#!/bin/ipython import argparse import numpy as np import matplotlib.pyplot as plt import sys ## general defines linecolor = "#%x%x%x" % ( 217, 234, 211 ) markercolor = "#%x%x%x" % ( 217/2, 234/2, 211/2 ) # Draw pretty plot def doc_plot(fig, x, y): plt.figure(fig.number) fig.clear() lines, = plt.plot(x,y) lines.set_color(linecolor) lines.set_linewidth(4) lines.set_marker('o') lines.set_markeredgecolor(markercolor) lines.set_markersize(6) lines.set_markeredgewidth(2) axes = fig.get_axes()[0] axes.set_aspect(1) axes.set_ybound(0,1) axes.set_xbound(0,1) axes.grid(True) axes.xaxis.label.set_text(r'$P_{IN}$') axes.xaxis.label.set_fontsize(14) axes.yaxis.label.set_text(r'$P_{OUT}$') axes.yaxis.label.set_fontsize(14) # Print out interleaved coefficients for HAL3 tonemap curve tags def doc_coeff(x,y): coeffs = np.vstack((x, y)).reshape(-1,order='F') coeff_str = "[ " for val in coeffs[:-1]: coeff_str += "%0.4f, " % val coeff_str += "%0.4f ]" % coeffs[-1] print coeff_str def doc_map(fig, imgMap, index): plt.figure(fig.number) fig.clear() plt.imshow(imgMap - 1, interpolation='nearest') for x in range(0, np.size(imgMap, 1)): for y in range(0, np.size(imgMap, 0)): plt.text(x,y, imgMap[y,x,index], color='white') axes = fig.get_axes()[0] axes.set_xticks(range(0, np.size(imgMap, 1))) axes.set_yticks(range(0, np.size(imgMap, 0))) ## Check arguments parser = argparse.ArgumentParser(description='Draw plots for camera HAL3.x implementation spec doc') parser.add_argument('--save_figures', default=False, action='store_true', help='Save figures as pngs') args = parser.parse_args() ## Linear mapping x_lin = np.linspace(0,1,2) y_lin = x_lin lin_fig = plt.figure(1) doc_plot(lin_fig, x_lin, y_lin) lin_title = 'Linear tonemapping curve' plt.title(lin_title) print lin_title doc_coeff(x_lin, y_lin) if args.save_figures: plt.savefig('linear_tonemap.png',bbox_inches='tight') ## Inverse mapping x_inv = x_lin y_inv = 1 - x_lin inv_fig = plt.figure(2) doc_plot(inv_fig, x_inv, y_inv) inv_title = 'Inverting tonemapping curve' plt.title(inv_title) print inv_title doc_coeff(x_inv, y_inv) if args.save_figures: plt.savefig('inverse_tonemap.png',bbox_inches='tight') ## Gamma 1/2.2 x_gamma = np.linspace(0, 1, 16); y_gamma = x_gamma**(1/2.2) gamma_fig = plt.figure(3) doc_plot(gamma_fig, x_gamma, y_gamma) gamma_title = r'$\gamma=1/2.2$ tonemapping curve' plt.title(gamma_title) print gamma_title doc_coeff(x_gamma, y_gamma) if args.save_figures: plt.savefig('gamma_tonemap.png',bbox_inches='tight') ## sRGB curve x_srgb = x_gamma y_srgb = np.where(x_srgb <= 0.0031308, x_srgb * 12.92, 1.055*x_srgb**(1/2.4)-0.055) srgb_fig = plt.figure(4) doc_plot(srgb_fig, x_srgb, y_srgb) srgb_title = 'sRGB tonemapping curve' plt.title(srgb_title) print srgb_title doc_coeff(x_srgb, y_srgb) if args.save_figures: plt.savefig('srgb_tonemap.png',bbox_inches='tight') ## Sample lens shading map shadingMapSize = np.array([3, 4]) shadingMap1 = np.array( [ 1.3, 1.2, 1.15, 1.2, 1.2, 1.2, 1.15, 1.2, 1.1, 1.2, 1.2, 1.2, 1.3, 1.2, 1.3, 1.3, 1.2, 1.2, 1.25, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.3, 1.25, 1.2, 1.3, 1.2, 1.2, 1.3, 1.2, 1.15, 1.1, 1.2, 1.2, 1.1, 1.0, 1.2, 1.3, 1.15, 1.2, 1.3 ]) redMap = shadingMap1[0::4].reshape(shadingMapSize) greenEMap = shadingMap1[1::4].reshape(shadingMapSize) greenOMap = shadingMap1[2::4].reshape(shadingMapSize) blueMap = shadingMap1[3::4].reshape(shadingMapSize) rgbMap = np.dstack( (redMap, (greenEMap + greenOMap) / 2, blueMap) ) redMap = np.dstack( (redMap, np.zeros(shadingMapSize), np.zeros(shadingMapSize) ) ) greenEMap = np.dstack( (np.zeros(shadingMapSize), greenEMap, np.zeros(shadingMapSize) ) ) greenOMap = np.dstack( (np.zeros(shadingMapSize), greenOMap, np.zeros(shadingMapSize) ) ) blueMap = np.dstack( (np.zeros(shadingMapSize), np.zeros(shadingMapSize), blueMap ) ) redImg = plt.figure(5) doc_map(redImg, redMap, 0) plt.title('Red lens shading map') if args.save_figures: plt.savefig('red_shading.png',bbox_inches='tight') greenEImg = plt.figure(6) doc_map(greenEImg, greenEMap, 1) plt.title('Green (even rows) lens shading map') if args.save_figures: plt.savefig('green_e_shading.png',bbox_inches='tight') greenOImg = plt.figure(7) doc_map(greenOImg, greenOMap, 1) plt.title('Green (odd rows) lens shading map') if args.save_figures: plt.savefig('green_o_shading.png',bbox_inches='tight') blueImg = plt.figure(8) doc_map(blueImg, blueMap, 2) plt.title('Blue lens shading map') if args.save_figures: plt.savefig('blue_shading.png',bbox_inches='tight') rgbImg = plt.figure(9) rgbImg.clear() plt.imshow(1/rgbMap,interpolation='bicubic') axes = rgbImg.get_axes()[0] axes.set_xticks(range(0, np.size(rgbMap, 1))) axes.set_yticks(range(0, np.size(rgbMap, 0))) plt.title('Image of uniform white wall (inverse shading map)') if args.save_figures: plt.savefig('inv_shading.png',bbox_inches='tight') # Rec. 709 x_rec709 = x_gamma y_rec709 = np.where(x_rec709 <= 0.018, x_rec709 * 4.500, 1.099*x_rec709**0.45-0.099) rec709_fig = plt.figure(10) doc_plot(rec709_fig, x_rec709, y_rec709) rec709_title = 'Rec. 709 tonemapping curve' plt.title(rec709_title) print rec709_title doc_coeff(x_rec709, y_rec709) if args.save_figures: plt.savefig('rec709_tonemap.png',bbox_inches='tight') # Show figures plt.show()