_voltage_set_points ult_lo_smps_set_points = SET_POINTS(ult_lo_smps_ranges); static struct qpnp_voltage_set_points ult_ho_smps_set_points = SET_POINTS(ult_ho_smps_ranges); static struct qpnp_voltage_set_points ult_nldo_set_points = SET_POINTS(ult_nldo_ranges); static struct qpnp_voltage_set_points ult_pldo_set_points = SET_POINTS(ult_pldo_ranges); static struct qpnp_voltage_set_points ftsmps426_set_points = SET_POINTS(ftsmps426_ranges); static struct qpnp_voltage_set_points none_set_points; static struct qpnp_voltage_set_points *all_set_points[] = { &pldo_set_points, &nldo1_set_points, &nldo2_set_points, &nldo3_set_points, &ln_ldo_set_points, &smps_set_points, &ftsmps_set_points, &ftsmps2p5_set_points, &boost_set_points, &boost_byp_set_points, &ult_lo_smps_set_points, &ult_ho_smps_set_points, &ult_nldo_set_points, &ult_pldo_set_points, &ftsmps426_set_points, }; /* Determines which label to add to a debug print statement. */ enum qpnp_regulator_action { QPNP_REGULATOR_ACTION_INIT, QPNP_REGULATOR_ACTION_ENABLE, QPNP_REGULATOR_ACTION_DISABLE, QPNP_REGULATOR_ACTION_VOLTAGE, QPNP_REGULATOR_ACTION_MODE, }; static void qpnp_vreg_show_state(struct regulator_dev *rdev, enum qpnp_regulator_action action); #define DEBUG_PRINT_BUFFER_SIZE 64 static void fill_string(char *str, size_t str_len, u8 *buf, int buf_len) { int pos = 0; int i; for (i = 0; i < buf_len; i++) { pos += scnprintf(str + pos, str_len - pos, "0x%02X", buf[i]); if (i < buf_len - 1) pos += scnprintf(str + pos, str_len - pos, ", "); } } static inline int qpnp_vreg_read(struct qpnp_regulator *vreg, u16 addr, u8 *buf, int len) { char str[DEBUG_PRINT_BUFFER_SIZE]; int rc = 0; rc = regmap_bulk_read(vreg->regmap, vreg->base_addr + addr, buf, len); if (!rc && (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_READS)) { str[0] = '\0'; fill_string(str, DEBUG_PRINT_BUFFER_SIZE, buf, len); pr_info(" %-11s: read(0x%04X), sid=%d, len=%d; %s\n", vreg->rdesc.name, vreg->base_addr + addr, to_spmi_device(vreg->pdev->dev.parent)->usid, len, str); } return rc; } static inline int qpnp_vreg_write(struct qpnp_regulator *vreg, u16 addr, u8 *buf, int len) { char str[DEBUG_PRINT_BUFFER_SIZE]; int rc = 0; if (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_WRITES) { str[0] = '\0'; fill_string(str, DEBUG_PRINT_BUFFER_SIZE, buf, len); pr_info("%-11s: write(0x%04X), sid=%d, len=%d; %s\n", vreg->rdesc.name, vreg->base_addr + addr, to_spmi_device(vreg->pdev->dev.parent)->usid, len, str); } rc = regmap_bulk_write(vreg->regmap, vreg->base_addr + addr, buf, len); if (!rc) vreg->write_count += len; return rc; } /* * qpnp_vreg_write_optimized - write the minimum sized contiguous subset of buf * @vreg: qpnp_regulator pointer for this regulator * @addr: local SPMI address offset from this peripheral's base address * @buf: new data to write into the SPMI registers * @buf_save: old data in the registers * @len: number of bytes to write * * This function checks for unchanged register values between buf and buf_save * starting at both ends of buf. Only the contiguous subset in the middle of * buf starting and ending with new values is sent. * * Consider the following example: * buf offset: 0 1 2 3 4 5 6 7 * reg state: U U C C U C U U * (U = unchanged, C = changed) * In this example registers 2 through 5 will be written with a single * transaction. */ static inline int qpnp_vreg_write_optimized(struct qpnp_regulator *vreg, u16 addr, u8 *buf, u8 *buf_save, int len) { int i, rc, start, end; for (i = 0; i < len; i++) if (buf[i] != buf_save[i]) break; start = i; for (i = len - 1; i >= 0; i--) if (buf[i] != buf_save[i]) break; end = i; if (start > end) { /* No modified register values present. */ return 0; } rc = qpnp_vreg_write(vreg, addr + start, &buf[start], end - start + 1); if (!rc) for (i = start; i <= end; i++) buf_save[i] = buf[i]; return rc; } /* * Perform a masked write to a PMIC register only if the new value differs * from the last value written to the register. This removes redundant * register writing. */ static int qpnp_vreg_masked_write(struct qpnp_regulator *vreg, u16 addr, u8 val, u8 mask, u8 *reg_save) { int rc = 0; u8 reg; reg = (*reg_save & ~mask) | (val & mask); if (reg != *reg_save) { rc = qpnp_vreg_write(vreg, addr, ®, 1); if (rc) { vreg_err(vreg, "write failed; addr=0x%03X, rc=%d\n", addr, rc); } else { *reg_save = reg; } } return rc; } /* * Perform a masked read-modify-write to a PMIC register only if the new value * differs from the value currently in the register. This removes redundant * register writing. */ static int qpnp_vreg_masked_read_write(struct qpnp_regulator *vreg, u16 addr, u8 val, u8 mask) { int rc; u8 reg; rc = qpnp_vreg_read(vreg, addr, ®, 1); if (rc) { vreg_err(vreg, "read failed; addr=0x%03X, rc=%d\n", addr, rc); return rc; } return qpnp_vreg_masked_write(vreg, addr, val, mask, ®); } static int qpnp_regulator_common_is_enabled(struct regulator_dev *rdev) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); return (vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE] & QPNP_COMMON_ENABLE_MASK) == QPNP_COMMON_ENABLE; } static int qpnp_regulator_common_enable(struct regulator_dev *rdev) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); int rc; rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE, QPNP_COMMON_ENABLE, QPNP_COMMON_ENABLE_MASK, &vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]); if (rc) vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc); else qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_ENABLE); return rc; } static int qpnp_regulator_vs_enable(struct regulator_dev *rdev) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); if (vreg->ocp_irq) { vreg->ocp_count = 0; vreg->vs_enable_time = ktime_get(); } return qpnp_regulator_common_enable(rdev); } static int qpnp_regulator_common_disable(struct regulator_dev *rdev) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); int rc; rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE, QPNP_COMMON_DISABLE, QPNP_COMMON_ENABLE_MASK, &vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]); if (rc) vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc); else qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_DISABLE); return rc; } /* * Returns 1 if the voltage can be set in the current range, 0 if the voltage * cannot be set in the current range, or errno if an error occurred. */ static int qpnp_regulator_select_voltage_same_range(struct qpnp_regulator *vreg, int min_uV, int max_uV, int *range_sel, int *voltage_sel, unsigned int *selector) { struct qpnp_voltage_range *range = NULL; int uV = min_uV; int i; *range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE]; for (i = 0; i < vreg->set_points->count; i++) { if (vreg->set_points->range[i].range_sel == *range_sel) { range = &vreg->set_points->range[i]; break; } } if (!range) { /* Unknown range */ return 0; } if (uV < range->min_uV && max_uV >= range->min_uV) uV = range->min_uV; if (uV < range->min_uV || uV > range->max_uV) { /* Current range doesn't support the requested voltage. */ return 0; } /* * Force uV to be an allowed set point by applying a ceiling function to * the uV value. */ *voltage_sel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV); uV = *voltage_sel * range->step_uV + range->min_uV; if (uV > max_uV) { /* * No set point in the current voltage range is within the * requested min_uV to max_uV range. */ return 0; } *selector = 0; for (i = 0; i < vreg->set_points->count; i++) { if (uV >= vreg->set_points->range[i].set_point_min_uV && uV <= vreg->set_points->range[i].set_point_max_uV) { *selector += (uV - vreg->set_points->range[i].set_point_min_uV) / vreg->set_points->range[i].step_uV; break; } *selector += vreg->set_points->range[i].n_voltages; } if (*selector >= vreg->set_points->n_voltages) return 0; return 1; } static int qpnp_regulator_select_voltage(struct qpnp_regulator *vreg, int min_uV, int max_uV, int *range_sel, int *voltage_sel, unsigned int *selector) { struct qpnp_voltage_range *range; int uV = min_uV; int lim_min_uV, lim_max_uV, i, range_id, range_max_uV; /* Check if request voltage is outside of physically settable range. */ lim_min_uV = vreg->set_points->range[0].set_point_min_uV; lim_max_uV = vreg->set_points->range[vreg->set_points->count - 1].set_point_max_uV; if (uV < lim_min_uV && max_uV >= lim_min_uV) uV = lim_min_uV; if (uV < lim_min_uV || uV > lim_max_uV) { vreg_err(vreg, "request v=[%d, %d] is outside possible v=[%d, %d]\n", min_uV, max_uV, lim_min_uV, lim_max_uV); return -EINVAL; } /* Find the range which uV is inside of. */ for (i = vreg->set_points->count - 1; i > 0; i--) { range_max_uV = vreg->set_points->range[i - 1].set_point_max_uV; if (uV > range_max_uV && range_max_uV > 0) break; } range_id = i; range = &vreg->set_points->range[range_id]; *range_sel = range->range_sel; /* * Force uV to be an allowed set point by applying a ceiling function to * the uV value. */ *voltage_sel = (uV - range->min_uV + range->step_uV - 1) / range->step_uV; uV = *voltage_sel * range->step_uV + range->min_uV; if (uV > max_uV) { vreg_err(vreg, "request v=[%d, %d] cannot be met by any set point; " "next set point: %d\n", min_uV, max_uV, uV); return -EINVAL; } *selector = 0; for (i = 0; i < range_id; i++) *selector += vreg->set_points->range[i].n_voltages; *selector += (uV - range->set_point_min_uV) / range->step_uV; return 0; } static int qpnp_regulator_delay_for_slewing(struct qpnp_regulator *vreg, int prev_voltage) { int current_voltage; /* Delay for voltage slewing if a step rate is specified. */ if (vreg->slew_rate && vreg->rdesc.ops->get_voltage) { current_voltage = vreg->rdesc.ops->get_voltage(vreg->rdev); if (current_voltage < 0) { vreg_err(vreg, "could not get new voltage, rc=%d\n", current_voltage); return current_voltage; } udelay(DIV_ROUND_UP(abs(current_voltage - prev_voltage), vreg->slew_rate)); } return 0; } static int qpnp_regulator_common_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned int *selector) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); int rc, range_sel, voltage_sel, voltage_old = 0; u8 buf[2]; if (vreg->slew_rate && vreg->rdesc.ops->get_voltage) { voltage_old = vreg->rdesc.ops->get_voltage(rdev); if (voltage_old < 0) { vreg_err(vreg, "could not get current voltage, rc=%d\n", voltage_old); return voltage_old; } } /* * Favor staying in the current voltage range if possible. This avoids * voltage spikes that occur when changing the voltage range. */ rc = qpnp_regulator_select_voltage_same_range(vreg, min_uV, max_uV, &range_sel, &voltage_sel, selector); if (rc == 0) rc = qpnp_regulator_select_voltage(vreg, min_uV, max_uV, &range_sel, &voltage_sel, selector); if (rc < 0) { vreg_err(vreg, "could not set voltage, rc=%d\n", rc); return rc; } buf[0] = range_sel; buf[1] = voltage_sel; if ((vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] != range_sel) && (vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET] == voltage_sel)) { /* Handle latched range change. */ rc = qpnp_vreg_write(vreg, QPNP_COMMON_REG_VOLTAGE_RANGE, buf, 2); if (!rc) { vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] = buf[0]; vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET] = buf[1]; } } else { /* Either write can be optimized away safely. */ rc = qpnp_vreg_write_optimized(vreg, QPNP_COMMON_REG_VOLTAGE_RANGE, buf, &vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE], 2); } if (rc) { vreg_err(vreg, "SPMI write failed, rc=%d\n", rc); } else { rc = qpnp_regulator_delay_for_slewing(vreg, voltage_old); if (rc) return rc; qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_VOLTAGE); } return rc; } static int qpnp_regulator_common_get_voltage(struct regulator_dev *rdev) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); struct qpnp_voltage_range *range = NULL; int range_sel, voltage_sel, i; range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE]; voltage_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET]; for (i = 0; i < vreg->set_points->count; i++) { if (vreg->set_points->range[i].range_sel == range_sel) { range = &vreg->set_points->range[i]; break; } } if (!range) { vreg_err(vreg, "voltage unknown, range %d is invalid\n", range_sel); return VOLTAGE_UNKNOWN; } return range->step_uV * voltage_sel + range->min_uV; } static int qpnp_regulator_single_range_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned int *selector) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); int rc, range_sel, voltage_sel; rc = qpnp_regulator_select_voltage(vreg, min_uV, max_uV, &range_sel, &voltage_sel, selector); if (rc) { vreg_err(vreg, "could not set voltage, rc=%d\n", rc); return rc; } /* * Certain types of regulators do not have a range select register so * only voltage set register needs to be written. */ rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_VOLTAGE_SET, voltage_sel, 0xFF, &vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET]); if (rc) vreg_err(vreg, "SPMI write failed, rc=%d\n", rc); else qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_VOLTAGE); return rc; } static int qpnp_regulator_single_range_get_voltage(struct regulator_dev *rdev) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); struct qpnp_voltage_range *range = &vreg->set_points->range[0]; int voltage_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET]; return range->step_uV * voltage_sel + range->min_uV; } static int qpnp_regulator_ult_lo_smps_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned int *selector) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); int rc, range_sel, voltage_sel; /* * Favor staying in the current voltage range if possible. This avoids * voltage spikes that occur when changing the voltage range. */ rc = qpnp_regulator_select_voltage_same_range(vreg, min_uV, max_uV, &range_sel, &voltage_sel, selector); if (rc == 0) rc = qpnp_regulator_select_voltage(vreg, min_uV, max_uV, &range_sel, &voltage_sel, selector); if (rc < 0) { vreg_err(vreg, "could not set voltage, rc=%d\n", rc); return rc; } /* * Calculate VSET based on range * In case of range 0: voltage_sel is a 7 bit value, can be written * witout any modification. * In case of range 1: voltage_sel is a 5 bit value, bits[7-5] set to * [011]. */ if (range_sel == 1) voltage_sel |= ULT_SMPS_RANGE_SPLIT; rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_VOLTAGE_SET, voltage_sel, 0xFF, &vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET]); if (rc) { vreg_err(vreg, "SPMI write failed, rc=%d\n", rc); } else { vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] = range_sel; qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_VOLTAGE); } return rc; } static int qpnp_regulator_ult_lo_smps_get_voltage(struct regulator_dev *rdev) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); struct qpnp_voltage_range *range = NULL; int range_sel, voltage_sel, i; range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE]; voltage_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET]; for (i = 0; i < vreg->set_points->count; i++) { if (vreg->set_points->range[i].range_sel == range_sel) { range = &vreg->set_points->range[i]; break; } } if (!range) { vreg_err(vreg, "voltage unknown, range %d is invalid\n", range_sel); return VOLTAGE_UNKNOWN; } if (range_sel == 1) voltage_sel &= ~ULT_SMPS_RANGE_SPLIT; return range->step_uV * voltage_sel + range->min_uV; } static int qpnp_regulator_common_list_voltage(struct regulator_dev *rdev, unsigned int selector) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); int uV = 0; int i; if (selector >= vreg->set_points->n_voltages) return 0; for (i = 0; i < vreg->set_points->count; i++) { if (selector < vreg->set_points->range[i].n_voltages) { uV = selector * vreg->set_points->range[i].step_uV + vreg->set_points->range[i].set_point_min_uV; break; } selector -= vreg->set_points->range[i].n_voltages; } return uV; } static int qpnp_regulator_common2_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned int *selector) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); int rc, range_sel, voltage_sel, voltage_old = 0; int voltage_uV, voltage_mV; u8 buf[2]; if (vreg->slew_rate && vreg->rdesc.ops->get_voltage) { voltage_old = vreg->rdesc.ops->get_voltage(rdev); if (voltage_old < 0) { vreg_err(vreg, "could not get current voltage, rc=%d\n", voltage_old); return voltage_old; } } rc = qpnp_regulator_select_voltage(vreg, min_uV, max_uV, &range_sel, &voltage_sel, selector); if (rc < 0) { vreg_err(vreg, "could not set voltage, rc=%d\n", rc); return rc; } voltage_uV = qpnp_regulator_common_list_voltage(rdev, *selector); voltage_mV = voltage_uV / 1000; buf[0] = voltage_mV & 0xFF; buf[1] = (voltage_mV >> 8) & 0xFF; if (vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_LSB] != buf[0] || vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_MSB] != buf[1]) { /* MSB must always be written even if it is unchanged. */ rc = qpnp_vreg_write(vreg, QPNP_COMMON2_REG_VOLTAGE_LSB, buf, 2); if (rc) { vreg_err(vreg, "SPMI write failed, rc=%d\n", rc); return rc; } vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_LSB] = buf[0]; vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_MSB] = buf[1]; rc = qpnp_regulator_delay_for_slewing(vreg, voltage_old); if (rc) return rc; qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_VOLTAGE); } return rc; } static int qpnp_regulator_common2_get_voltage(struct regulator_dev *rdev) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); return (((int)vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_MSB] << 8) | (int)vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_LSB]) * 1000; } static unsigned int qpnp_regulator_common_get_mode(struct regulator_dev *rdev) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); return (vreg->ctrl_reg[QPNP_COMMON_IDX_MODE] & QPNP_COMMON_MODE_HPM_MASK) ? REGULATOR_MODE_NORMAL : REGULATOR_MODE_IDLE; } static int qpnp_regulator_common_set_mode(struct regulator_dev *rdev, unsigned int mode) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); int rc = 0; u8 val; if (mode != REGULATOR_MODE_NORMAL && mode != REGULATOR_MODE_IDLE) { vreg_err(vreg, "invalid mode: %u\n", mode); return -EINVAL; } val = (mode == REGULATOR_MODE_NORMAL ? QPNP_COMMON_MODE_HPM_MASK : 0); rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_MODE, val, QPNP_COMMON_MODE_HPM_MASK, &vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]); if (rc) vreg_err(vreg, "SPMI write failed, rc=%d\n", rc); else qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_MODE); return rc; } static unsigned int qpnp_regulator_common_get_optimum_mode( struct regulator_dev *rdev, int input_uV, int output_uV, int load_uA) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); unsigned int mode; if (load_uA + vreg->system_load >= vreg->hpm_min_load) mode = REGULATOR_MODE_NORMAL; else mode = REGULATOR_MODE_IDLE; return mode; } static unsigned int qpnp_regulator_common2_get_mode(struct regulator_dev *rdev) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); return vreg->ctrl_reg[QPNP_COMMON2_IDX_MODE] == QPNP_COMMON2_MODE_HPM ? REGULATOR_MODE_NORMAL : REGULATOR_MODE_IDLE; } static int qpnp_regulator_common2_set_mode(struct regulator_dev *rdev, unsigned int mode) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); int rc = 0; u8 val = QPNP_COMMON2_MODE_HPM; if (mode != REGULATOR_MODE_NORMAL && mode != REGULATOR_MODE_IDLE) { vreg_err(vreg, "invalid mode: %u\n", mode); return -EINVAL; } /* * Use init_mode as the low power mode unless it is equal to HPM. This * ensures that AUTO mode is re-asserted after switching away from * forced HPM if it was configured initially. */ if (mode == REGULATOR_MODE_NORMAL) val = QPNP_COMMON2_MODE_HPM; else if (vreg->init_mode == QPNP_COMMON2_MODE_HPM) val = QPNP_COMMON2_MODE_LPM; else val = vreg->init_mode; rc = qpnp_vreg_write_optimized(vreg, QPNP_COMMON2_REG_MODE, &val, &vreg->ctrl_reg[QPNP_COMMON2_IDX_MODE], 1); if (rc) vreg_err(vreg, "SPMI write failed, rc=%d\n", rc); else qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_MODE); return rc; } static int qpnp_regulator_common_enable_time(struct regulator_dev *rdev) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); return vreg->enable_time; } static int qpnp_regulator_vs_clear_ocp(struct qpnp_regulator *vreg) { int rc; rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE, QPNP_COMMON_DISABLE, QPNP_COMMON_ENABLE_MASK, &vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]); if (rc) vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc); vreg->vs_enable_time = ktime_get(); rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE, QPNP_COMMON_ENABLE, QPNP_COMMON_ENABLE_MASK, &vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]); if (rc) vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc); if (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_OCP) { pr_info("%s: switch state toggled after OCP event\n", vreg->rdesc.name); } return rc; } static void qpnp_regulator_vs_ocp_work(struct work_struct *work) { struct delayed_work *dwork = container_of(work, struct delayed_work, work); struct qpnp_regulator *vreg = container_of(dwork, struct qpnp_regulator, ocp_work); qpnp_regulator_vs_clear_ocp(vreg); } static irqreturn_t qpnp_regulator_vs_ocp_isr(int irq, void *data) { struct qpnp_regulator *vreg = data; ktime_t ocp_irq_time; s64 ocp_trigger_delay_us; ocp_irq_time = ktime_get(); ocp_trigger_delay_us = ktime_us_delta(ocp_irq_time, vreg->vs_enable_time); /* * Reset the OCP count if there is a large delay between switch enable * and when OCP triggers. This is indicative of a hotplug event as * opposed to a fault. */ if (ocp_trigger_delay_us > QPNP_VS_OCP_FAULT_DELAY_US) vreg->ocp_count = 0; /* Wait for switch output to settle back to 0 V after OCP triggered. */ udelay(QPNP_VS_OCP_FALL_DELAY_US); vreg->ocp_count++; if (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_OCP) { pr_info("%s: VS OCP triggered, count = %d, delay = %lld us\n", vreg->rdesc.name, vreg->ocp_count, ocp_trigger_delay_us); } if (vreg->ocp_count == 1) { /* Immediately clear the over current condition. */ qpnp_regulator_vs_clear_ocp(vreg); } else if (vreg->ocp_count <= vreg->ocp_max_retries) { /* Schedule the over current clear task to run later. */ schedule_delayed_work(&vreg->ocp_work, msecs_to_jiffies(vreg->ocp_retry_delay_ms) + 1); } else { vreg_err(vreg, "OCP triggered %d times; no further retries\n", vreg->ocp_count); } return IRQ_HANDLED; } static const char * const qpnp_print_actions[] = { [QPNP_REGULATOR_ACTION_INIT] = "initial ", [QPNP_REGULATOR_ACTION_ENABLE] = "enable ", [QPNP_REGULATOR_ACTION_DISABLE] = "disable ", [QPNP_REGULATOR_ACTION_VOLTAGE] = "set voltage", [QPNP_REGULATOR_ACTION_MODE] = "set mode ", }; static const char * const qpnp_common2_mode_label[] = { [0] = "RSV", [1] = "RSV", [2] = "RSV", [QPNP_COMMON2_MODE_BYPASS] = "BYP", [QPNP_COMMON2_MODE_RETENTION] = "RET", [QPNP_COMMON2_MODE_LPM] = "LPM", [QPNP_COMMON2_MODE_AUTO] = "AUTO", [QPNP_COMMON2_MODE_HPM] = "HPM", }; static void qpnp_vreg_show_state(struct regulator_dev *rdev, enum qpnp_regulator_action action) { struct qpnp_regulator *vreg = rdev_get_drvdata(rdev); const char *action_label = qpnp_print_actions[action]; unsigned int mode = 0; int uV = 0; const char *mode_label = ""; enum qpnp_regulator_logical_type type; const char *enable_label = ""; char pc_enable_label[5] = {'\0'}; char pc_mode_label[8] = {'\0'}; bool show_req, show_dupe, show_init, has_changed; u8 en_reg, mode_reg; /* Do not print unless appropriate flags are set. */ show_req = qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_REQUEST; show_dupe = qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_DUPLICATE; show_init = qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_INIT; has_changed = vreg->write_count != vreg->prev_write_count; if (!((show_init && action == QPNP_REGULATOR_ACTION_INIT) || (show_req && (has_changed || show_dupe)))) { return; } vreg->prev_write_count = vreg->write_count; type = vreg->logical_type; if (vreg->rdesc.ops->is_enabled) enable_label = vreg->rdesc.ops->is_enabled(rdev) ? "on " : "off"; if (vreg->rdesc.ops->get_voltage) uV = vreg->rdesc.ops->get_voltage(rdev); if (vreg->rdesc.ops->get_mode) { mode = vreg->rdesc.ops->get_mode(rdev); mode_label = mode == REGULATOR_MODE_NORMAL ? "HPM" : "LPM"; } if (type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO || type == QPNP_REGULATOR_LOGICAL_TYPE_VS) { en_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]; pc_enable_label[0] = en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN3_MASK ? '3' : '_'; pc_enable_label[1] = en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN2_MASK ? '2' : '_'; pc_enable_label[2] = en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN1_MASK ? '1' : '_'; pc_enable_label[3] = en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN0_MASK ? '0' : '_'; } switch (type) { case QPNP_REGULATOR_LOGICAL_TYPE_SMPS: mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]; pc_mode_label[0] = mode_reg & QPNP_COMMON_MODE_AUTO_MASK ? 'A' : '_'; pc_mode_label[1] = mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK ? 'W' : '_'; pc_mode_label[2] = mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN3_MASK ? '3' : '_'; pc_mode_label[3] = mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN2_MASK ? '2' : '_'; pc_mode_label[4] = mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN1_MASK ? '1' : '_'; pc_mode_label[5] = mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN0_MASK ? '0' : '_'; pr_info("%s %-11s: %s, v=%7d uV, mode=%s, pc_en=%s, alt_mode=%s\n", action_label, vreg->rdesc.name, enable_label, uV, mode_label, pc_enable_label, pc_mode_label); break; case QPNP_REGULATOR_LOGICAL_TYPE_LDO: mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]; pc_mode_label[0] = mode_reg & QPNP_COMMON_MODE_AUTO_MASK ? 'A' : '_'; pc_mode_label[1] = mode_reg & QPNP_COMMON_MODE_BYPASS_MASK ? 'B' : '_'; pc_mode_label[2] = mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK ? 'W' : '_'; pc_mode_label[3] = mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN3_MASK ? '3' : '_'; pc_mode_label[4] = mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN2_MASK ? '2' : '_'; pc_mode_label[5] = mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN1_MASK ? '1' : '_'; pc_mode_label[6] = mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN0_MASK ? '0' : '_'; pr_info("%s %-11s: %s, v=%7d uV, mode=%s, pc_en=%s, alt_mode=%s\n", action_label, vreg->rdesc.name, enable_label, uV, mode_label, pc_enable_label, pc_mode_label); break; case QPNP_REGULATOR_LOGICAL_TYPE_LN_LDO: mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]; pc_mode_label[0] = mode_reg & QPNP_COMMON_MODE_BYPASS_MASK ? 'B' : '_'; pr_info("%s %-11s: %s, v=%7d uV, alt_mode=%s\n", action_label, vreg->rdesc.name, enable_label, uV, pc_mode_label); break; case QPNP_REGULATOR_LOGICAL_TYPE_VS: mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]; pc_mode_label[0] = mode_reg & QPNP_COMMON_MODE_AUTO_MASK ? 'A' : '_'; pc_mode_label[1] = mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK ? 'W' : '_'; pr_info("%s %-11s: %s, mode=%s, pc_en=%s, alt_mode=%s\n", action_label, vreg->rdesc.name, enable_label, mode_label, pc_enable_label, pc_mode_label); break; case QPNP_REGULATOR_LOGICAL_TYPE_BOOST: pr_info("%s %-11s: %s, v=%7d uV\n", action_label, vreg->rdesc.name, enable_label, uV); break; case QPNP_REGULATOR_LOGICAL_TYPE_BOOST_BYP: pr_info("%s %-11s: %s, v=%7d uV\n", action_label, vreg->rdesc.name, enable_label, uV); break; case QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS: mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]; pc_mode_label[0] = mode_reg & QPNP_COMMON_MODE_AUTO_MASK ? 'A' : '_'; pr_info("%s %-11s: %s, v=%7d uV, mode=%s, alt_mode=%s\n", action_label, vreg->rdesc.name, enable_label, uV, mode_label, pc_mode_label); break; case QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS: case QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS: mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]; pc_mode_label[0] = mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK ? 'W' : '_'; pr_info("%s %-11s: %s, v=%7d uV, mode=%s, alt_mode=%s\n", action_label, vreg->rdesc.name, enable_label, uV, mode_label, pc_mode_label); break; case QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO: mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]; pc_mode_label[0] = mode_reg & QPNP_COMMON_MODE_BYPASS_MASK ? 'B' : '_'; pc_mode_label[1] = mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK ? 'W' : '_'; pr_info("%s %-11s: %s, v=%7d uV, mode=%s, alt_mode=%s\n", action_label, vreg->rdesc.name, enable_label, uV, mode_label, pc_mode_label); break; case QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS2: mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]; mode_label = qpnp_common2_mode_label[mode_reg & QPNP_COMMON2_MODE_MASK]; pr_info("%s %-11s: %s, v=%7d uV, mode=%s\n", action_label, vreg->rdesc.name, enable_label, uV, mode_label); break; default: break; } } static struct regulator_ops qpnp_smps_ops = { .enable = qpnp_regulator_common_enable, .disable = qpnp_regulator_common_disable, .is_enabled = qpnp_regulator_common_is_enabled, .set_voltage = qpnp_regulator_common_set_voltage, .get_voltage = qpnp_regulator_common_get_voltage, .list_voltage = qpnp_regulator_common_list_voltage, .set_mode = qpnp_regulator_common_set_mode, .get_mode = qpnp_regulator_common_get_mode, .get_optimum_mode = qpnp_regulator_common_get_optimum_mode, .enable_time = qpnp_regulator_common_enable_time, }; static struct regulator_ops qpnp_ldo_ops = { .enable = qpnp_regulator_common_enable, .disable = qpnp_regulator_common_disable, .is_enabled = qpnp_regulator_common_is_enabled, .set_voltage = qpnp_regulator_common_set_voltage, .get_voltage = qpnp_regulator_common_get_voltage, .list_voltage = qpnp_regulator_common_list_voltage, .set_mode = qpnp_regulator_common_set_mode, .get_mode = qpnp_regulator_common_get_mode, .get_optimum_mode = qpnp_regulator_common_get_optimum_mode, .enable_time = qpnp_regulator_common_enable_time, }; static struct regulator_ops qpnp_ln_ldo_ops = { .enable = qpnp_regulator_common_enable, .disable = qpnp_regulator_common_disable, .is_enabled = qpnp_regulator_common_is_enabled, .set_voltage = qpnp_regulator_common_set_voltage, .get_voltage = qpnp_regulator_common_get_voltage, .list_voltage = qpnp_regulator_common_list_voltage, .enable_time = qpnp_regulator_common_enable_time, }; static struct regulator_ops qpnp_vs_ops = { .enable = qpnp_regulator_vs_enable, .disable = qpnp_regulator_common_disable, .is_enabled = qpnp_regulator_common_is_enabled, .enable_time = qpnp_regulator_common_enable_time, }; static struct regulator_ops qpnp_boost_ops = { .enable = qpnp_regulator_common_enable, .disable = qpnp_regulator_common_disable, .is_enabled = qpnp_regulator_common_is_enabled, .set_voltage = qpnp_regulator_single_range_set_voltage, .get_voltage = qpnp_regulator_single_range_get_voltage, .list_voltage = qpnp_regulator_common_list_voltage, .enable_time = qpnp_regulator_common_enable_time, }; static struct regulator_ops qpnp_ftsmps_ops = { .enable = qpnp_regulator_common_enable, .disable = qpnp_regulator_common_disable, .is_enabled = qpnp_regulator_common_is_enabled, .set_voltage = qpnp_regulator_common_set_voltage, .get_voltage = qpnp_regulator_common_get_voltage, .list_voltage = qpnp_regulator_common_list_voltage, .set_mode = qpnp_regulator_common_set_mode, .get_mode = qpnp_regulator_common_get_mode, .get_optimum_mode = qpnp_regulator_common_get_optimum_mode, .enable_time = qpnp_regulator_common_enable_time, }; static struct regulator_ops qpnp_ult_lo_smps_ops = { .enable = qpnp_regulator_common_enable, .disable = qpnp_regulator_common_disable, .is_enabled = qpnp_regulator_common_is_enabled, .set_voltage = qpnp_regulator_ult_lo_smps_set_voltage, .get_voltage = qpnp_regulator_ult_lo_smps_get_voltage, .list_voltage = qpnp_regulator_common_list_voltage, .set_mode = qpnp_regulator_common_set_mode, .get_mode = qpnp_regulator_common_get_mode, .get_optimum_mode = qpnp_regulator_common_get_optimum_mode, .enable_time = qpnp_regulator_common_enable_time, }; static struct regulator_ops qpnp_ult_ho_smps_ops = { .enable = qpnp_regulator_common_enable, .disable = qpnp_regulator_common_disable, .is_enabled = qpnp_regulator_common_is_enabled, .set_voltage = qpnp_regulator_single_range_set_voltage, .get_voltage = qpnp_regulator_single_range_get_voltage, .list_voltage = qpnp_regulator_common_list_voltage, .set_mode = qpnp_regulator_common_set_mode, .get_mode = qpnp_regulator_common_get_mode, .get_optimum_mode = qpnp_regulator_common_get_optimum_mode, .enable_time = qpnp_regulator_common_enable_time, }; static struct regulator_ops qpnp_ult_ldo_ops = { .enable = qpnp_regulator_common_enable, .disable = qpnp_regulator_common_disable, .is_enabled = qpnp_regulator_common_is_enabled, .set_voltage = qpnp_regulator_single_range_set_voltage, .get_voltage = qpnp_regulator_single_range_get_voltage, .list_voltage = qpnp_regulator_common_list_voltage, .set_mode = qpnp_regulator_common_set_mode, .get_mode = qpnp_regulator_common_get_mode, .get_optimum_mode = qpnp_regulator_common_get_optimum_mode, .enable_time = qpnp_regulator_common_enable_time, }; static struct regulator_ops qpnp_ftsmps426_ops = { .enable = qpnp_regulator_common_enable, .disable = qpnp_regulator_common_disable, .is_enabled = qpnp_regulator_common_is_enabled, .set_voltage = qpnp_regulator_common2_set_voltage, .get_voltage = qpnp_regulator_common2_get_voltage, .list_voltage = qpnp_regulator_common_list_voltage, .set_mode = qpnp_regulator_common2_set_mode, .get_mode = qpnp_regulator_common2_get_mode, .get_optimum_mode = qpnp_regulator_common_get_optimum_mode, .enable_time = qpnp_regulator_common_enable_time, }; /* Maximum possible digital major revision value */ #define INF 0xFF static const struct qpnp_regulator_mapping supported_regulators[] = { /* type subtype dig_min dig_max ltype ops setpoints hpm_min */ QPNP_VREG_MAP(BUCK, GP_CTL, 0, INF, SMPS, smps, smps, 100000), QPNP_VREG_MAP(LDO, N300, 0, INF, LDO, ldo, nldo1, 10000), QPNP_VREG_MAP(LDO, N600, 0, 0, LDO, ldo, nldo2, 10000), QPNP_VREG_MAP(LDO, N1200, 0, 0, LDO, ldo, nldo2, 10000), QPNP_VREG_MAP(LDO, N600, 1, INF, LDO, ldo, nldo3, 10000), QPNP_VREG_MAP(LDO, N1200, 1, INF, LDO, ldo, nldo3, 10000), QPNP_VREG_MAP(LDO, N600_ST, 0, 0, LDO, ldo, nldo2, 10000), QPNP_VREG_MAP(LDO, N1200_ST, 0, 0, LDO, ldo, nldo2, 10000), QPNP_VREG_MAP(LDO, N600_ST, 1, INF, LDO, ldo, nldo3, 10000), QPNP_VREG_MAP(LDO, N1200_ST, 1, INF, LDO, ldo, nldo3, 10000), QPNP_VREG_MAP(LDO, P50, 0, INF, LDO, ldo, pldo, 5000), QPNP_VREG_MAP(LDO, P150, 0, INF, LDO, ldo, pldo, 10000), QPNP_VREG_MAP(LDO, P300, 0, INF, LDO, ldo, pldo, 10000), QPNP_VREG_MAP(LDO, P600, 0, INF, LDO, ldo, pldo, 10000), QPNP_VREG_MAP(LDO, P1200, 0, INF, LDO, ldo, pldo, 10000), QPNP_VREG_MAP(LDO, LN, 0, INF, LN_LDO, ln_ldo, ln_ldo, 0), QPNP_VREG_MAP(LDO, LV_P50, 0, INF, LDO, ldo, pldo, 5000), QPNP_VREG_MAP(LDO, LV_P150, 0, INF, LDO, ldo, pldo, 10000), QPNP_VREG_MAP(LDO, LV_P300, 0, INF, LDO, ldo, pldo, 10000), QPNP_VREG_MAP(LDO, LV_P600, 0, INF, LDO, ldo, pldo, 10000), QPNP_VREG_MAP(LDO, LV_P1200, 0, INF, LDO, ldo, pldo, 10000), QPNP_VREG_MAP(VS, LV100, 0, INF, VS, vs, none, 0), QPNP_VREG_MAP(VS, LV300, 0, INF, VS, vs, none, 0), QPNP_VREG_MAP(VS, MV300, 0, INF, VS, vs, none, 0), QPNP_VREG_MAP(VS, MV500, 0, INF, VS, vs, none, 0), QPNP_VREG_MAP(VS, HDMI, 0, INF, VS, vs, none, 0), QPNP_VREG_MAP(VS, OTG, 0, INF, VS, vs, none, 0), QPNP_VREG_MAP(BOOST, 5V_BOOST, 0, INF, BOOST, boost, boost, 0), QPNP_VREG_MAP(FTS, FTS_CTL, 0, INF, FTSMPS, ftsmps, ftsmps, 100000), QPNP_VREG_MAP(FTS, FTS2p5_CTL, 0, INF, FTSMPS, ftsmps, ftsmps2p5, 100000), QPNP_VREG_MAP(BOOST_BYP, BB_2A, 0, INF, BOOST_BYP, boost, boost_byp, 0), QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL1, 0, INF, ULT_LO_SMPS, ult_lo_smps, ult_lo_smps, 100000), QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL2, 0, INF, ULT_LO_SMPS, ult_lo_smps, ult_lo_smps, 100000), QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL3, 0, INF, ULT_LO_SMPS, ult_lo_smps, ult_lo_smps, 100000), QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL4, 0, INF, ULT_HO_SMPS, ult_ho_smps, ult_ho_smps, 100000), QPNP_VREG_MAP(ULT_LDO, N300_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000), QPNP_VREG_MAP(ULT_LDO, N600_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000), QPNP_VREG_MAP(ULT_LDO, N1200_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000), QPNP_VREG_MAP(ULT_LDO, LV_P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), QPNP_VREG_MAP(ULT_LDO, LV_P300, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), QPNP_VREG_MAP(ULT_LDO, P600, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), QPNP_VREG_MAP(ULT_LDO, P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), QPNP_VREG_MAP(ULT_LDO, P50, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 5000), QPNP_VREG_MAP(FTS, FTS426, 0, INF, FTSMPS2, ftsmps426, ftsmps426, 100000), }; static int qpnp_regulator_match(struct qpnp_regulator *vreg) { const struct qpnp_regulator_mapping *mapping; struct device_node *node = vreg->pdev->dev.of_node; int rc, i; u32 type_reg[2], dig_major_rev; u8 version[QPNP_COMMON_REG_SUBTYPE - QPNP_COMMON_REG_DIG_MAJOR_REV + 1]; u8 type, subtype; rc = qpnp_vreg_read(vreg, QPNP_COMMON_REG_DIG_MAJOR_REV, version, ARRAY_SIZE(version)); if (rc) { vreg_err(vreg, "could not read version registers, rc=%d\n", rc); return rc; } dig_major_rev = version[QPNP_COMMON_REG_DIG_MAJOR_REV - QPNP_COMMON_REG_DIG_MAJOR_REV]; type = version[QPNP_COMMON_REG_TYPE - QPNP_COMMON_REG_DIG_MAJOR_REV]; subtype = version[QPNP_COMMON_REG_SUBTYPE - QPNP_COMMON_REG_DIG_MAJOR_REV]; /* * Override type and subtype register values if qcom,force-type is * present in the device tree node. */ rc = of_property_read_u32_array(node, "qcom,force-type", type_reg, 2); if (!rc) { type = type_reg[0]; subtype = type_reg[1]; } rc = -ENODEV; for (i = 0; i < ARRAY_SIZE(supported_regulators); i++) { mapping = &supported_regulators[i]; if (mapping->type == type && mapping->subtype == subtype && mapping->revision_min <= dig_major_rev && mapping->revision_max >= dig_major_rev) { vreg->logical_type = mapping->logical_type; vreg->set_points = mapping->set_points; vreg->hpm_min_load = mapping->hpm_min_load; vreg->rdesc.ops = mapping->ops; vreg->rdesc.n_voltages = mapping->set_points->n_voltages; rc = 0; break; } } if (rc) vreg_err(vreg, "unsupported regulator: type=0x%02X, subtype=0x%02X, dig major rev=0x%02X\n", type, subtype, dig_major_rev); return rc; } static int qpnp_regulator_ftsmps_init_slew_rate(struct qpnp_regulator *vreg) { int rc; u8 reg = 0; int step = 0, delay, i, range_sel; struct qpnp_voltage_range *range = NULL; rc = qpnp_vreg_read(vreg, QPNP_COMMON_REG_STEP_CTRL, ®, 1); if (rc) { vreg_err(vreg, "spmi read failed, rc=%d\n", rc); return rc; } range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE]; for (i = 0; i < vreg->set_points->count; i++) { if (vreg->set_points->range[i].range_sel == range_sel) { range = &vreg->set_points->range[i]; break; } } if (!range) { vreg_err(vreg, "range %d is invalid\n", range_sel); return -EINVAL; } step = (reg & QPNP_FTSMPS_STEP_CTRL_STEP_MASK) >> QPNP_FTSMPS_STEP_CTRL_STEP_SHIFT; delay = (reg & QPNP_FTSMPS_STEP_CTRL_DELAY_MASK) >> QPNP_FTSMPS_STEP_CTRL_DELAY_SHIFT; /* slew_rate has units of uV/us. */ vreg->slew_rate = QPNP_FTSMPS_CLOCK_RATE * range->step_uV * (1 << step); vreg->slew_rate /= 1000 * (QPNP_FTSMPS_STEP_DELAY << delay); vreg->slew_rate = vreg->slew_rate * QPNP_FTSMPS_STEP_MARGIN_NUM / QPNP_FTSMPS_STEP_MARGIN_DEN; /* Ensure that the slew rate is greater than 0. */ vreg->slew_rate = max(vreg->slew_rate, 1); return rc; } static int qpnp_regulator_ftsmps2_init_slew_rate(struct qpnp_regulator *vreg) { struct qpnp_voltage_range *range = NULL; int i, rc, delay; u8 reg = 0; rc = qpnp_vreg_read(vreg, QPNP_COMMON2_REG_STEP_CTRL, ®, 1); if (rc) { vreg_err(vreg, "spmi read failed, rc=%d\n", rc); return rc; } /* * Regulators using the common #2 register layout do not have a voltage * range select register. Choose the lowest possible step size to be * conservative in the slew rate calculation. */ for (i = 0; i < vreg->set_points->count; i++) { if (!range || vreg->set_points->range[i].step_uV < range->step_uV) range = &vreg->set_points->range[i]; } if (!range) { vreg_err(vreg, "range is invalid\n"); return -EINVAL; } delay = (reg & QPNP_FTSMPS2_STEP_CTRL_DELAY_MASK) >> QPNP_FTSMPS2_STEP_CTRL_DELAY_SHIFT; /* slew_rate has units of uV/us. */ vreg->slew_rate = QPNP_FTSMPS2_CLOCK_RATE * range->step_uV; vreg->slew_rate /= 1000 * (QPNP_FTSMPS2_STEP_DELAY << delay); vreg->slew_rate = vreg->slew_rate * QPNP_FTSMPS2_STEP_MARGIN_NUM / QPNP_FTSMPS2_STEP_MARGIN_DEN; /* Ensure that the slew rate is greater than 0. */ vreg->slew_rate = max(vreg->slew_rate, 1); return rc; } static int qpnp_regulator_init_registers(struct qpnp_regulator *vreg, struct qpnp_regulator_platform_data *pdata) { int rc, i; enum qpnp_regulator_logical_type type; u8 ctrl_reg[8], reg, mask; type = vreg->logical_type; rc = qpnp_vreg_read(vreg, QPNP_COMMON_REG_VOLTAGE_RANGE, vreg->ctrl_reg, 8); if (rc) { vreg_err(vreg, "spmi read failed, rc=%d\n", rc); return rc; } for (i = 0; i < ARRAY_SIZE(ctrl_reg); i++) ctrl_reg[i] = vreg->ctrl_reg[i]; /* Set up enable pin control. */ if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO || type == QPNP_REGULATOR_LOGICAL_TYPE_VS) && !(pdata->pin_ctrl_enable & QPNP_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT)) { ctrl_reg[QPNP_COMMON_IDX_ENABLE] &= ~QPNP_COMMON_ENABLE_FOLLOW_ALL_MASK; ctrl_reg[QPNP_COMMON_IDX_ENABLE] |= pdata->pin_ctrl_enable & QPNP_COMMON_ENABLE_FOLLOW_ALL_MASK; } /* Set up HPM control. */ if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO || type == QPNP_REGULATOR_LOGICAL_TYPE_VS || type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS) && (pdata->hpm_enable != QPNP_REGULATOR_USE_HW_DEFAULT)) { ctrl_reg[QPNP_COMMON_IDX_MODE] &= ~QPNP_COMMON_MODE_HPM_MASK; ctrl_reg[QPNP_COMMON_IDX_MODE] |= (pdata->hpm_enable ? QPNP_COMMON_MODE_HPM_MASK : 0); } /* Set up auto mode control. */ if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO || type == QPNP_REGULATOR_LOGICAL_TYPE_VS || type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS) && (pdata->auto_mode_enable != QPNP_REGULATOR_USE_HW_DEFAULT)) { ctrl_reg[QPNP_COMMON_IDX_MODE] &= ~QPNP_COMMON_MODE_AUTO_MASK; ctrl_reg[QPNP_COMMON_IDX_MODE] |= (pdata->auto_mode_enable ? QPNP_COMMON_MODE_AUTO_MASK : 0); } if (type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS2) { if (pdata->hpm_enable == QPNP_REGULATOR_ENABLE) ctrl_reg[QPNP_COMMON2_IDX_MODE] = QPNP_COMMON2_MODE_HPM; else if (pdata->auto_mode_enable == QPNP_REGULATOR_ENABLE) ctrl_reg[QPNP_COMMON2_IDX_MODE] = QPNP_COMMON2_MODE_AUTO; else if (pdata->hpm_enable == QPNP_REGULATOR_DISABLE && ctrl_reg[QPNP_COMMON2_IDX_MODE] == QPNP_COMMON2_MODE_HPM) ctrl_reg[QPNP_COMMON2_IDX_MODE] = QPNP_COMMON2_MODE_LPM; else if (pdata->auto_mode_enable == QPNP_REGULATOR_DISABLE && ctrl_reg[QPNP_COMMON2_IDX_MODE] == QPNP_COMMON2_MODE_AUTO) ctrl_reg[QPNP_COMMON2_IDX_MODE] = QPNP_COMMON2_MODE_LPM; } /* Set up mode pin control. */ if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO) && !(pdata->pin_ctrl_hpm & QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) { ctrl_reg[QPNP_COMMON_IDX_MODE] &= ~QPNP_COMMON_MODE_FOLLOW_ALL_MASK; ctrl_reg[QPNP_COMMON_IDX_MODE] |= pdata->pin_ctrl_hpm & QPNP_COMMON_MODE_FOLLOW_ALL_MASK; } if (type == QPNP_REGULATOR_LOGICAL_TYPE_VS && !(pdata->pin_ctrl_hpm & QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) { ctrl_reg[QPNP_COMMON_IDX_MODE] &= ~QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK; ctrl_reg[QPNP_COMMON_IDX_MODE] |= pdata->pin_ctrl_hpm & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK; } if ((type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO) && !(pdata->pin_ctrl_hpm & QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) { ctrl_reg[QPNP_COMMON_IDX_MODE] &= ~QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK; ctrl_reg[QPNP_COMMON_IDX_MODE] |= pdata->pin_ctrl_hpm & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK; } if ((type == QPNP_REGULATOR_LOGICAL_TYPE_LDO || type == QPNP_REGULATOR_LOGICAL_TYPE_LN_LDO || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO) && pdata->bypass_mode_enable != QPNP_REGULATOR_USE_HW_DEFAULT) { ctrl_reg[QPNP_COMMON_IDX_MODE] &= ~QPNP_COMMON_MODE_BYPASS_MASK; ctrl_reg[QPNP_COMMON_IDX_MODE] |= (pdata->bypass_mode_enable ? QPNP_COMMON_MODE_BYPASS_MASK : 0); } /* Set boost current limit. */ if ((type == QPNP_REGULATOR_LOGICAL_TYPE_BOOST || type == QPNP_REGULATOR_LOGICAL_TYPE_BOOST_BYP) && pdata->boost_current_limit != QPNP_BOOST_CURRENT_LIMIT_HW_DEFAULT) { reg = pdata->boost_current_limit; mask = QPNP_BOOST_CURRENT_LIMIT_MASK; rc = qpnp_vreg_masked_read_write(vreg, (type == QPNP_REGULATOR_LOGICAL_TYPE_BOOST ? QPNP_BOOST_REG_CURRENT_LIMIT : QPNP_BOOST_BYP_REG_CURRENT_LIMIT), reg, mask); if (rc) { vreg_err(vreg, "spmi write failed, rc=%d\n", rc); return rc; } } /* Write back any control register values that were modified. */ rc = qpnp_vreg_write_optimized(vreg, QPNP_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, vreg->ctrl_reg, 8); if (rc) { vreg_err(vreg, "spmi write failed, rc=%d\n", rc); return rc; } /* Setup initial range for ULT_LO_SMPS */ if (type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS) { ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] = (ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET] < ULT_SMPS_RANGE_SPLIT) ? 0 : 1; } /* Set pull down. */ if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO || type == QPNP_REGULATOR_LOGICAL_TYPE_VS) && pdata->pull_down_enable != QPNP_REGULATOR_USE_HW_DEFAULT) { reg = pdata->pull_down_enable ? QPNP_COMMON_PULL_DOWN_ENABLE_MASK : 0; rc = qpnp_vreg_write(vreg, QPNP_COMMON_REG_PULL_DOWN, ®, 1); if (rc) { vreg_err(vreg, "spmi write failed, rc=%d\n", rc); return rc; } } if ((type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS || type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS2) && pdata->pull_down_enable != QPNP_REGULATOR_USE_HW_DEFAULT) { /* FTSMPS has other bits in the pull down control register. */ reg = pdata->pull_down_enable ? QPNP_COMMON_PULL_DOWN_ENABLE_MASK : 0; rc = qpnp_vreg_masked_read_write(vreg, QPNP_COMMON_REG_PULL_DOWN, reg, QPNP_COMMON_PULL_DOWN_ENABLE_MASK); if (rc) { vreg_err(vreg, "spmi write failed, rc=%d\n", rc); return rc; } } /* Set soft start for LDO. */ if ((type == QPNP_REGULATOR_LOGICAL_TYPE_LDO || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO) && pdata->soft_start_enable != QPNP_REGULATOR_USE_HW_DEFAULT) { reg = pdata->soft_start_enable ? QPNP_LDO_SOFT_START_ENABLE_MASK : 0; rc = qpnp_vreg_write(vreg, QPNP_LDO_REG_SOFT_START, ®, 1); if (rc) { vreg_err(vreg, "spmi write failed, rc=%d\n", rc); return rc; } } /* Set soft start strength and over current protection for VS. */ if (type == QPNP_REGULATOR_LOGICAL_TYPE_VS) { reg = 0; mask = 0; if (pdata->soft_start_enable != QPNP_REGULATOR_USE_HW_DEFAULT) { reg |= pdata->soft_start_enable ? QPNP_VS_SOFT_START_ENABLE_MASK : 0; mask |= QPNP_VS_SOFT_START_ENABLE_MASK; } if (pdata->vs_soft_start_strength != QPNP_VS_SOFT_START_STR_HW_DEFAULT) { reg |= pdata->vs_soft_start_strength & QPNP_VS_SOFT_START_SEL_MASK; mask |= QPNP_VS_SOFT_START_SEL_MASK; } rc = qpnp_vreg_masked_read_write(vreg, QPNP_VS_REG_SOFT_START, reg, mask); if (rc) { vreg_err(vreg, "spmi write failed, rc=%d\n", rc); return rc; } if (pdata->ocp_enable != QPNP_REGULATOR_USE_HW_DEFAULT) { reg = pdata->ocp_enable ? QPNP_VS_OCP_NO_OVERRIDE : QPNP_VS_OCP_OVERRIDE; rc = qpnp_vreg_write(vreg, QPNP_VS_REG_OCP, ®, 1); if (rc) { vreg_err(vreg, "spmi write failed, rc=%d\n", rc); return rc; } } } /* Calculate the slew rate for FTSMPS regulators. */ if (type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS) { rc = qpnp_regulator_ftsmps_init_slew_rate(vreg); if (rc) { vreg_err(vreg, "failed to initialize step rate, rc=%d\n", rc); return rc; } } /* Calculate the slew rate for FTSMPS2 regulators. */ if (type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS2) { rc = qpnp_regulator_ftsmps2_init_slew_rate(vreg); if (rc) { vreg_err(vreg, "failed to initialize step rate, rc=%d\n", rc); return rc; } } vreg->init_mode = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]; return rc; } /* Fill in pdata elements based on values found in device tree. */ static int qpnp_regulator_get_dt_config(struct platform_device *pdev, struct qpnp_regulator_platform_data *pdata) { unsigned int base; struct device_node *node = pdev->dev.of_node; int rc = 0; pdata->init_data.constraints.input_uV = pdata->init_data.constraints.max_uV; rc = of_property_read_u32(pdev->dev.of_node, "reg", &base); if (rc < 0) { dev_err(&pdev->dev, "Couldn't find reg in node = %s rc = %d\n", pdev->dev.of_node->full_name, rc); return rc; } pdata->base_addr = base; /* OCP IRQ is optional so ignore get errors. */ pdata->ocp_irq = platform_get_irq_byname(pdev, "ocp"); if (pdata->ocp_irq < 0) pdata->ocp_irq = 0; /* * Initialize configuration parameters to use hardware default in case * no value is specified via device tree. */ pdata->auto_mode_enable = QPNP_REGULATOR_USE_HW_DEFAULT; pdata->bypass_mode_enable = QPNP_REGULATOR_USE_HW_DEFAULT; pdata->ocp_enable = QPNP_REGULATOR_USE_HW_DEFAULT; pdata->pull_down_enable = QPNP_REGULATOR_USE_HW_DEFAULT; pdata->soft_start_enable = QPNP_REGULATOR_USE_HW_DEFAULT; pdata->boost_current_limit = QPNP_BOOST_CURRENT_LIMIT_HW_DEFAULT; pdata->pin_ctrl_enable = QPNP_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT; pdata->pin_ctrl_hpm = QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT; pdata->vs_soft_start_strength = QPNP_VS_SOFT_START_STR_HW_DEFAULT; pdata->hpm_enable = QPNP_REGULATOR_USE_HW_DEFAULT; /* These bindings are optional, so it is okay if they are not found. */ of_property_read_u32(node, "qcom,auto-mode-enable", &pdata->auto_mode_enable); of_property_read_u32(node, "qcom,bypass-mode-enable", &pdata->bypass_mode_enable); of_property_read_u32(node, "qcom,ocp-enable", &pdata->ocp_enable); of_property_read_u32(node, "qcom,ocp-max-retries", &pdata->ocp_max_retries); of_property_read_u32(node, "qcom,ocp-retry-delay", &pdata->ocp_retry_delay_ms); of_property_read_u32(node, "qcom,pull-down-enable", &pdata->pull_down_enable); of_property_read_u32(node, "qcom,soft-start-enable", &pdata->soft_start_enable); of_property_read_u32(node, "qcom,boost-current-limit", &pdata->boost_current_limit); of_property_read_u32(node, "qcom,pin-ctrl-enable", &pdata->pin_ctrl_enable); of_property_read_u32(node, "qcom,pin-ctrl-hpm", &pdata->pin_ctrl_hpm); of_property_read_u32(node, "qcom,hpm-enable", &pdata->hpm_enable); of_property_read_u32(node, "qcom,vs-soft-start-strength", &pdata->vs_soft_start_strength); of_property_read_u32(node, "qcom,system-load", &pdata->system_load); of_property_read_u32(node, "qcom,enable-time", &pdata->enable_time); return rc; } static const struct of_device_id spmi_match_table[]; #define MAX_NAME_LEN 127 static int qpnp_regulator_probe(struct platform_device *pdev) { struct regulator_config reg_config = {}; struct qpnp_regulator_platform_data *pdata; struct qpnp_regulator *vreg; struct regulator_desc *rdesc; struct qpnp_regulator_platform_data of_pdata; struct regulator_init_data *init_data; char *reg_name; int rc; bool is_dt; vreg = kzalloc(sizeof(struct qpnp_regulator), GFP_KERNEL); if (!vreg) return -ENOMEM; vreg->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!vreg->regmap) { dev_err(&pdev->dev, "Couldn't get parent's regmap\n"); kfree(vreg); return -EINVAL; } is_dt = of_match_device(spmi_match_table, &pdev->dev); /* Check if device tree is in use. */ if (is_dt) { init_data = of_get_regulator_init_data(&pdev->dev, pdev->dev.of_node, &vreg->rdesc); if (!init_data) { dev_err(&pdev->dev, "%s: unable to allocate memory\n", __func__); kfree(vreg); return -ENOMEM; } memset(&of_pdata, 0, sizeof(struct qpnp_regulator_platform_data)); memcpy(&of_pdata.init_data, init_data, sizeof(struct regulator_init_data)); if (of_get_property(pdev->dev.of_node, "parent-supply", NULL)) of_pdata.init_data.supply_regulator = "parent"; rc = qpnp_regulator_get_dt_config(pdev, &of_pdata); if (rc) { dev_err(&pdev->dev, "%s: DT parsing failed, rc=%d\n", __func__, rc); kfree(vreg); return -ENOMEM; } pdata = &of_pdata; } else { pdata = pdev->dev.platform_data; } if (pdata == NULL) { dev_err(&pdev->dev, "%s: no platform data specified\n", __func__); kfree(vreg); return -EINVAL; } vreg->pdev = pdev; vreg->prev_write_count = -1; vreg->write_count = 0; vreg->base_addr = pdata->base_addr; vreg->enable_time = pdata->enable_time; vreg->system_load = pdata->system_load; vreg->ocp_enable = pdata->ocp_enable; vreg->ocp_irq = pdata->ocp_irq; vreg->ocp_max_retries = pdata->ocp_max_retries; vreg->ocp_retry_delay_ms = pdata->ocp_retry_delay_ms; if (vreg->ocp_max_retries == 0) vreg->ocp_max_retries = QPNP_VS_OCP_DEFAULT_MAX_RETRIES; if (vreg->ocp_retry_delay_ms == 0) vreg->ocp_retry_delay_ms = QPNP_VS_OCP_DEFAULT_RETRY_DELAY_MS; rdesc = &vreg->rdesc; rdesc->id = to_spmi_device(pdev->dev.parent)->ctrl->nr; rdesc->owner = THIS_MODULE; rdesc->type = REGULATOR_VOLTAGE; reg_name = kzalloc(strnlen(pdata->init_data.constraints.name, MAX_NAME_LEN) + 1, GFP_KERNEL); if (!reg_name) { kfree(vreg); return -ENOMEM; } strlcpy(reg_name, pdata->init_data.constraints.name, strnlen(pdata->init_data.constraints.name, MAX_NAME_LEN) + 1); rdesc->name = reg_name; dev_set_drvdata(&pdev->dev, vreg); rc = qpnp_regulator_match(vreg); if (rc) goto bail; if (is_dt && rdesc->ops) { /* Fill in ops and mode masks when using device tree. */ if (rdesc->ops->enable) pdata->init_data.constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS; if (rdesc->ops->get_voltage) pdata->init_data.constraints.valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE; if (rdesc->ops->get_mode) { pdata->init_data.constraints.valid_ops_mask |= REGULATOR_CHANGE_MODE | REGULATOR_CHANGE_DRMS; pdata->init_data.constraints.valid_modes_mask = REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE; } } rc = qpnp_regulator_init_registers(vreg, pdata); if (rc) { vreg_err(vreg, "common initialization failed, rc=%d\n", rc); goto bail; } if (vreg->logical_type != QPNP_REGULATOR_LOGICAL_TYPE_VS) vreg->ocp_irq = 0; if (vreg->ocp_irq) { rc = devm_request_irq(&pdev->dev, vreg->ocp_irq, qpnp_regulator_vs_ocp_isr, IRQF_TRIGGER_RISING, "ocp", vreg); if (rc < 0) { vreg_err(vreg, "failed to request irq %d, rc=%d\n", vreg->ocp_irq, rc); goto bail; } INIT_DELAYED_WORK(&vreg->ocp_work, qpnp_regulator_vs_ocp_work); } reg_config.dev = &pdev->dev; reg_config.init_data = &pdata->init_data; reg_config.driver_data = vreg; reg_config.of_node = pdev->dev.of_node; vreg->rdev = regulator_register(rdesc, ®_config); if (IS_ERR(vreg->rdev)) { rc = PTR_ERR(vreg->rdev); if (rc != -EPROBE_DEFER) vreg_err(vreg, "regulator_register failed, rc=%d\n", rc); goto cancel_ocp_work; } if (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_INIT && vreg->slew_rate) pr_info("%-11s: step rate=%d uV/us\n", vreg->rdesc.name, vreg->slew_rate); qpnp_vreg_show_state(vreg->rdev, QPNP_REGULATOR_ACTION_INIT); return 0; cancel_ocp_work: if (vreg->ocp_irq) cancel_delayed_work_sync(&vreg->ocp_work); bail: if (rc && rc != -EPROBE_DEFER) vreg_err(vreg, "probe failed, rc=%d\n", rc); kfree(vreg->rdesc.name); kfree(vreg); return rc; } static int qpnp_regulator_remove(struct platform_device *pdev) { struct qpnp_regulator *vreg; vreg = dev_get_drvdata(&pdev->dev); dev_set_drvdata(&pdev->dev, NULL); if (vreg) { regulator_unregister(vreg->rdev); if (vreg->ocp_irq) cancel_delayed_work_sync(&vreg->ocp_work); kfree(vreg->rdesc.name); kfree(vreg); } return 0; } static const struct of_device_id spmi_match_table[] = { { .compatible = QPNP_REGULATOR_DRIVER_NAME, }, {} }; static const struct platform_device_id qpnp_regulator_id[] = { { QPNP_REGULATOR_DRIVER_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(spmi, qpnp_regulator_id); static struct platform_driver qpnp_regulator_driver = { .driver = { .name = QPNP_REGULATOR_DRIVER_NAME, .of_match_table = spmi_match_table, .owner = THIS_MODULE, }, .probe = qpnp_regulator_probe, .remove = qpnp_regulator_remove, .id_table = qpnp_regulator_id, }; /* * Pre-compute the number of set points available for each regulator type to * avoid unnecessary calculations later in runtime. */ static void qpnp_regulator_set_point_init(void) { struct qpnp_voltage_set_points **set_points; int i, j, temp; set_points = all_set_points; for (i = 0; i < ARRAY_SIZE(all_set_points); i++) { temp = 0; for (j = 0; j < all_set_points[i]->count; j++) { all_set_points[i]->range[j].n_voltages = (all_set_points[i]->range[j].set_point_max_uV - all_set_points[i]->range[j].set_point_min_uV) / all_set_points[i]->range[j].step_uV + 1; if (all_set_points[i]->range[j].set_point_max_uV == 0) all_set_points[i]->range[j].n_voltages = 0; temp += all_set_points[i]->range[j].n_voltages; } all_set_points[i]->n_voltages = temp; } } /** * qpnp_regulator_init() - register spmi driver for qpnp-regulator * * This initialization function should be called in systems in which driver * registration ordering must be controlled precisely. */ int __init qpnp_regulator_init(void) { static bool has_registered; if (has_registered) return 0; has_registered = true; qpnp_regulator_set_point_init(); return platform_driver_register(&qpnp_regulator_driver); } EXPORT_SYMBOL(qpnp_regulator_init); static void __exit qpnp_regulator_exit(void) { platform_driver_unregister(&qpnp_regulator_driver); } MODULE_DESCRIPTION("QPNP PMIC regulator driver"); MODULE_LICENSE("GPL v2"); arch_initcall(qpnp_regulator_init); module_exit(qpnp_regulator_exit);