123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- /*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "CpuOperationUtils.h"
- #include "OperationResolver.h"
- #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
- #include "Tracing.h"
- namespace android {
- namespace nn {
- namespace l2_norm {
- constexpr char kOperationName[] = "L2_NORMALIZATION";
- constexpr uint32_t kNumInputs = 2;
- constexpr uint32_t kInputTensor = 0;
- constexpr uint32_t kAxisScalar = 1;
- constexpr uint32_t kNumOutputs = 1;
- constexpr uint32_t kOutputTensor = 0;
- namespace {
- inline bool l2normFloat32Impl(const float* inputData, const Shape& inputShape, int32_t axis,
- float* outputData, const Shape& outputShape) {
- NNTRACE_TRANS("l2normFloat32");
- const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
- const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
- const uint32_t innerSize =
- getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
- for (uint32_t outer = 0; outer < outerSize; ++outer) {
- const float* inputBeg = inputData + outer * axisSize * innerSize;
- const float* inputEnd = inputBeg + axisSize * innerSize;
- float* outputBeg = outputData + outer * axisSize * innerSize;
- for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) {
- float sum = 0.0f;
- for (const float* p = inputBeg; p < inputEnd; p += innerSize) {
- float val = *p;
- sum += val * val;
- }
- float l2_norm = std::sqrt(sum);
- float* pOut = outputBeg;
- for (const float* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) {
- *pOut = *p / l2_norm;
- }
- }
- }
- return true;
- }
- inline bool l2normQuant8Impl(const uint8_t* inputData, const Shape& inputShape, int32_t axis,
- uint8_t* outputData, const Shape& outputShape) {
- NNTRACE_TRANS("l2normQuant8");
- const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
- const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
- const uint32_t innerSize =
- getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
- for (uint32_t outer = 0; outer < outerSize; ++outer) {
- const uint8_t* inputBeg = inputData + outer * axisSize * innerSize;
- const uint8_t* inputEnd = inputBeg + axisSize * innerSize;
- uint8_t* outputBeg = outputData + outer * axisSize * innerSize;
- for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) {
- int32_t sum = 0;
- for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize) {
- int32_t val = static_cast<int32_t>(*p) - inputShape.offset;
- sum += val * val;
- }
- int32_t invMultiplier, invShift;
- tflite::GetInvSqrtQuantizedMultiplierExp(sum, -1, &invMultiplier, &invShift);
- uint8_t* pOut = outputBeg;
- for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) {
- int32_t val = static_cast<int32_t>(*p) - inputShape.offset;
- int32_t scaledVal = tflite::MultiplyByQuantizedMultiplierSmallerThanOneExp(
- val * 128, invMultiplier, invShift) +
- 128;
- *pOut = static_cast<uint8_t>(std::min(std::max(scaledVal, 0), 255));
- }
- }
- }
- return true;
- }
- bool l2normFloat32(const float* inputData, const Shape& inputShape, int32_t axis, float* outputData,
- const Shape& outputShape) {
- int32_t ndim = getNumberOfDimensions(inputShape);
- NN_CHECK(handleNegativeAxis(inputShape, &axis));
- // TFLite optimized implementation only supports computation along the last axis
- if (axis == ndim - 1) {
- NNTRACE_COMP("optimized_ops::L2Normalization::float");
- tflite::L2NormalizationParams param = {.input_zero_point = 0};
- tflite::optimized_ops::L2Normalization(param, convertShapeToTflshape(inputShape), inputData,
- convertShapeToTflshape(outputShape), outputData);
- return true;
- } else {
- return l2normFloat32Impl(inputData, inputShape, axis, outputData, outputShape);
- }
- }
- bool l2normFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis,
- _Float16* outputData, const Shape& outputShape) {
- NNTRACE_TRANS("l2normFloat16");
- std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
- convertFloat16ToFloat32(inputData, &inputDataFloat32);
- std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));
- l2normFloat32(inputDataFloat32.data(), inputShape, axis, outputDataFloat32.data(), outputShape);
- convertFloat32ToFloat16(outputDataFloat32, outputData);
- return true;
- }
- bool l2normQuant8(const uint8_t* inputData, const Shape& inputShape, int32_t axis,
- uint8_t* outputData, const Shape& outputShape) {
- int32_t ndim = getNumberOfDimensions(inputShape);
- NN_CHECK(handleNegativeAxis(inputShape, &axis));
- // TFLite optimized implementation only supports computation along the last axis
- if (axis == ndim - 1) {
- NNTRACE_COMP("optimized_ops::L2Normalization::uint8");
- tflite::L2NormalizationParams param = {.input_zero_point = inputShape.offset};
- tflite::optimized_ops::L2Normalization(param, convertShapeToTflshape(inputShape), inputData,
- convertShapeToTflshape(outputShape), outputData);
- return true;
- } else {
- return l2normQuant8Impl(inputData, inputShape, axis, outputData, outputShape);
- }
- }
- } // namespace
- bool validate(const IOperationValidationContext* context) {
- NN_RET_CHECK(context->getNumInputs() == kNumInputs ||
- context->getNumInputs() == kNumInputs - 1);
- NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
- const OperandType inputType = context->getInputType(kInputTensor);
- std::vector<OperandType> inExpectedTypes = {inputType};
- if (inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_QUANT8_ASYMM) {
- NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
- } else if (inputType == OperandType::TENSOR_FLOAT32) {
- NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
- } else {
- NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
- }
- if (context->getNumInputs() == kNumInputs) {
- inExpectedTypes.push_back(OperandType::INT32);
- NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
- } else if (context->getInputShape(kInputTensor).dimensions.size() != 4) {
- NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
- }
- return validateInputTypes(context, inExpectedTypes) &&
- validateOutputTypes(context, {inputType});
- }
- bool prepare(IOperationExecutionContext* context) {
- const Shape& input = context->getInputShape(kInputTensor);
- int32_t numDimensions = getNumberOfDimensions(input);
- int32_t axis = context->getNumInputs() == kNumInputs
- ? context->getInputValue<int32_t>(kAxisScalar)
- : -1;
- NN_RET_CHECK_GE(axis, -numDimensions);
- NN_RET_CHECK_LT(axis, numDimensions);
- Shape output = context->getOutputShape(kOutputTensor);
- output.type = input.type;
- output.dimensions = input.dimensions;
- if (output.type == OperandType::TENSOR_QUANT8_ASYMM) {
- output.scale = 1.0f / 128.0f;
- output.offset = 128;
- } else {
- output.scale = 0;
- output.offset = 0;
- }
- return context->setOutputShape(kOutputTensor, output);
- }
- bool execute(IOperationExecutionContext* context) {
- int32_t axis = context->getNumInputs() == kNumInputs
- ? context->getInputValue<int32_t>(kAxisScalar)
- : -1;
- NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
- switch (context->getInputType(kInputTensor)) {
- case OperandType::TENSOR_FLOAT32:
- return l2normFloat32(context->getInputBuffer<float>(kInputTensor),
- context->getInputShape(kInputTensor), axis,
- context->getOutputBuffer<float>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_FLOAT16:
- return l2normFloat16(context->getInputBuffer<_Float16>(kInputTensor),
- context->getInputShape(kInputTensor), axis,
- context->getOutputBuffer<_Float16>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_QUANT8_ASYMM:
- return l2normQuant8(context->getInputBuffer<uint8_t>(kInputTensor),
- context->getInputShape(kInputTensor), axis,
- context->getOutputBuffer<uint8_t>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- default:
- NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
- }
- }
- } // namespace l2_norm
- NN_REGISTER_OPERATION(L2_NORMALIZATION, l2_norm::kOperationName, l2_norm::validate,
- l2_norm::prepare, l2_norm::execute);
- } // namespace nn
- } // namespace android
|