ev6-csum_ipv6_magic.S 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. /*
  2. * arch/alpha/lib/ev6-csum_ipv6_magic.S
  3. * 21264 version contributed by Rick Gorton <[email protected]>
  4. *
  5. * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
  6. * struct in6_addr *daddr,
  7. * __u32 len,
  8. * unsigned short proto,
  9. * unsigned int csum);
  10. *
  11. * Much of the information about 21264 scheduling/coding comes from:
  12. * Compiler Writer's Guide for the Alpha 21264
  13. * abbreviated as 'CWG' in other comments here
  14. * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
  15. * Scheduling notation:
  16. * E - either cluster
  17. * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
  18. * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
  19. * Try not to change the actual algorithm if possible for consistency.
  20. * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
  21. *
  22. * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
  23. * struct in6_addr *daddr,
  24. * __u32 len,
  25. * unsigned short proto,
  26. * unsigned int csum);
  27. *
  28. * Swap <proto> (takes form 0xaabb)
  29. * Then shift it left by 48, so result is:
  30. * 0xbbaa0000 00000000
  31. * Then turn it back into a sign extended 32-bit item
  32. * 0xbbaa0000
  33. *
  34. * Swap <len> (an unsigned int) using Mike Burrows' 7-instruction sequence
  35. * (we can't hide the 3-cycle latency of the unpkbw in the 6-instruction sequence)
  36. * Assume input takes form 0xAABBCCDD
  37. *
  38. * Finally, original 'folding' approach is to split the long into 4 unsigned shorts
  39. * add 4 ushorts, resulting in ushort/carry
  40. * add carry bits + ushort --> ushort
  41. * add carry bits + ushort --> ushort (in case the carry results in an overflow)
  42. * Truncate to a ushort. (took 13 instructions)
  43. * From doing some testing, using the approach in checksum.c:from64to16()
  44. * results in the same outcome:
  45. * split into 2 uints, add those, generating a ulong
  46. * add the 3 low ushorts together, generating a uint
  47. * a final add of the 2 lower ushorts
  48. * truncating the result.
  49. *
  50. * Misalignment handling added by Ivan Kokshaysky <[email protected]>
  51. * The cost is 16 instructions (~8 cycles), including two extra loads which
  52. * may cause additional delay in rare cases (load-load replay traps).
  53. */
  54. #include <asm/export.h>
  55. .globl csum_ipv6_magic
  56. .align 4
  57. .ent csum_ipv6_magic
  58. .frame $30,0,$26,0
  59. csum_ipv6_magic:
  60. .prologue 0
  61. ldq_u $0,0($16) # L : Latency: 3
  62. inslh $18,7,$4 # U : 0000000000AABBCC
  63. ldq_u $1,8($16) # L : Latency: 3
  64. sll $19,8,$7 # U : U L U L : 0x00000000 00aabb00
  65. and $16,7,$6 # E : src misalignment
  66. ldq_u $5,15($16) # L : Latency: 3
  67. zapnot $20,15,$20 # U : zero extend incoming csum
  68. ldq_u $2,0($17) # L : U L U L : Latency: 3
  69. extql $0,$6,$0 # U :
  70. extqh $1,$6,$22 # U :
  71. ldq_u $3,8($17) # L : Latency: 3
  72. sll $19,24,$19 # U : U U L U : 0x000000aa bb000000
  73. cmoveq $6,$31,$22 # E : src aligned?
  74. ldq_u $23,15($17) # L : Latency: 3
  75. inswl $18,3,$18 # U : 000000CCDD000000
  76. addl $19,$7,$19 # E : U L U L : <sign bits>bbaabb00
  77. or $0,$22,$0 # E : 1st src word complete
  78. extql $1,$6,$1 # U :
  79. or $18,$4,$18 # E : 000000CCDDAABBCC
  80. extqh $5,$6,$5 # U : L U L U
  81. and $17,7,$6 # E : dst misalignment
  82. extql $2,$6,$2 # U :
  83. or $1,$5,$1 # E : 2nd src word complete
  84. extqh $3,$6,$22 # U : L U L U :
  85. cmoveq $6,$31,$22 # E : dst aligned?
  86. extql $3,$6,$3 # U :
  87. addq $20,$0,$20 # E : begin summing the words
  88. extqh $23,$6,$23 # U : L U L U :
  89. srl $18,16,$4 # U : 0000000000CCDDAA
  90. or $2,$22,$2 # E : 1st dst word complete
  91. zap $19,0x3,$19 # U : <sign bits>bbaa0000
  92. or $3,$23,$3 # E : U L U L : 2nd dst word complete
  93. cmpult $20,$0,$0 # E :
  94. addq $20,$1,$20 # E :
  95. zapnot $18,0xa,$18 # U : 00000000DD00BB00
  96. zap $4,0xa,$4 # U : U U L L : 0000000000CC00AA
  97. or $18,$4,$18 # E : 00000000DDCCBBAA
  98. nop # E :
  99. cmpult $20,$1,$1 # E :
  100. addq $20,$2,$20 # E : U L U L
  101. cmpult $20,$2,$2 # E :
  102. addq $20,$3,$20 # E :
  103. cmpult $20,$3,$3 # E : (1 cycle stall on $20)
  104. addq $20,$18,$20 # E : U L U L (1 cycle stall on $20)
  105. cmpult $20,$18,$18 # E :
  106. addq $20,$19,$20 # E : (1 cycle stall on $20)
  107. addq $0,$1,$0 # E : merge the carries back into the csum
  108. addq $2,$3,$2 # E :
  109. cmpult $20,$19,$19 # E :
  110. addq $18,$19,$18 # E : (1 cycle stall on $19)
  111. addq $0,$2,$0 # E :
  112. addq $20,$18,$20 # E : U L U L :
  113. /* (1 cycle stall on $18, 2 cycles on $20) */
  114. addq $0,$20,$0 # E :
  115. zapnot $0,15,$1 # U : Start folding output (1 cycle stall on $0)
  116. nop # E :
  117. srl $0,32,$0 # U : U L U L : (1 cycle stall on $0)
  118. addq $1,$0,$1 # E : Finished generating ulong
  119. extwl $1,2,$2 # U : ushort[1] (1 cycle stall on $1)
  120. zapnot $1,3,$0 # U : ushort[0] (1 cycle stall on $1)
  121. extwl $1,4,$1 # U : ushort[2] (1 cycle stall on $1)
  122. addq $0,$2,$0 # E
  123. addq $0,$1,$3 # E : Finished generating uint
  124. /* (1 cycle stall on $0) */
  125. extwl $3,2,$1 # U : ushort[1] (1 cycle stall on $3)
  126. nop # E : L U L U
  127. addq $1,$3,$0 # E : Final carry
  128. not $0,$4 # E : complement (1 cycle stall on $0)
  129. zapnot $4,3,$0 # U : clear upper garbage bits
  130. /* (1 cycle stall on $4) */
  131. ret # L0 : L U L U
  132. .end csum_ipv6_magic
  133. EXPORT_SYMBOL(csum_ipv6_magic)