123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582 |
- /*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "CpuOperationUtils.h"
- #include "OperationResolver.h"
- #include <cfloat>
- #include <cmath>
- #include "Tracing.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- namespace android {
- namespace nn {
- namespace transpose_conv_2d {
- constexpr char kOperationName[] = "TRANSPOSE_CONV_2D";
- constexpr uint32_t kInputTensor = 0;
- constexpr uint32_t kFilterTensor = 1;
- constexpr uint32_t kBiasTensor = 2;
- constexpr uint32_t kNumOutputs = 1;
- constexpr uint32_t kOutputTensor = 0;
- namespace {
- // If possible we will use this static buffer for the tensor.
- constexpr size_t kStaticBufferSize = 1605632;
- char static_scratch_buffer[kStaticBufferSize];
- // executionMutex is used to protect concurrent access of the static_scratch_buffer.
- // std::mutex is safe for pthreads on Android.
- std::mutex executionMutex;
- struct TransposeConv2dParam {
- int32_t paddingLeft, paddingRight;
- int32_t paddingTop, paddingBottom;
- int32_t strideWidth, strideHeight;
- int32_t activation;
- bool useNchw = false;
- bool initialize(const IOperationExecutionContext* context) {
- uint32_t inCount = context->getNumInputs();
- int32_t paddingImplicit = 0;
- if (inCount == 9) {
- paddingImplicit = context->getInputValue<int32_t>(4);
- strideWidth = context->getInputValue<int32_t>(5);
- strideHeight = context->getInputValue<int32_t>(6);
- activation = context->getInputValue<int32_t>(7);
- useNchw = context->getInputValue<bool>(8);
- Shape filterShape = context->getInputShape(kFilterTensor);
- int32_t filterWidth = getSizeOfDimension(filterShape, 2);
- int32_t filterHeight = getSizeOfDimension(filterShape, 1);
- NN_RET_CHECK_EQ(getNumberOfDimensions(context->getInputShape(3)), 1);
- NN_RET_CHECK_EQ(getSizeOfDimension(context->getInputShape(3), 0), 4);
- const int32_t* outputShapeData = context->getInputBuffer<int32_t>(3);
- int32_t outputWidth = useNchw ? outputShapeData[3] : outputShapeData[2];
- int32_t outputHeight = useNchw ? outputShapeData[2] : outputShapeData[1];
- calculateExplicitPaddingTransposeConv(outputWidth, strideWidth, filterWidth,
- paddingImplicit, &paddingLeft, &paddingRight);
- calculateExplicitPaddingTransposeConv(outputHeight, strideHeight, filterHeight,
- paddingImplicit, &paddingTop, &paddingBottom);
- } else if (inCount == 11) {
- paddingLeft = context->getInputValue<int32_t>(3);
- paddingRight = context->getInputValue<int32_t>(4);
- paddingTop = context->getInputValue<int32_t>(5);
- paddingBottom = context->getInputValue<int32_t>(6);
- strideWidth = context->getInputValue<int32_t>(7);
- strideHeight = context->getInputValue<int32_t>(8);
- activation = context->getInputValue<int32_t>(9);
- useNchw = context->getInputValue<bool>(10);
- } else {
- NN_RET_CHECK_FAIL() << "Unsupported input spec for operation " << kOperationName;
- }
- // paddingRight and paddingBottom in transpose conv may be less than 0 to resolve the
- // ambiguous output shape issue in the case of stride > 1.
- NN_RET_CHECK_GE(paddingLeft, 0);
- NN_RET_CHECK_GE(paddingTop, 0);
- NN_RET_CHECK_GT(strideWidth, 0);
- NN_RET_CHECK_GT(strideHeight, 0);
- NN_RET_CHECK_GE(activation, 0);
- return true;
- }
- };
- #define ANDROID_NN_TRANSPOSE_CONV_PARAMETERS \
- uint32_t numBatches = getSizeOfDimension(inputShape, 0); \
- uint32_t inputHeight = getSizeOfDimension(inputShape, 1); \
- uint32_t inputWidth = getSizeOfDimension(inputShape, 2); \
- uint32_t inputDepth = getSizeOfDimension(inputShape, 3); \
- uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \
- uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \
- uint32_t outputHeight = getSizeOfDimension(outputShape, 1); \
- uint32_t outputWidth = getSizeOfDimension(outputShape, 2); \
- uint32_t outputDepth = getSizeOfDimension(outputShape, 3); \
- int32_t paddingLeft = param.paddingLeft, paddingRight = param.paddingRight; \
- int32_t paddingTop = param.paddingTop, paddingBottom = param.paddingBottom; \
- int32_t strideWidth = param.strideWidth, strideHeight = param.strideHeight; \
- int32_t activation = param.activation;
- bool transposeConvNhwc(const float* inputData, const Shape& inputShape, const float* filterData,
- const Shape& filterShape, const float* biasData, const Shape& biasShape,
- const TransposeConv2dParam& param, float* outputData,
- const Shape& outputShape) {
- NNTRACE_TRANS("transposeConvFloat32");
- ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
- float outputActivationMin = 0.0f, outputActivationMax = 0.0f;
- CalculateActivationRangeFloat(activation, &outputActivationMin, &outputActivationMax);
- memset(outputData, 0, getNumberOfElements(outputShape) * sizeof(float));
- const float* inputBase = inputData;
- float* outputBase = outputData;
- for (uint32_t b = 0; b < numBatches; b++) {
- for (uint32_t h = 0; h < inputHeight; h++) {
- for (uint32_t w = 0; w < inputWidth; w++) {
- int32_t wOutputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft;
- int32_t hOutputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop;
- const float* filterBase = filterData;
- for (uint32_t k = 0; k < outputDepth; k++) {
- for (uint32_t i = 0; i < filterHeight; i++) {
- for (uint32_t j = 0; j < filterWidth; j++, filterBase += inputDepth) {
- int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
- int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
- if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
- wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
- for (uint32_t d = 0; d < inputDepth; d++) {
- uint32_t outputIndex = hOutput * outputWidth * outputDepth +
- wOutput * outputDepth + k;
- outputBase[outputIndex] += inputBase[d] * filterBase[d];
- }
- }
- }
- }
- }
- inputBase += inputDepth;
- }
- }
- outputBase += outputHeight * outputWidth * outputDepth;
- }
- const uint32_t outerSize = numBatches * outputHeight * outputWidth;
- float* outPtr = outputData;
- for (uint32_t i = 0; i < outerSize; i++) {
- for (uint32_t d = 0; d < outputDepth; d++, outPtr++) {
- *outPtr += biasData[d];
- *outPtr = std::max(std::min(*outPtr, outputActivationMax), outputActivationMin);
- }
- }
- return true;
- }
- bool transposeConvNhwc(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData,
- const Shape& filterShape, const int32_t* biasData, const Shape& biasShape,
- const TransposeConv2dParam& param, uint8_t* outputData,
- const Shape& outputShape) {
- NNTRACE_TRANS("transposeConvQuant8");
- ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
- int32_t* tempBuffer = nullptr;
- std::unique_ptr<int32_t[]> bufferGuard;
- uint32_t tempBufferByteSize = getNumberOfElements(outputShape) * sizeof(int32_t);
- if (tempBufferByteSize <= kStaticBufferSize) {
- tempBuffer = reinterpret_cast<int32_t*>(static_scratch_buffer);
- } else {
- tempBuffer = new (std::nothrow) int32_t[tempBufferByteSize / sizeof(int32_t)];
- if (tempBuffer == nullptr) {
- LOG(ERROR) << "ConvTranspose size is too large, not enough memory";
- return false;
- }
- bufferGuard.reset(tempBuffer);
- }
- int32_t inputOffset = -inputShape.offset;
- int32_t filterOffset = -filterShape.offset;
- int32_t outputOffset = outputShape.offset;
- double realMultiplier = 0.0;
- int32_t outputMultiplier = 0;
- int32_t outputShift = 0;
- NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape,
- &realMultiplier));
- int exponent;
- NN_RET_CHECK(QuantizeMultiplier(realMultiplier, &outputMultiplier, &exponent));
- outputShift = -exponent;
- int32_t outputActivationMin = 0, outputActivationMax = 0;
- CalculateActivationRangeUint8(activation, outputShape, &outputActivationMin,
- &outputActivationMax);
- // Prevent concurrent executions that may access the scratch buffer
- std::unique_lock<std::mutex> lock(executionMutex);
- memset(tempBuffer, 0, tempBufferByteSize);
- const uint8_t* inputPtr = inputData;
- int32_t* outputBase = tempBuffer;
- for (uint32_t b = 0; b < numBatches; b++) {
- for (uint32_t h = 0; h < inputHeight; h++) {
- for (uint32_t w = 0; w < inputWidth; w++) {
- for (uint32_t d = 0; d < inputDepth; d++) {
- int32_t wOutputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft;
- int32_t hOutputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop;
- for (uint32_t i = 0; i < filterHeight; i++) {
- for (uint32_t j = 0; j < filterWidth; j++) {
- for (uint32_t k = 0; k < outputDepth; k++) {
- int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
- int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
- if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
- wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
- uint32_t filterIndex =
- k * filterHeight * filterWidth * inputDepth +
- i * filterWidth * inputDepth + j * inputDepth + d;
- uint32_t outputIndex = hOutput * outputWidth * outputDepth +
- wOutput * outputDepth + k;
- outputBase[outputIndex] +=
- (static_cast<int32_t>(*inputPtr) + inputOffset) *
- (static_cast<int32_t>(filterData[filterIndex]) +
- filterOffset);
- }
- }
- }
- }
- inputPtr++;
- }
- }
- }
- outputBase += outputHeight * outputWidth * outputDepth;
- }
- const uint32_t outerSize = numBatches * outputHeight * outputWidth;
- int32_t* bufferPtr = tempBuffer;
- uint8_t* outPtr = outputData;
- for (uint32_t i = 0; i < outerSize; i++) {
- for (uint32_t d = 0; d < outputDepth; d++, bufferPtr++, outPtr++) {
- int32_t outVal = *bufferPtr + biasData[d];
- outVal = tflite::MultiplyByQuantizedMultiplier(outVal, outputMultiplier, -outputShift);
- outVal += outputOffset;
- outVal = std::max(std::min(outVal, outputActivationMax), outputActivationMin);
- *outPtr = static_cast<uint8_t>(outVal);
- }
- }
- return true;
- }
- bool transposeConvNhwc(const _Float16* inputData, const Shape& inputShape,
- const _Float16* filterData, const Shape& filterShape,
- const _Float16* biasData, const Shape& biasShape,
- const TransposeConv2dParam& param, _Float16* outputData,
- const Shape& outputShape) {
- NNTRACE_TRANS("transposeConvFloat16");
- std::vector<float> inputData_float32(getNumberOfElements(inputShape));
- std::vector<float> filterData_float32(getNumberOfElements(filterShape));
- std::vector<float> biasData_float32(getNumberOfElements(biasShape));
- std::vector<float> outputData_float32(getNumberOfElements(outputShape));
- convertFloat16ToFloat32(inputData, &inputData_float32);
- convertFloat16ToFloat32(filterData, &filterData_float32);
- convertFloat16ToFloat32(biasData, &biasData_float32);
- transposeConvNhwc(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape,
- biasData_float32.data(), biasShape, param, outputData_float32.data(),
- outputShape);
- convertFloat32ToFloat16(outputData_float32, outputData);
- return true;
- }
- template <typename T_Input, typename T_Filter, typename T_Bias>
- bool transposeConv(const T_Input* inputData, const Shape& inputShape, const T_Filter* filterData,
- const Shape& filterShape, const T_Bias* biasData, const Shape& biasShape,
- const TransposeConv2dParam& param, T_Input* outputData,
- const Shape& outputShape) {
- InputWithLayout<T_Input> input(param.useNchw);
- OutputWithLayout<T_Input> output(param.useNchw);
- NN_RET_CHECK(input.initialize(inputData, inputShape));
- NN_RET_CHECK(output.initialize(outputData, outputShape));
- NN_RET_CHECK(transposeConvNhwc(input.getNhwcBuffer(), input.getNhwcShape(), filterData,
- filterShape, biasData, biasShape, param, output.getNhwcBuffer(),
- output.getNhwcShape()));
- NN_RET_CHECK(output.commit());
- return true;
- }
- bool transposeConvQuant8PerChannelNhwc(const uint8_t* inputData, const Shape& inputShape,
- const int8_t* filterData, const Shape& filterShape,
- const float* filterScales, const int32_t* biasData,
- const Shape& biasShape, const TransposeConv2dParam& param,
- uint8_t* outputData, const Shape& outputShape) {
- NNTRACE_TRANS("transposeConvQuant8PerChannel");
- ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
- int32_t* tempBuffer = nullptr;
- std::unique_ptr<int32_t[]> bufferGuard;
- uint32_t tempBufferByteSize = getNumberOfElements(outputShape) * sizeof(int32_t);
- if (tempBufferByteSize <= kStaticBufferSize) {
- tempBuffer = reinterpret_cast<int32_t*>(static_scratch_buffer);
- } else {
- tempBuffer = new (std::nothrow) int32_t[tempBufferByteSize / sizeof(int32_t)];
- if (tempBuffer == nullptr) {
- LOG(ERROR) << "ConvTranspose size is too large, not enough memory";
- return false;
- }
- bufferGuard.reset(tempBuffer);
- }
- int32_t inputOffset = -inputShape.offset;
- int32_t outputOffset = outputShape.offset;
- std::vector<double> realMultiplier(outputDepth, 0.0);
- std::vector<int32_t> outputMultiplier(outputDepth, 0);
- std::vector<int32_t> outputShift(outputDepth, 0);
- for (int i = 0; i < outputDepth; ++i) {
- Shape filterChannelShape = filterShape;
- filterChannelShape.scale = filterScales[i];
- Shape biasChannelShape = biasShape;
- biasChannelShape.scale = filterScales[i] * inputShape.scale;
- NN_RET_CHECK(GetQuantizedConvolutionMultipler(
- inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i]));
- int exponent;
- NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent));
- outputShift[i] = -exponent;
- }
- int32_t outputActivationMin = 0, outputActivationMax = 0;
- CalculateActivationRangeUint8(activation, outputShape, &outputActivationMin,
- &outputActivationMax);
- // Prevent concurrent executions that may access the scratch buffer
- std::unique_lock<std::mutex> lock(executionMutex);
- memset(tempBuffer, 0, tempBufferByteSize);
- const uint8_t* inputPtr = inputData;
- int32_t* outputBase = tempBuffer;
- for (uint32_t b = 0; b < numBatches; b++) {
- for (uint32_t h = 0; h < inputHeight; h++) {
- for (uint32_t w = 0; w < inputWidth; w++) {
- for (uint32_t d = 0; d < inputDepth; d++) {
- int32_t wOutputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft;
- int32_t hOutputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop;
- for (uint32_t i = 0; i < filterHeight; i++) {
- for (uint32_t j = 0; j < filterWidth; j++) {
- for (uint32_t k = 0; k < outputDepth; k++) {
- int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
- int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
- if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
- wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
- uint32_t filterIndex =
- k * filterHeight * filterWidth * inputDepth +
- i * filterWidth * inputDepth + j * inputDepth + d;
- uint32_t outputIndex = hOutput * outputWidth * outputDepth +
- wOutput * outputDepth + k;
- outputBase[outputIndex] +=
- (static_cast<int32_t>(*inputPtr) + inputOffset) *
- static_cast<int32_t>(filterData[filterIndex]);
- }
- }
- }
- }
- inputPtr++;
- }
- }
- }
- outputBase += outputHeight * outputWidth * outputDepth;
- }
- const uint32_t outerSize = numBatches * outputHeight * outputWidth;
- int32_t* bufferPtr = tempBuffer;
- uint8_t* outPtr = outputData;
- for (uint32_t i = 0; i < outerSize; i++) {
- for (uint32_t d = 0; d < outputDepth; d++, bufferPtr++, outPtr++) {
- int32_t outVal = *bufferPtr + biasData[d];
- outVal = tflite::MultiplyByQuantizedMultiplier(outVal, outputMultiplier[d],
- -outputShift[d]);
- outVal += outputOffset;
- outVal = std::max(std::min(outVal, outputActivationMax), outputActivationMin);
- *outPtr = static_cast<uint8_t>(outVal);
- }
- }
- return true;
- }
- bool transposeConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape,
- const int8_t* filterData, const Shape& filterShape,
- const float* filterScales, const int32_t* biasData,
- const Shape& biasShape, const TransposeConv2dParam& param,
- uint8_t* outputData, const Shape& outputShape) {
- InputWithLayout<uint8_t> input(param.useNchw);
- OutputWithLayout<uint8_t> output(param.useNchw);
- NN_RET_CHECK(input.initialize(inputData, inputShape));
- NN_RET_CHECK(output.initialize(outputData, outputShape));
- NN_RET_CHECK(transposeConvQuant8PerChannelNhwc(
- input.getNhwcBuffer(), input.getNhwcShape(), filterData, filterShape, filterScales,
- biasData, biasShape, param, output.getNhwcBuffer(), output.getNhwcShape()));
- NN_RET_CHECK(output.commit());
- return true;
- }
- #undef ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
- } // namespace
- bool validate(const IOperationValidationContext* context) {
- NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
- auto inputCount = context->getNumInputs();
- auto inputType = context->getInputType(kInputTensor);
- auto filterType = context->getInputType(kFilterTensor);
- std::vector<OperandType> inExpectedTypes;
- if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_FLOAT16) {
- inExpectedTypes = {inputType, inputType, inputType};
- } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
- NN_RET_CHECK(filterType == OperandType::TENSOR_QUANT8_ASYMM ||
- filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)
- << "Unsupported filter tensor type for operation " << kOperationName;
- if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
- NN_RET_CHECK_EQ(context->getInputExtraParams(kFilterTensor).channelQuant().channelDim,
- 0)
- << "Unsupported filter tensor channel dimension for operation "
- << kOperationName;
- }
- inExpectedTypes = {inputType, filterType, OperandType::TENSOR_INT32};
- } else {
- NN_RET_CHECK_FAIL() << "Unsupported input tensor type for operation " << kOperationName;
- }
- std::vector<OperandType> argExpectedTypes;
- if (inputCount == 11) {
- argExpectedTypes = {OperandType::INT32, OperandType::INT32, OperandType::INT32,
- OperandType::INT32, OperandType::INT32, OperandType::INT32,
- OperandType::INT32, OperandType::BOOL};
- } else {
- argExpectedTypes = {OperandType::TENSOR_INT32, OperandType::INT32, OperandType::INT32,
- OperandType::INT32, OperandType::INT32, OperandType::BOOL};
- }
- inExpectedTypes.insert(inExpectedTypes.end(), argExpectedTypes.begin(), argExpectedTypes.end());
- NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
- return validateInputTypes(context, inExpectedTypes) &&
- validateOutputTypes(context, {inputType});
- }
- bool prepare(IOperationExecutionContext* context) {
- Shape input = context->getInputShape(kInputTensor);
- Shape filter = context->getInputShape(kFilterTensor);
- Shape bias = context->getInputShape(kBiasTensor);
- if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
- NN_RET_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM);
- } else {
- NN_RET_CHECK(input.type == filter.type);
- }
- if (input.type == OperandType::TENSOR_QUANT8_ASYMM) {
- NN_RET_CHECK(bias.type == OperandType::TENSOR_INT32);
- } else {
- NN_RET_CHECK(input.type == bias.type);
- }
- NN_RET_CHECK_EQ(getNumberOfDimensions(input), 4);
- NN_RET_CHECK_EQ(getNumberOfDimensions(filter), 4);
- NN_RET_CHECK_EQ(getNumberOfDimensions(bias), 1);
- TransposeConv2dParam param;
- NN_RET_CHECK(param.initialize(context));
- uint32_t batches = getSizeOfDimension(input, 0);
- uint32_t height = getSizeOfDimension(input, param.useNchw ? 2 : 1);
- uint32_t width = getSizeOfDimension(input, param.useNchw ? 3 : 2);
- uint32_t channels_in = getSizeOfDimension(input, param.useNchw ? 1 : 3);
- uint32_t channels_out = getSizeOfDimension(filter, 0);
- uint32_t filterHeight = getSizeOfDimension(filter, 1);
- uint32_t filterWidth = getSizeOfDimension(filter, 2);
- // Only batches can be zero.
- NN_RET_CHECK_EQ(channels_in, getSizeOfDimension(filter, 3));
- NN_RET_CHECK_EQ(channels_out, getSizeOfDimension(bias, 0));
- NN_RET_CHECK_GT(height, 0);
- NN_RET_CHECK_GT(width, 0);
- NN_RET_CHECK_GT(channels_in, 0);
- NN_RET_CHECK_GT(channels_out, 0);
- NN_RET_CHECK_GT(filterWidth, 0);
- NN_RET_CHECK_GT(filterHeight, 0);
- uint32_t outWidth = computeOutSizeTransposeConv(width, filterWidth, param.strideWidth,
- param.paddingLeft, param.paddingRight);
- uint32_t outHeight = computeOutSizeTransposeConv(height, filterHeight, param.strideHeight,
- param.paddingTop, param.paddingBottom);
- NN_RET_CHECK_GT(outWidth, 0);
- NN_RET_CHECK_GT(outHeight, 0);
- Shape output = context->getOutputShape(kOutputTensor);
- output.type = input.type;
- if (param.useNchw) {
- output.dimensions = {batches, channels_out, outHeight, outWidth};
- } else {
- output.dimensions = {batches, outHeight, outWidth, channels_out};
- }
- return context->setOutputShape(kOutputTensor, output);
- }
- bool execute(IOperationExecutionContext* context) {
- // Bypass execution in the case of zero-sized input.
- if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
- TransposeConv2dParam param;
- NN_RET_CHECK(param.initialize(context));
- switch (context->getInputType(kInputTensor)) {
- case OperandType::TENSOR_FLOAT32:
- return transposeConv(context->getInputBuffer<float>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<float>(kFilterTensor),
- context->getInputShape(kFilterTensor),
- context->getInputBuffer<float>(kBiasTensor),
- context->getInputShape(kBiasTensor), param,
- context->getOutputBuffer<float>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_FLOAT16:
- return transposeConv(context->getInputBuffer<_Float16>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<_Float16>(kFilterTensor),
- context->getInputShape(kFilterTensor),
- context->getInputBuffer<_Float16>(kBiasTensor),
- context->getInputShape(kBiasTensor), param,
- context->getOutputBuffer<_Float16>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_QUANT8_ASYMM:
- if (context->getInputType(kFilterTensor) ==
- OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
- return transposeConvQuant8PerChannel(
- context->getInputBuffer<uint8_t>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<int8_t>(kFilterTensor),
- context->getInputShape(kFilterTensor),
- context->getInputExtraParams(kFilterTensor).channelQuant().scales.data(),
- context->getInputBuffer<int32_t>(kBiasTensor),
- context->getInputShape(kBiasTensor), param,
- context->getOutputBuffer<uint8_t>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- } else if (context->getInputType(kFilterTensor) == OperandType::TENSOR_QUANT8_ASYMM) {
- return transposeConv(context->getInputBuffer<uint8_t>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<uint8_t>(kFilterTensor),
- context->getInputShape(kFilterTensor),
- context->getInputBuffer<int32_t>(kBiasTensor),
- context->getInputShape(kBiasTensor), param,
- context->getOutputBuffer<uint8_t>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- } else {
- NN_RET_CHECK_FAIL() << "Unsupported filter type for operation " << kOperationName;
- }
- default:
- NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
- }
- }
- } // namespace transpose_conv_2d
- NN_REGISTER_OPERATION(TRANSPOSE_CONV_2D, transpose_conv_2d::kOperationName,
- transpose_conv_2d::validate, transpose_conv_2d::prepare,
- transpose_conv_2d::execute, .allowZeroSizedInput = true);
- } // namespace nn
- } // namespace android
|