123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- /*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "CpuOperationUtils.h"
- #include "IndexedShapeWrapper.h"
- #include "OperationResolver.h"
- #include <vector>
- namespace android {
- namespace nn {
- namespace slice {
- constexpr char kOperationName[] = "SLICE";
- constexpr uint32_t kNumInputs = 3;
- constexpr uint32_t kInputTensor = 0;
- constexpr uint32_t kBeginTensor = 1;
- constexpr uint32_t kSizeTensor = 2;
- constexpr uint32_t kNumOutputs = 1;
- constexpr uint32_t kOutputTensor = 0;
- namespace {
- template <typename T>
- void addVectors(const std::vector<T>& a, const std::vector<T>& b, std::vector<T>* res) {
- for (int i = 0; i < res->size(); ++i) {
- res->at(i) = a[i] + b[i];
- }
- }
- template <typename T>
- bool evalGeneric(const T* inputData, const Shape& inputShape, const int32_t* beginData,
- const Shape& beginShape, const int32_t* sizeData, const Shape& sizeShape,
- T* outputData, const Shape& outputShape) {
- const int outputSize = getNumberOfElements(outputShape);
- const IndexedShapeWrapper indexedOutput = IndexedShapeWrapper(outputShape);
- const IndexedShapeWrapper indexedInput = IndexedShapeWrapper(inputShape);
- std::vector<uint32_t> outputIndex(getNumberOfDimensions(outputShape), 0);
- std::vector<uint32_t> beginIndex(getSizeOfDimension(beginShape, 0));
- std::vector<uint32_t> inputIndex(getNumberOfDimensions(inputShape));
- for (int i = 0; i < beginIndex.size(); ++i) {
- beginIndex[i] = static_cast<uint32_t>(beginData[i]);
- }
- bool lastIndex = false;
- uint32_t outputOffset;
- uint32_t inputOffset;
- do {
- addVectors(outputIndex, beginIndex, &inputIndex);
- NN_RET_CHECK(indexedOutput.indexToFlatIndex(outputIndex, &outputOffset));
- NN_RET_CHECK(indexedInput.indexToFlatIndex(inputIndex, &inputOffset));
- outputData[outputOffset] = inputData[inputOffset];
- NN_RET_CHECK(indexedOutput.nextIndexInplace(&outputIndex, &lastIndex));
- } while (!lastIndex);
- return true;
- }
- } // namespace
- bool validate(const IOperationValidationContext* context) {
- NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
- NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
- const OperandType inputType = context->getInputType(kInputTensor);
- NN_RET_CHECK(
- inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 ||
- inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM)
- << "Unsupported tensor type for operation " << kOperationName;
- NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
- return validateInputTypes(context,
- {inputType, OperandType::TENSOR_INT32, OperandType::TENSOR_INT32}) &&
- validateOutputTypes(context, {inputType});
- }
- bool prepare(IOperationExecutionContext* context) {
- const Shape& inputShape = context->getInputShape(kInputTensor);
- const int32_t n_dims = getNumberOfDimensions(inputShape);
- NN_RET_CHECK(n_dims > 0);
- const Shape& beginShape = context->getInputShape(kBeginTensor);
- NN_RET_CHECK_EQ(getNumberOfDimensions(beginShape), 1);
- NN_RET_CHECK_EQ(getSizeOfDimension(beginShape, 0), n_dims);
- const Shape& sizeShape = context->getInputShape(kSizeTensor);
- NN_RET_CHECK_EQ(getNumberOfDimensions(sizeShape), 1);
- NN_RET_CHECK_EQ(getSizeOfDimension(sizeShape, 0), n_dims);
- const int32_t* beginData = context->getInputBuffer<int32_t>(kBeginTensor);
- const int32_t* sizeData = context->getInputBuffer<int32_t>(kSizeTensor);
- Shape outputShape = context->getOutputShape(kOutputTensor);
- outputShape.dimensions.resize(n_dims);
- for (int i = 0; i < n_dims; ++i) {
- const int32_t sliceBegin = beginData[i];
- int32_t sliceSize = sizeData[i];
- if (sliceSize == -1) {
- sliceSize = getSizeOfDimension(inputShape, i) - sliceBegin;
- }
- NN_RET_CHECK_LE(beginData[i], getSizeOfDimension(inputShape, i));
- NN_RET_CHECK_GE(sliceSize, 0);
- NN_RET_CHECK_LE(sliceBegin + sliceSize, getSizeOfDimension(inputShape, i));
- outputShape.dimensions[i] = sliceSize;
- }
- return context->setOutputShape(kOutputTensor, outputShape);
- }
- bool execute(IOperationExecutionContext* context) {
- // Bypass execution in the case of zero-sized input.
- if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
- switch (context->getInputType(kInputTensor)) {
- case OperandType::TENSOR_FLOAT16:
- return evalGeneric(context->getInputBuffer<_Float16>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<int32_t>(kBeginTensor),
- context->getInputShape(kBeginTensor),
- context->getInputBuffer<int32_t>(kSizeTensor),
- context->getInputShape(kSizeTensor),
- context->getOutputBuffer<_Float16>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_FLOAT32:
- return evalGeneric(context->getInputBuffer<float>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<int32_t>(kBeginTensor),
- context->getInputShape(kBeginTensor),
- context->getInputBuffer<int32_t>(kSizeTensor),
- context->getInputShape(kSizeTensor),
- context->getOutputBuffer<float>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_INT32:
- return evalGeneric(context->getInputBuffer<int32_t>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<int32_t>(kBeginTensor),
- context->getInputShape(kBeginTensor),
- context->getInputBuffer<int32_t>(kSizeTensor),
- context->getInputShape(kSizeTensor),
- context->getOutputBuffer<int32_t>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_QUANT8_ASYMM:
- return evalGeneric(context->getInputBuffer<uint8_t>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<int32_t>(kBeginTensor),
- context->getInputShape(kBeginTensor),
- context->getInputBuffer<int32_t>(kSizeTensor),
- context->getInputShape(kSizeTensor),
- context->getOutputBuffer<uint8_t>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- default:
- NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
- }
- }
- } // namespace slice
- NN_REGISTER_OPERATION(SLICE, slice::kOperationName, slice::validate, slice::prepare, slice::execute,
- .allowZeroSizedInput = true);
- } // namespace nn
- } // namespace android
|