123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482 |
- /*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "CpuOperationUtils.h"
- #include "OperationResolver.h"
- #include "OperationsUtils.h"
- #include <cfloat>
- #include <cmath>
- #include "Tracing.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- namespace android {
- namespace nn {
- namespace roi_align {
- constexpr char kOperationName[] = "ROI_ALIGN";
- constexpr uint32_t kNumInputs = 10;
- constexpr uint32_t kInputTensor = 0;
- constexpr uint32_t kRoiTensor = 1;
- constexpr uint32_t kBatchSplitTensor = 2;
- constexpr uint32_t kOutputHeightScalar = 3;
- constexpr uint32_t kOutputWidthScalar = 4;
- constexpr uint32_t kHeightStrideSalar = 5;
- constexpr uint32_t kWidthStrideScalar = 6;
- constexpr uint32_t kHeightSamplingRatioScalar = 7;
- constexpr uint32_t kWidthSamplingRatioScalar = 8;
- constexpr uint32_t kLayoutScalar = 9;
- constexpr uint32_t kNumOutputs = 1;
- constexpr uint32_t kOutputTensor = 0;
- namespace {
- template <typename T_Input, typename T_Roi>
- inline bool roiAlignNhwc(const T_Input* inputData, const Shape& inputShape, const T_Roi* roiData,
- const Shape& roiShape, const int32_t* batchSplitData,
- const Shape& batchSplitShape, float heightStride, float widthStride,
- int32_t heightSamplingRatio, int32_t widthSamplingRatio,
- T_Input* outputData, const Shape& outputShape) {
- NNTRACE_TRANS("RoiAlign");
- const uint32_t kRoiDim = 4;
- const T_Roi heightScale = 1.0f / heightStride;
- const T_Roi widthScale = 1.0f / widthStride;
- uint32_t numBatches = getSizeOfDimension(inputShape, 0);
- uint32_t inHeight = getSizeOfDimension(inputShape, 1);
- uint32_t inWidth = getSizeOfDimension(inputShape, 2);
- uint32_t inDepth = getSizeOfDimension(inputShape, 3);
- uint32_t outHeight = getSizeOfDimension(outputShape, 1);
- uint32_t outWidth = getSizeOfDimension(outputShape, 2);
- uint32_t numRois = getSizeOfDimension(roiShape, 0);
- uint32_t roiInfoLength = getSizeOfDimension(roiShape, 1);
- T_Input* outPtr = outputData;
- const T_Roi* roiDataEnd = roiData + numRois * roiInfoLength;
- uint32_t roiIndex = 0;
- for (const T_Roi* roiInfo = roiData; roiInfo < roiDataEnd; roiInfo += kRoiDim, roiIndex++) {
- uint32_t batchId = static_cast<uint32_t>(batchSplitData[roiIndex]);
- // Check for malformed data
- // 1. invalid batch id
- // 2. Region out of bound: x1|x2|y1|y2 < 0 || x1|x2 > inWidth || y1|y2 > inHeight
- // 3. Invalid region: x2 < x1 || y2 < y1
- NN_RET_CHECK_GE(batchId, 0);
- NN_RET_CHECK_LT(batchId, numBatches);
- NN_RET_CHECK(roiInfo[0] >= 0);
- NN_RET_CHECK(roiInfo[1] >= 0);
- NN_RET_CHECK(roiInfo[2] >= 0);
- NN_RET_CHECK(roiInfo[3] >= 0);
- NN_RET_CHECK(roiInfo[0] * widthScale <= inWidth);
- NN_RET_CHECK(roiInfo[1] * heightScale <= inHeight);
- NN_RET_CHECK(roiInfo[2] * widthScale <= inWidth);
- NN_RET_CHECK(roiInfo[3] * heightScale <= inHeight);
- NN_RET_CHECK(roiInfo[0] <= roiInfo[2]);
- NN_RET_CHECK(roiInfo[1] <= roiInfo[3]);
- T_Roi wRoiStart = roiInfo[0] * widthScale;
- T_Roi hRoiStart = roiInfo[1] * heightScale;
- T_Roi wRoiEnd = roiInfo[2] * widthScale;
- T_Roi hRoiEnd = roiInfo[3] * heightScale;
- T_Roi roiWidth = std::max(static_cast<float>(wRoiEnd - wRoiStart), 1.0f);
- T_Roi roiHeight = std::max(static_cast<float>(hRoiEnd - hRoiStart), 1.0f);
- T_Roi wStepSize = roiWidth / static_cast<T_Roi>(outWidth);
- T_Roi hStepSize = roiHeight / static_cast<T_Roi>(outHeight);
- // if samplingRatio = 0, use adaptive value of ceil(roiWidth/outWidth), same for height
- uint32_t wSamplingRatio = widthSamplingRatio > 0 ? widthSamplingRatio
- : std::ceil(static_cast<float>(wStepSize));
- uint32_t hSamplingRatio = heightSamplingRatio > 0
- ? heightSamplingRatio
- : std::ceil(static_cast<float>(hStepSize));
- int32_t numSamplingPoints = wSamplingRatio * hSamplingRatio;
- T_Roi wBinSize = wStepSize / static_cast<T_Roi>(wSamplingRatio);
- T_Roi hBinSize = hStepSize / static_cast<T_Roi>(hSamplingRatio);
- const T_Input* batchBase = inputData + batchId * inHeight * inWidth * inDepth;
- for (uint32_t i = 0; i < outHeight; i++) {
- for (uint32_t j = 0; j < outWidth; j++) {
- T_Roi wStart = wStepSize * j + wRoiStart;
- T_Roi wEnd = wStepSize * (j + 1) + wRoiStart;
- T_Roi hStart = hStepSize * i + hRoiStart;
- T_Roi hEnd = hStepSize * (i + 1) + hRoiStart;
- // initialize output to zero
- for (uint32_t k = 0; k < inDepth; k++) outPtr[k] = 0;
- // calculate the sum of the sampling points
- for (uint32_t yInd = 0; yInd < hSamplingRatio; yInd++) {
- for (uint32_t xInd = 0; xInd < wSamplingRatio; xInd++) {
- T_Roi y = hStart + hBinSize / 2 + hBinSize * yInd;
- T_Roi x = wStart + wBinSize / 2 + wBinSize * xInd;
- // bilinear interpolation of point (x,y)
- // w.r.t box [(x1,y1), (x1,y2), (x2,y1), (x2,y2)]
- uint32_t x1 = std::floor(static_cast<float>(x));
- uint32_t y1 = std::floor(static_cast<float>(y));
- uint32_t x2 = x1 + 1, y2 = y1 + 1;
- T_Roi dx1 = x - static_cast<T_Roi>(x1);
- T_Roi dy1 = y - static_cast<T_Roi>(y1);
- // dealing with out of bound samples
- if (x1 >= inWidth - 1) {
- x1 = x2 = inWidth - 1;
- dx1 = 0;
- }
- if (y1 >= inHeight - 1) {
- y1 = y2 = inHeight - 1;
- dy1 = 0;
- }
- T_Roi dx2 = 1.0f - dx1, dy2 = 1.0f - dy1;
- T_Roi ws[] = {dx2 * dy2, dx1 * dy2, dx2 * dy1, dx1 * dy1};
- uint32_t offsets[] = {y1 * inWidth * inDepth + x1 * inDepth,
- y1 * inWidth * inDepth + x2 * inDepth,
- y2 * inWidth * inDepth + x1 * inDepth,
- y2 * inWidth * inDepth + x2 * inDepth};
- for (uint32_t k = 0; k < inDepth; k++) {
- T_Input interpolation = 0;
- for (uint32_t c = 0; c < 4; c++) {
- interpolation += ws[c] * batchBase[offsets[c] + k];
- }
- outPtr[k] += interpolation;
- }
- }
- }
- // take average
- for (uint32_t k = 0; k < inDepth; k++)
- outPtr[k] /= static_cast<T_Input>(numSamplingPoints);
- outPtr += inDepth;
- }
- }
- }
- return true;
- }
- template <>
- inline bool roiAlignNhwc<uint8_t, uint16_t>(const uint8_t* inputData, const Shape& inputShape,
- const uint16_t* roiData, const Shape& roiShape,
- const int32_t* batchSplitData,
- const Shape& batchSplitShape, float heightStride,
- float widthStride, int32_t heightSamplingRatio,
- int32_t widthSamplingRatio, uint8_t* outputData,
- const Shape& outputShape) {
- NNTRACE_TRANS("RoiAlignQuant8");
- constexpr float wScale = 1.0f / 255.0f;
- constexpr uint32_t kRoiDim = 4;
- const float heightScale = 1.0f / heightStride;
- const float widthScale = 1.0f / widthStride;
- uint32_t numBatches = getSizeOfDimension(inputShape, 0);
- uint32_t inHeight = getSizeOfDimension(inputShape, 1);
- uint32_t inWidth = getSizeOfDimension(inputShape, 2);
- uint32_t inDepth = getSizeOfDimension(inputShape, 3);
- uint32_t outHeight = getSizeOfDimension(outputShape, 1);
- uint32_t outWidth = getSizeOfDimension(outputShape, 2);
- uint32_t numRois = getSizeOfDimension(roiShape, 0);
- uint32_t roiInfoLength = getSizeOfDimension(roiShape, 1);
- uint8_t* outPtr = outputData;
- const uint16_t* roiDataEnd = roiData + numRois * roiInfoLength;
- uint32_t roiIndex = 0;
- for (const uint16_t* roiInfo = roiData; roiInfo < roiDataEnd; roiInfo += kRoiDim, roiIndex++) {
- uint32_t batchId = static_cast<uint32_t>(batchSplitData[roiIndex]);
- float wRoiStart = static_cast<float>(roiInfo[0]) * widthScale * 0.125f;
- float hRoiStart = static_cast<float>(roiInfo[1]) * heightScale * 0.125f;
- float wRoiEnd = static_cast<float>(roiInfo[2]) * widthScale * 0.125f;
- float hRoiEnd = static_cast<float>(roiInfo[3]) * heightScale * 0.125f;
- // Check for malformed data
- // 1. invalid batch id
- // 2. Region out of bound: x1|x2|y1|y2 < 0 || x1|x2 > inWidth || y1|y2 > inHeight
- // 3. Invalid region: x2 < x1 || y2 < y1
- NN_RET_CHECK_GE(batchId, 0);
- NN_RET_CHECK_LT(batchId, numBatches);
- NN_RET_CHECK(wRoiStart <= inWidth);
- NN_RET_CHECK(hRoiStart <= inHeight);
- NN_RET_CHECK(wRoiEnd <= inWidth);
- NN_RET_CHECK(hRoiEnd <= inHeight);
- NN_RET_CHECK_LE(wRoiStart, wRoiEnd);
- NN_RET_CHECK_LE(hRoiStart, hRoiEnd);
- float roiWidth = std::max(wRoiEnd - wRoiStart, 1.0f);
- float roiHeight = std::max(hRoiEnd - hRoiStart, 1.0f);
- float wStepSize = roiWidth / static_cast<float>(outWidth);
- float hStepSize = roiHeight / static_cast<float>(outHeight);
- // if samplingRatio = 0, use adaptive value of ceil(roiWidth/outWidth), same for height
- uint32_t wSamplingRatio =
- widthSamplingRatio > 0 ? widthSamplingRatio : std::ceil(wStepSize);
- uint32_t hSamplingRatio =
- heightSamplingRatio > 0 ? heightSamplingRatio : std::ceil(hStepSize);
- int32_t numSamplingPoints = wSamplingRatio * hSamplingRatio;
- float wBinSize = wStepSize / static_cast<float>(wSamplingRatio);
- float hBinSize = hStepSize / static_cast<float>(hSamplingRatio);
- float realMultiplier = inputShape.scale * wScale / outputShape.scale / numSamplingPoints;
- int32_t outputMultiplier = 0;
- int32_t outputShift = 0;
- if (!QuantizeMultiplierSmallerThanOne(realMultiplier, &outputMultiplier, &outputShift)) {
- return false;
- }
- const uint8_t* batchBase = inputData + batchId * inHeight * inWidth * inDepth;
- for (uint32_t i = 0; i < outHeight; i++) {
- for (uint32_t j = 0; j < outWidth; j++) {
- float wStart = wStepSize * j + wRoiStart;
- float wEnd = wStepSize * (j + 1) + wRoiStart;
- float hStart = hStepSize * i + hRoiStart;
- float hEnd = hStepSize * (i + 1) + hRoiStart;
- std::vector<int32_t> outTemp(inDepth, 0);
- // calculate the sum of the sampling points
- for (uint32_t yInd = 0; yInd < hSamplingRatio; yInd++) {
- for (uint32_t xInd = 0; xInd < wSamplingRatio; xInd++) {
- float y = hStart + hBinSize / 2 + hBinSize * yInd;
- float x = wStart + wBinSize / 2 + wBinSize * xInd;
- // bilinear interpolation of point (x,y)
- // w.r.t box [(x1,y1), (x1,y2), (x2,y1), (x2,y2)]
- uint32_t x1 = std::floor(x), y1 = std::floor(y);
- uint32_t x2 = x1 + 1, y2 = y1 + 1;
- float dx1 = x - static_cast<float>(x1);
- float dy1 = y - static_cast<float>(y1);
- // dealing with out of bound samples
- if (x1 >= inWidth - 1) {
- x1 = x2 = inWidth - 1;
- dx1 = 0;
- }
- if (y1 >= inHeight - 1) {
- y1 = y2 = inHeight - 1;
- dy1 = 0;
- }
- float dx2 = 1.0f - dx1, dy2 = 1.0f - dy1;
- float ws[] = {dx2 * dy2, dx1 * dy2, dx2 * dy1, dx1 * dy1};
- uint32_t offsets[] = {y1 * inWidth * inDepth + x1 * inDepth,
- y1 * inWidth * inDepth + x2 * inDepth,
- y2 * inWidth * inDepth + x1 * inDepth,
- y2 * inWidth * inDepth + x2 * inDepth};
- for (uint32_t k = 0; k < inDepth; k++) {
- int32_t interpolation = 0;
- for (uint32_t c = 0; c < 4; c++) {
- int32_t wQuant = static_cast<int32_t>(std::round(ws[c] / wScale));
- interpolation +=
- wQuant * (static_cast<int32_t>(batchBase[offsets[c] + k]) -
- inputShape.offset);
- }
- outTemp[k] += interpolation;
- }
- }
- }
- // take average and cast to output quantization
- for (uint32_t k = 0; k < inDepth; k++) {
- int32_t raw_out = tflite::MultiplyByQuantizedMultiplier(
- outTemp[k], outputMultiplier, -outputShift) +
- outputShape.offset;
- int32_t clamped_out = std::min(255, std::max(0, raw_out));
- outPtr[k] = static_cast<uint8_t>(clamped_out);
- }
- outPtr += inDepth;
- }
- }
- }
- return true;
- }
- template <typename T_Input, typename T_Roi>
- inline bool roiAlign(const T_Input* inputData, const Shape& inputShape, const T_Roi* roiData,
- const Shape& roiShape, const int32_t* batchSplitData,
- const Shape& batchSplitShape, float heightStride, float widthStride,
- int32_t heightSamplingRatio, int32_t widthSamplingRatio, bool useNchw,
- T_Input* outputData, const Shape& outputShape) {
- InputWithLayout<T_Input> input(useNchw);
- OutputWithLayout<T_Input> output(useNchw);
- NN_RET_CHECK(input.initialize(inputData, inputShape));
- NN_RET_CHECK(output.initialize(outputData, outputShape));
- NN_RET_CHECK(roiAlignNhwc(input.getNhwcBuffer(), input.getNhwcShape(), roiData, roiShape,
- batchSplitData, batchSplitShape, heightStride, widthStride,
- heightSamplingRatio, widthSamplingRatio, output.getNhwcBuffer(),
- output.getNhwcShape()));
- NN_RET_CHECK(output.commit());
- return true;
- }
- } // namespace
- bool validate(const IOperationValidationContext* context) {
- NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
- NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
- std::vector<OperandType> inExpectedTypes;
- auto inputType = context->getInputType(kInputTensor);
- if (inputType == OperandType::TENSOR_FLOAT32) {
- inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
- OperandType::TENSOR_INT32, OperandType::INT32,
- OperandType::INT32, OperandType::FLOAT32,
- OperandType::FLOAT32, OperandType::INT32,
- OperandType::INT32, OperandType::BOOL};
- } else if (inputType == OperandType::TENSOR_FLOAT16) {
- inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16,
- OperandType::TENSOR_INT32, OperandType::INT32,
- OperandType::INT32, OperandType::FLOAT16,
- OperandType::FLOAT16, OperandType::INT32,
- OperandType::INT32, OperandType::BOOL};
- } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
- inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM,
- OperandType::TENSOR_QUANT16_ASYMM,
- OperandType::TENSOR_INT32,
- OperandType::INT32,
- OperandType::INT32,
- OperandType::FLOAT32,
- OperandType::FLOAT32,
- OperandType::INT32,
- OperandType::INT32,
- OperandType::BOOL};
- } else {
- LOG(ERROR) << "Unsupported input tensor type for operation " << kOperationName;
- return false;
- }
- NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
- NN_RET_CHECK(validateOutputTypes(context, {inputType}));
- return validateHalVersion(context, HalVersion::V1_2);
- }
- bool prepare(IOperationExecutionContext* context) {
- bool useNchw = context->getInputValue<bool>(kLayoutScalar);
- Shape input = context->getInputShape(kInputTensor);
- Shape roiShape = context->getInputShape(kRoiTensor);
- Shape batchSplitShape = context->getInputShape(kBatchSplitTensor);
- NN_RET_CHECK_EQ(getNumberOfDimensions(input), 4);
- NN_RET_CHECK_EQ(getNumberOfDimensions(roiShape), 2);
- uint32_t numBatches = getSizeOfDimension(input, 0);
- uint32_t inHeight = getSizeOfDimension(input, useNchw ? 2 : 1);
- uint32_t inWidth = getSizeOfDimension(input, useNchw ? 3 : 2);
- uint32_t inDepth = getSizeOfDimension(input, useNchw ? 1 : 3);
- uint32_t numRois = getSizeOfDimension(roiShape, 0);
- // Every dimension must be positive except for numRois.
- NN_RET_CHECK_GT(numBatches, 0);
- NN_RET_CHECK_GT(inHeight, 0);
- NN_RET_CHECK_GT(inWidth, 0);
- NN_RET_CHECK_GT(inDepth, 0);
- NN_RET_CHECK_EQ(getSizeOfDimension(roiShape, 1), 4);
- NN_RET_CHECK_EQ(getSizeOfDimension(batchSplitShape, 0), numRois);
- int32_t outputHeight = context->getInputValue<int32_t>(kOutputHeightScalar);
- int32_t outputWidth = context->getInputValue<int32_t>(kOutputWidthScalar);
- int32_t heightSamplingRatio = context->getInputValue<int32_t>(kHeightSamplingRatioScalar);
- int32_t widthSamplingRatio = context->getInputValue<int32_t>(kWidthSamplingRatioScalar);
- float heightScale, widthScale;
- if (context->getInputType(kInputTensor) == OperandType::TENSOR_FLOAT16) {
- heightScale = context->getInputValue<_Float16>(kHeightStrideSalar);
- widthScale = context->getInputValue<_Float16>(kWidthStrideScalar);
- } else {
- heightScale = context->getInputValue<float>(kHeightStrideSalar);
- widthScale = context->getInputValue<float>(kWidthStrideScalar);
- }
- NN_RET_CHECK_GT(outputHeight, 0);
- NN_RET_CHECK_GT(outputWidth, 0);
- NN_RET_CHECK_GT(heightScale, 0);
- NN_RET_CHECK_GT(widthScale, 0);
- // Sampling ratio can set to 0 for adaptive value.
- NN_RET_CHECK_GE(heightSamplingRatio, 0);
- NN_RET_CHECK_GE(widthSamplingRatio, 0);
- if (roiShape.type == OperandType::TENSOR_QUANT16_ASYMM) {
- NN_RET_CHECK_EQ(roiShape.scale, 0.125f);
- NN_RET_CHECK_EQ(roiShape.offset, 0);
- }
- Shape output = context->getOutputShape(kOutputTensor);
- output.type = input.type;
- if (useNchw) {
- output.dimensions = {numRois, inDepth, static_cast<uint32_t>(outputHeight),
- static_cast<uint32_t>(outputWidth)};
- } else {
- output.dimensions = {numRois, static_cast<uint32_t>(outputHeight),
- static_cast<uint32_t>(outputWidth), inDepth};
- }
- return context->setOutputShape(kOutputTensor, output);
- }
- bool execute(IOperationExecutionContext* context) {
- // Bypass execution in the case of zero-sized input.
- if (getNumberOfElements(context->getInputShape(kRoiTensor)) == 0) return true;
- switch (context->getInputType(kInputTensor)) {
- case OperandType::TENSOR_FLOAT16:
- return roiAlign(context->getInputBuffer<_Float16>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<_Float16>(kRoiTensor),
- context->getInputShape(kRoiTensor),
- context->getInputBuffer<int32_t>(kBatchSplitTensor),
- context->getInputShape(kBatchSplitTensor),
- context->getInputValue<_Float16>(kHeightStrideSalar),
- context->getInputValue<_Float16>(kWidthStrideScalar),
- context->getInputValue<int32_t>(kHeightSamplingRatioScalar),
- context->getInputValue<int32_t>(kWidthSamplingRatioScalar),
- context->getInputValue<bool>(kLayoutScalar),
- context->getOutputBuffer<_Float16>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_FLOAT32:
- return roiAlign(context->getInputBuffer<float>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<float>(kRoiTensor),
- context->getInputShape(kRoiTensor),
- context->getInputBuffer<int32_t>(kBatchSplitTensor),
- context->getInputShape(kBatchSplitTensor),
- context->getInputValue<float>(kHeightStrideSalar),
- context->getInputValue<float>(kWidthStrideScalar),
- context->getInputValue<int32_t>(kHeightSamplingRatioScalar),
- context->getInputValue<int32_t>(kWidthSamplingRatioScalar),
- context->getInputValue<bool>(kLayoutScalar),
- context->getOutputBuffer<float>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_QUANT8_ASYMM:
- return roiAlign(context->getInputBuffer<uint8_t>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<uint16_t>(kRoiTensor),
- context->getInputShape(kRoiTensor),
- context->getInputBuffer<int32_t>(kBatchSplitTensor),
- context->getInputShape(kBatchSplitTensor),
- context->getInputValue<float>(kHeightStrideSalar),
- context->getInputValue<float>(kWidthStrideScalar),
- context->getInputValue<int32_t>(kHeightSamplingRatioScalar),
- context->getInputValue<int32_t>(kWidthSamplingRatioScalar),
- context->getInputValue<bool>(kLayoutScalar),
- context->getOutputBuffer<uint8_t>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- default:
- NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
- }
- }
- } // namespace roi_align
- NN_REGISTER_OPERATION(ROI_ALIGN, roi_align::kOperationName, roi_align::validate, roi_align::prepare,
- roi_align::execute, .allowZeroSizedInput = true);
- } // namespace nn
- } // namespace android
|