123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- /*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "TopK_V2.h"
- #include "OperationsUtils.h"
- #include <algorithm>
- namespace android {
- namespace nn {
- namespace topk_v2 {
- namespace {
- template <typename T>
- bool evalGeneric(const T* inputData, const Shape& inputShape, const int32_t k, T* valuesData,
- const Shape& /*valuesShape*/, int32_t* indicesData,
- const Shape& /*indicesShape*/) {
- const int rowSize = inputShape.dimensions.back();
- const int totalSize = getNumberOfElements(inputShape);
- std::vector<std::pair<T, int32_t>> values(rowSize);
- T* curOutputValue = valuesData;
- int32_t* curOutputIndex = indicesData;
- for (int rowBegin = 0; rowBegin < totalSize; rowBegin += rowSize) {
- for (int i = 0; i < rowSize; ++i) {
- values[i] = std::make_pair(inputData[rowBegin + i], i);
- }
- std::nth_element(values.begin(), values.begin() + (rowSize - k), values.end());
- std::sort(values.begin() + (rowSize - k), values.end());
- std::reverse(values.begin(), values.end());
- for (int i = 0; i < k; ++i) {
- *curOutputValue = values[i].first;
- *curOutputIndex = values[i].second;
- curOutputValue++;
- curOutputIndex++;
- }
- }
- return true;
- }
- } // namespace
- bool prepare(const Shape& input, int32_t k, Shape* values, Shape* indices) {
- NN_CHECK(k > 0);
- NN_CHECK(k <= input.dimensions.back());
- values->dimensions = input.dimensions;
- values->dimensions.back() = k;
- indices->dimensions = input.dimensions;
- indices->dimensions.back() = k;
- return true;
- }
- bool eval(const void* inputData, const Shape& inputShape, const int32_t k, void* valuesData,
- const Shape& valuesShape, void* indicesData, const Shape& indicesShape) {
- switch (inputShape.type) {
- case OperandType::TENSOR_FLOAT16: {
- return evalGeneric(reinterpret_cast<const _Float16*>(inputData), inputShape, k,
- reinterpret_cast<_Float16*>(valuesData), valuesShape,
- reinterpret_cast<int32_t*>(indicesData), indicesShape);
- } break;
- case OperandType::TENSOR_FLOAT32: {
- return evalGeneric(reinterpret_cast<const float*>(inputData), inputShape, k,
- reinterpret_cast<float*>(valuesData), valuesShape,
- reinterpret_cast<int32_t*>(indicesData), indicesShape);
- } break;
- case OperandType::TENSOR_INT32: {
- return evalGeneric(reinterpret_cast<const int32_t*>(inputData), inputShape, k,
- reinterpret_cast<int32_t*>(valuesData), valuesShape,
- reinterpret_cast<int32_t*>(indicesData), indicesShape);
- } break;
- case OperandType::TENSOR_QUANT8_ASYMM: {
- return evalGeneric(reinterpret_cast<const uint8_t*>(inputData), inputShape, k,
- reinterpret_cast<uint8_t*>(valuesData), valuesShape,
- reinterpret_cast<int32_t*>(indicesData), indicesShape);
- } break;
- default: {
- LOG(ERROR) << "Unsupported data type: " << toString(inputShape.type);
- return false;
- }
- }
- }
- } // namespace topk_v2
- } // namespace nn
- } // namespace android
|