123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- #ifndef __ASM_SH_UNALIGNED_SH4A_H
- #define __ASM_SH_UNALIGNED_SH4A_H
- /*
- * SH-4A has support for unaligned 32-bit loads, and 32-bit loads only.
- * Support for 64-bit accesses are done through shifting and masking
- * relative to the endianness. Unaligned stores are not supported by the
- * instruction encoding, so these continue to use the packed
- * struct.
- *
- * The same note as with the movli.l/movco.l pair applies here, as long
- * as the load is guaranteed to be inlined, nothing else will hook in to
- * r0 and we get the return value for free.
- *
- * NOTE: Due to the fact we require r0 encoding, care should be taken to
- * avoid mixing these heavily with other r0 consumers, such as the atomic
- * ops. Failure to adhere to this can result in the compiler running out
- * of spill registers and blowing up when building at low optimization
- * levels. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34777.
- */
- #include <linux/unaligned/packed_struct.h>
- #include <linux/types.h>
- #include <asm/byteorder.h>
- static inline u16 sh4a_get_unaligned_cpu16(const u8 *p)
- {
- #ifdef __LITTLE_ENDIAN
- return p[0] | p[1] << 8;
- #else
- return p[0] << 8 | p[1];
- #endif
- }
- static __always_inline u32 sh4a_get_unaligned_cpu32(const u8 *p)
- {
- unsigned long unaligned;
- __asm__ __volatile__ (
- "movua.l @%1, %0\n\t"
- : "=z" (unaligned)
- : "r" (p)
- );
- return unaligned;
- }
- /*
- * Even though movua.l supports auto-increment on the read side, it can
- * only store to r0 due to instruction encoding constraints, so just let
- * the compiler sort it out on its own.
- */
- static inline u64 sh4a_get_unaligned_cpu64(const u8 *p)
- {
- #ifdef __LITTLE_ENDIAN
- return (u64)sh4a_get_unaligned_cpu32(p + 4) << 32 |
- sh4a_get_unaligned_cpu32(p);
- #else
- return (u64)sh4a_get_unaligned_cpu32(p) << 32 |
- sh4a_get_unaligned_cpu32(p + 4);
- #endif
- }
- static inline u16 get_unaligned_le16(const void *p)
- {
- return le16_to_cpu(sh4a_get_unaligned_cpu16(p));
- }
- static inline u32 get_unaligned_le32(const void *p)
- {
- return le32_to_cpu(sh4a_get_unaligned_cpu32(p));
- }
- static inline u64 get_unaligned_le64(const void *p)
- {
- return le64_to_cpu(sh4a_get_unaligned_cpu64(p));
- }
- static inline u16 get_unaligned_be16(const void *p)
- {
- return be16_to_cpu(sh4a_get_unaligned_cpu16(p));
- }
- static inline u32 get_unaligned_be32(const void *p)
- {
- return be32_to_cpu(sh4a_get_unaligned_cpu32(p));
- }
- static inline u64 get_unaligned_be64(const void *p)
- {
- return be64_to_cpu(sh4a_get_unaligned_cpu64(p));
- }
- static inline void nonnative_put_le16(u16 val, u8 *p)
- {
- *p++ = val;
- *p++ = val >> 8;
- }
- static inline void nonnative_put_le32(u32 val, u8 *p)
- {
- nonnative_put_le16(val, p);
- nonnative_put_le16(val >> 16, p + 2);
- }
- static inline void nonnative_put_le64(u64 val, u8 *p)
- {
- nonnative_put_le32(val, p);
- nonnative_put_le32(val >> 32, p + 4);
- }
- static inline void nonnative_put_be16(u16 val, u8 *p)
- {
- *p++ = val >> 8;
- *p++ = val;
- }
- static inline void nonnative_put_be32(u32 val, u8 *p)
- {
- nonnative_put_be16(val >> 16, p);
- nonnative_put_be16(val, p + 2);
- }
- static inline void nonnative_put_be64(u64 val, u8 *p)
- {
- nonnative_put_be32(val >> 32, p);
- nonnative_put_be32(val, p + 4);
- }
- static inline void put_unaligned_le16(u16 val, void *p)
- {
- #ifdef __LITTLE_ENDIAN
- __put_unaligned_cpu16(val, p);
- #else
- nonnative_put_le16(val, p);
- #endif
- }
- static inline void put_unaligned_le32(u32 val, void *p)
- {
- #ifdef __LITTLE_ENDIAN
- __put_unaligned_cpu32(val, p);
- #else
- nonnative_put_le32(val, p);
- #endif
- }
- static inline void put_unaligned_le64(u64 val, void *p)
- {
- #ifdef __LITTLE_ENDIAN
- __put_unaligned_cpu64(val, p);
- #else
- nonnative_put_le64(val, p);
- #endif
- }
- static inline void put_unaligned_be16(u16 val, void *p)
- {
- #ifdef __BIG_ENDIAN
- __put_unaligned_cpu16(val, p);
- #else
- nonnative_put_be16(val, p);
- #endif
- }
- static inline void put_unaligned_be32(u32 val, void *p)
- {
- #ifdef __BIG_ENDIAN
- __put_unaligned_cpu32(val, p);
- #else
- nonnative_put_be32(val, p);
- #endif
- }
- static inline void put_unaligned_be64(u64 val, void *p)
- {
- #ifdef __BIG_ENDIAN
- __put_unaligned_cpu64(val, p);
- #else
- nonnative_put_be64(val, p);
- #endif
- }
- /*
- * While it's a bit non-obvious, even though the generic le/be wrappers
- * use the __get/put_xxx prefixing, they actually wrap in to the
- * non-prefixed get/put_xxx variants as provided above.
- */
- #include <linux/unaligned/generic.h>
- #ifdef __LITTLE_ENDIAN
- # define get_unaligned __get_unaligned_le
- # define put_unaligned __put_unaligned_le
- #else
- # define get_unaligned __get_unaligned_be
- # define put_unaligned __put_unaligned_be
- #endif
- #endif /* __ASM_SH_UNALIGNED_SH4A_H */
|