123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302 |
- /*
- * Copyright (C) 2019 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "CpuOperationUtils.h"
- #include "OperationResolver.h"
- #include "tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h"
- #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
- #include "Tracing.h"
- namespace android {
- namespace nn {
- namespace softmax {
- constexpr char kOperationName[] = "SOFTMAX";
- constexpr uint32_t kNumInputs = 3;
- constexpr uint32_t kInputTensor = 0;
- constexpr uint32_t kBetaScalar = 1;
- constexpr uint32_t kAxisScalar = 2;
- constexpr uint32_t kNumOutputs = 1;
- constexpr uint32_t kOutputTensor = 0;
- namespace {
- inline bool softmaxSlowFloat32(const float* inputData, const Shape& inputShape, const float beta,
- int32_t axis, float* outputData, const Shape& outputShape) {
- NNTRACE_TRANS("softmaxFloatSlow32");
- const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
- const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
- const uint32_t innerSize =
- getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
- for (uint32_t outer = 0; outer < outerSize; ++outer) {
- const float* inputBeg = inputData + outer * axisSize * innerSize;
- const float* inputEnd = inputBeg + axisSize * innerSize;
- float* outputBeg = outputData + outer * axisSize * innerSize;
- for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) {
- // Find max
- float maxValue = -FLT_MAX;
- for (const float* p = inputBeg; p < inputEnd; p += innerSize) {
- maxValue = std::max(maxValue, *p);
- }
- // Compute sum
- float sum = 0.0f;
- for (const float* p = inputBeg; p < inputEnd; p += innerSize) {
- sum += std::exp((*p - maxValue) * beta);
- }
- // Compute result
- float* pOut = outputBeg;
- for (const float* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) {
- *pOut = std::exp((*p - maxValue) * beta) / sum;
- }
- }
- }
- return true;
- }
- bool softmaxFloat32(const float* inputData, const Shape& inputShape, const float beta, int32_t axis,
- float* outputData, const Shape& outputShape) {
- int32_t ndim = getNumberOfDimensions(inputShape);
- NN_CHECK(handleNegativeAxis(inputShape, &axis));
- // TFLite optimized implementation only supports computation along the last axis
- if (axis == ndim - 1) {
- NNTRACE_COMP("optimized_ops::Softmax::float");
- tflite::SoftmaxParams param = {.beta = beta};
- tflite::optimized_ops::Softmax(param, convertShapeToTflshape(inputShape), inputData,
- convertShapeToTflshape(outputShape), outputData);
- return true;
- } else {
- return softmaxSlowFloat32(inputData, inputShape, beta, axis, outputData, outputShape);
- }
- }
- bool softmaxFloat16(const _Float16* inputData, const Shape& inputShape, const float beta,
- int32_t axis, _Float16* outputData, const Shape& outputShape) {
- NNTRACE_TRANS("softmaxFloat16");
- std::vector<float> inputData_float32(getNumberOfElements(inputShape));
- convertFloat16ToFloat32(inputData, &inputData_float32);
- std::vector<float> outputData_float32(getNumberOfElements(outputShape));
- softmaxFloat32(inputData_float32.data(), inputShape, beta, axis, outputData_float32.data(),
- outputShape);
- convertFloat32ToFloat16(outputData_float32, outputData);
- return true;
- }
- bool softmaxQuant8Impl(const uint8_t* inputData, const Shape& inputShape, const float beta,
- int32_t axis, int32_t inputMultiplier, int32_t inputLeftShift, float diffMin,
- uint8_t* outputData, const Shape& outputShape) {
- NNTRACE_TRANS("softmaxQuant8");
- // The representation chosen for the input to the exp() function is Q5.26.
- // We need to leave extra space since values that we skip might be as large as
- // -32 before multiplying by input_beta_multiplier, and therefore as large as
- // -16 afterwards. Note that exp(-8) is definitely not insignificant to
- // accumulation, but exp(-16) definitely is.
- static const int32_t kScaledDiffIntegerBits = 5;
- static const int kAccumulationIntegerBits = 12;
- using FixedPointScaledDiff = gemmlowp::FixedPoint<int32_t, kScaledDiffIntegerBits>;
- using FixedPointAccum = gemmlowp::FixedPoint<int32_t, kAccumulationIntegerBits>;
- using FixedPoint0 = gemmlowp::FixedPoint<int32_t, 0>;
- const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
- const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
- const uint32_t innerSize =
- getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
- for (uint32_t outer = 0; outer < outerSize; ++outer) {
- const uint8_t* inputBeg = inputData + outer * axisSize * innerSize;
- const uint8_t* inputEnd = inputBeg + axisSize * innerSize;
- uint8_t* outputBeg = outputData + outer * axisSize * innerSize;
- for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) {
- // Find max
- uint8_t maxValue = 0;
- for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize) {
- maxValue = std::max(maxValue, *p);
- }
- // Compute sum
- FixedPointAccum sum_of_exps = FixedPointAccum::Zero();
- for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize) {
- int32_t input_diff = static_cast<int32_t>(*p) - maxValue;
- if (input_diff >= diffMin) {
- const int32_t input_diff_rescaled =
- tflite::MultiplyByQuantizedMultiplierGreaterThanOne(
- input_diff, inputMultiplier, inputLeftShift);
- const auto scaled_diff_f8 = FixedPointScaledDiff::FromRaw(input_diff_rescaled);
- sum_of_exps = sum_of_exps + gemmlowp::Rescale<kAccumulationIntegerBits>(
- exp_on_negative_values(scaled_diff_f8));
- }
- }
- uint32_t fixed_sum_of_exps = static_cast<uint32_t>(sum_of_exps.raw());
- int32_t headroom_plus_one = tflite::CountLeadingZeros(fixed_sum_of_exps);
- // This is the number of bits to the left of the binary point above 1.0.
- // Consider fixed_sum_of_exps=1.25. In that case shifted_scale=0.8 and
- // no later adjustment will be needed.
- int32_t num_bits_over_unit = kAccumulationIntegerBits - headroom_plus_one;
- int32_t shifted_sum_minus_one = static_cast<int32_t>(
- (fixed_sum_of_exps << headroom_plus_one) - (static_cast<uint32_t>(1) << 31));
- FixedPoint0 shifted_scale = gemmlowp::one_over_one_plus_x_for_x_in_0_1(
- FixedPoint0::FromRaw(shifted_sum_minus_one));
- // Compute result
- uint8_t* pOut = outputBeg;
- for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) {
- int32_t input_diff = static_cast<int32_t>(*p) - maxValue;
- if (input_diff >= diffMin) {
- const int32_t input_diff_rescaled =
- tflite::MultiplyByQuantizedMultiplierGreaterThanOne(
- input_diff, inputMultiplier, inputLeftShift);
- const auto scaled_diff_f8 = FixedPointScaledDiff::FromRaw(input_diff_rescaled);
- FixedPoint0 exp_in_0 = exp_on_negative_values(scaled_diff_f8);
- int32_t unsat_output = gemmlowp::RoundingDivideByPOT(
- (shifted_scale * exp_in_0).raw(), num_bits_over_unit + 31 - 8);
- *pOut = static_cast<uint8_t>(
- std::max(std::min(unsat_output, static_cast<int32_t>(255)), 0));
- } else {
- *pOut = 0;
- }
- }
- }
- }
- return true;
- }
- bool softmaxQuant8(const uint8_t* inputData, const Shape& inputShape, const float beta,
- int32_t axis, uint8_t* outputData, const Shape& outputShape) {
- int32_t ndim = getNumberOfDimensions(inputShape);
- NN_CHECK(handleNegativeAxis(inputShape, &axis));
- if (outputShape.offset != 0 || outputShape.scale != 1.f / 256) {
- LOG(ERROR) << "incorrect scale / offset for output";
- return false;
- }
- static const int32_t kScaledDiffIntegerBits = 5;
- const double input_beta_real_multiplier =
- std::min(1.0 * beta * inputShape.scale * (1 << (31 - kScaledDiffIntegerBits)),
- (1LL << 31) - 1.0);
- int32_t inputMultiplier = 0, inputLeftShift = 0;
- if (!QuantizeMultiplierGreaterThanOne(input_beta_real_multiplier, &inputMultiplier,
- &inputLeftShift)) {
- return false;
- }
- int32_t diffMin = -CalculateInputRadius(kScaledDiffIntegerBits, inputLeftShift);
- // TFLite optimized implementation only supports computation along the last axis
- if (axis == ndim - 1) {
- NNTRACE_COMP("optimized_ops::Softmax::uint8");
- tflite::SoftmaxParams param = {.beta = beta,
- .input_multiplier = inputMultiplier,
- .input_left_shift = inputLeftShift,
- .diff_min = diffMin};
- tflite::optimized_ops::Softmax(param, convertShapeToTflshape(inputShape), inputData,
- convertShapeToTflshape(outputShape), outputData);
- return true;
- } else {
- return softmaxQuant8Impl(inputData, inputShape, beta, axis, inputMultiplier, inputLeftShift,
- diffMin, outputData, outputShape);
- }
- }
- } // namespace
- bool validate(const IOperationValidationContext* context) {
- NN_RET_CHECK(context->getNumInputs() == kNumInputs ||
- context->getNumInputs() == kNumInputs - 1);
- NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
- auto inputType = context->getInputType(kInputTensor);
- std::vector<OperandType> inExpectedTypes;
- if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM) {
- NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
- inExpectedTypes = {inputType, OperandType::FLOAT32};
- } else if (inputType == OperandType::TENSOR_FLOAT16) {
- NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
- inExpectedTypes = {inputType, OperandType::FLOAT16};
- } else {
- NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
- }
- if (context->getNumInputs() == kNumInputs) {
- NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
- inExpectedTypes.push_back(OperandType::INT32);
- } else {
- const size_t ndim = context->getInputShape(kInputTensor).dimensions.size();
- if (ndim != 2 && ndim != 4 && ndim != 0) {
- NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
- }
- }
- return validateInputTypes(context, inExpectedTypes) &&
- validateOutputTypes(context, {inputType});
- }
- bool prepare(IOperationExecutionContext* context) {
- Shape input = context->getInputShape(kInputTensor);
- float beta = (input.type == OperandType::TENSOR_FLOAT16)
- ? context->getInputValue<_Float16>(kBetaScalar)
- : context->getInputValue<float>(kBetaScalar);
- NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
- NN_RET_CHECK_GT(beta, 0.0f);
- Shape output = context->getOutputShape(kOutputTensor);
- output.dimensions = input.dimensions;
- return context->setOutputShape(kOutputTensor, output);
- }
- bool execute(IOperationExecutionContext* context) {
- // Bypass execution in the case of zero-sized input.
- if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
- int32_t axis = (context->getNumInputs() == kNumInputs)
- ? context->getInputValue<int32_t>(kAxisScalar)
- : -1;
- switch (context->getInputType(kInputTensor)) {
- case OperandType::TENSOR_FLOAT16:
- return softmaxFloat16(context->getInputBuffer<_Float16>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputValue<_Float16>(kBetaScalar), axis,
- context->getOutputBuffer<_Float16>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_FLOAT32:
- return softmaxFloat32(context->getInputBuffer<float>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputValue<float>(kBetaScalar), axis,
- context->getOutputBuffer<float>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_QUANT8_ASYMM:
- return softmaxQuant8(context->getInputBuffer<uint8_t>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputValue<float>(kBetaScalar), axis,
- context->getOutputBuffer<uint8_t>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- default:
- NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
- }
- }
- } // namespace softmax
- NN_REGISTER_OPERATION(SOFTMAX, "SOFTMAX", softmax::validate, softmax::prepare, softmax::execute,
- .allowZeroSizedInput = true);
- } // namespace nn
- } // namespace android
|