123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343 |
- #ifndef _SPARC64_TSB_H
- #define _SPARC64_TSB_H
- /* The sparc64 TSB is similar to the powerpc hashtables. It's a
- * power-of-2 sized table of TAG/PTE pairs. The cpu precomputes
- * pointers into this table for 8K and 64K page sizes, and also a
- * comparison TAG based upon the virtual address and context which
- * faults.
- *
- * TLB miss trap handler software does the actual lookup via something
- * of the form:
- *
- * ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
- * ldxa [%g0] ASI_{D,I}MMU, %g6
- * sllx %g6, 22, %g6
- * srlx %g6, 22, %g6
- * ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4
- * cmp %g4, %g6
- * bne,pn %xcc, tsb_miss_{d,i}tlb
- * mov FAULT_CODE_{D,I}TLB, %g3
- * stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN
- * retry
- *
- *
- * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
- * PTE. The TAG is of the same layout as the TLB TAG TARGET mmu
- * register which is:
- *
- * -------------------------------------------------
- * | - | CONTEXT | - | VADDR bits 63:22 |
- * -------------------------------------------------
- * 63 61 60 48 47 42 41 0
- *
- * But actually, since we use per-mm TSB's, we zero out the CONTEXT
- * field.
- *
- * Like the powerpc hashtables we need to use locking in order to
- * synchronize while we update the entries. PTE updates need locking
- * as well.
- *
- * We need to carefully choose a lock bits for the TSB entry. We
- * choose to use bit 47 in the tag. Also, since we never map anything
- * at page zero in context zero, we use zero as an invalid tag entry.
- * When the lock bit is set, this forces a tag comparison failure.
- */
- #define TSB_TAG_LOCK_BIT 47
- #define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG_LOCK_BIT - 32))
- #define TSB_TAG_INVALID_BIT 46
- #define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG_INVALID_BIT - 32))
- /* Some cpus support physical address quad loads. We want to use
- * those if possible so we don't need to hard-lock the TSB mapping
- * into the TLB. We encode some instruction patching in order to
- * support this.
- *
- * The kernel TSB is locked into the TLB by virtue of being in the
- * kernel image, so we don't play these games for swapper_tsb access.
- */
- #ifndef __ASSEMBLY__
- struct tsb_ldquad_phys_patch_entry {
- unsigned int addr;
- unsigned int sun4u_insn;
- unsigned int sun4v_insn;
- };
- extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
- __tsb_ldquad_phys_patch_end;
- struct tsb_phys_patch_entry {
- unsigned int addr;
- unsigned int insn;
- };
- extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
- #endif
- #define TSB_LOAD_QUAD(TSB, REG) \
- 661: ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
- .section .tsb_ldquad_phys_patch, "ax"; \
- .word 661b; \
- ldda [TSB] ASI_QUAD_LDD_PHYS, REG; \
- ldda [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
- .previous
- #define TSB_LOAD_TAG_HIGH(TSB, REG) \
- 661: lduwa [TSB] ASI_N, REG; \
- .section .tsb_phys_patch, "ax"; \
- .word 661b; \
- lduwa [TSB] ASI_PHYS_USE_EC, REG; \
- .previous
- #define TSB_LOAD_TAG(TSB, REG) \
- 661: ldxa [TSB] ASI_N, REG; \
- .section .tsb_phys_patch, "ax"; \
- .word 661b; \
- ldxa [TSB] ASI_PHYS_USE_EC, REG; \
- .previous
- #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
- 661: casa [TSB] ASI_N, REG1, REG2; \
- .section .tsb_phys_patch, "ax"; \
- .word 661b; \
- casa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
- .previous
- #define TSB_CAS_TAG(TSB, REG1, REG2) \
- 661: casxa [TSB] ASI_N, REG1, REG2; \
- .section .tsb_phys_patch, "ax"; \
- .word 661b; \
- casxa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
- .previous
- #define TSB_STORE(ADDR, VAL) \
- 661: stxa VAL, [ADDR] ASI_N; \
- .section .tsb_phys_patch, "ax"; \
- .word 661b; \
- stxa VAL, [ADDR] ASI_PHYS_USE_EC; \
- .previous
- #define TSB_LOCK_TAG(TSB, REG1, REG2) \
- 99: TSB_LOAD_TAG_HIGH(TSB, REG1); \
- sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\
- andcc REG1, REG2, %g0; \
- bne,pn %icc, 99b; \
- nop; \
- TSB_CAS_TAG_HIGH(TSB, REG1, REG2); \
- cmp REG1, REG2; \
- bne,pn %icc, 99b; \
- nop; \
- #define TSB_WRITE(TSB, TTE, TAG) \
- add TSB, 0x8, TSB; \
- TSB_STORE(TSB, TTE); \
- sub TSB, 0x8, TSB; \
- TSB_STORE(TSB, TAG);
- /* Do a kernel page table walk. Leaves valid PTE value in
- * REG1. Jumps to FAIL_LABEL on early page table walk
- * termination. VADDR will not be clobbered, but REG2 will.
- *
- * There are two masks we must apply to propagate bits from
- * the virtual address into the PTE physical address field
- * when dealing with huge pages. This is because the page
- * table boundaries do not match the huge page size(s) the
- * hardware supports.
- *
- * In these cases we propagate the bits that are below the
- * page table level where we saw the huge page mapping, but
- * are still within the relevant physical bits for the huge
- * page size in question. So for PMD mappings (which fall on
- * bit 23, for 8MB per PMD) we must propagate bit 22 for a
- * 4MB huge page. For huge PUDs (which fall on bit 33, for
- * 8GB per PUD), we have to accommodate 256MB and 2GB huge
- * pages. So for those we propagate bits 32 to 28.
- */
- #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \
- sethi %hi(swapper_pg_dir), REG1; \
- or REG1, %lo(swapper_pg_dir), REG1; \
- sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
- srlx REG2, 64 - PAGE_SHIFT, REG2; \
- andn REG2, 0x7, REG2; \
- ldx [REG1 + REG2], REG1; \
- brz,pn REG1, FAIL_LABEL; \
- sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
- srlx REG2, 64 - PAGE_SHIFT, REG2; \
- andn REG2, 0x7, REG2; \
- ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
- brz,pn REG1, FAIL_LABEL; \
- sethi %uhi(_PAGE_PUD_HUGE), REG2; \
- brz,pn REG1, FAIL_LABEL; \
- sllx REG2, 32, REG2; \
- andcc REG1, REG2, %g0; \
- sethi %hi(0xf8000000), REG2; \
- bne,pt %xcc, 697f; \
- sllx REG2, 1, REG2; \
- sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
- srlx REG2, 64 - PAGE_SHIFT, REG2; \
- andn REG2, 0x7, REG2; \
- ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
- sethi %uhi(_PAGE_PMD_HUGE), REG2; \
- brz,pn REG1, FAIL_LABEL; \
- sllx REG2, 32, REG2; \
- andcc REG1, REG2, %g0; \
- be,pn %xcc, 698f; \
- sethi %hi(0x400000), REG2; \
- 697: brgez,pn REG1, FAIL_LABEL; \
- andn REG1, REG2, REG1; \
- and VADDR, REG2, REG2; \
- ba,pt %xcc, 699f; \
- or REG1, REG2, REG1; \
- 698: sllx VADDR, 64 - PMD_SHIFT, REG2; \
- srlx REG2, 64 - PAGE_SHIFT, REG2; \
- andn REG2, 0x7, REG2; \
- ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
- brgez,pn REG1, FAIL_LABEL; \
- nop; \
- 699:
- /* PMD has been loaded into REG1, interpret the value, seeing
- * if it is a HUGE PMD or a normal one. If it is not valid
- * then jump to FAIL_LABEL. If it is a HUGE PMD, and it
- * translates to a valid PTE, branch to PTE_LABEL.
- *
- * We have to propagate the 4MB bit of the virtual address
- * because we are fabricating 8MB pages using 4MB hw pages.
- */
- #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
- #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
- brz,pn REG1, FAIL_LABEL; \
- sethi %uhi(_PAGE_PMD_HUGE), REG2; \
- sllx REG2, 32, REG2; \
- andcc REG1, REG2, %g0; \
- be,pt %xcc, 700f; \
- sethi %hi(4 * 1024 * 1024), REG2; \
- brgez,pn REG1, FAIL_LABEL; \
- andn REG1, REG2, REG1; \
- and VADDR, REG2, REG2; \
- brlz,pt REG1, PTE_LABEL; \
- or REG1, REG2, REG1; \
- 700:
- #else
- #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
- brz,pn REG1, FAIL_LABEL; \
- nop;
- #endif
- /* Do a user page table walk in MMU globals. Leaves final,
- * valid, PTE value in REG1. Jumps to FAIL_LABEL on early
- * page table walk termination or if the PTE is not valid.
- *
- * Physical base of page tables is in PHYS_PGD which will not
- * be modified.
- *
- * VADDR will not be clobbered, but REG1 and REG2 will.
- */
- #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \
- sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
- srlx REG2, 64 - PAGE_SHIFT, REG2; \
- andn REG2, 0x7, REG2; \
- ldxa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
- brz,pn REG1, FAIL_LABEL; \
- sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
- srlx REG2, 64 - PAGE_SHIFT, REG2; \
- andn REG2, 0x7, REG2; \
- ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
- brz,pn REG1, FAIL_LABEL; \
- sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
- srlx REG2, 64 - PAGE_SHIFT, REG2; \
- andn REG2, 0x7, REG2; \
- ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
- USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
- sllx VADDR, 64 - PMD_SHIFT, REG2; \
- srlx REG2, 64 - PAGE_SHIFT, REG2; \
- andn REG2, 0x7, REG2; \
- add REG1, REG2, REG1; \
- ldxa [REG1] ASI_PHYS_USE_EC, REG1; \
- brgez,pn REG1, FAIL_LABEL; \
- nop; \
- 800:
- /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
- * If no entry is found, FAIL_LABEL will be branched to. On success
- * the resulting PTE value will be left in REG1. VADDR is preserved
- * by this routine.
- */
- #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
- sethi %hi(prom_trans), REG1; \
- or REG1, %lo(prom_trans), REG1; \
- 97: ldx [REG1 + 0x00], REG2; \
- brz,pn REG2, FAIL_LABEL; \
- nop; \
- ldx [REG1 + 0x08], REG3; \
- add REG2, REG3, REG3; \
- cmp REG2, VADDR; \
- bgu,pt %xcc, 98f; \
- cmp VADDR, REG3; \
- bgeu,pt %xcc, 98f; \
- ldx [REG1 + 0x10], REG3; \
- sub VADDR, REG2, REG2; \
- ba,pt %xcc, 99f; \
- add REG3, REG2, REG1; \
- 98: ba,pt %xcc, 97b; \
- add REG1, (3 * 8), REG1; \
- 99:
- /* We use a 32K TSB for the whole kernel, this allows to
- * handle about 16MB of modules and vmalloc mappings without
- * incurring many hash conflicts.
- */
- #define KERNEL_TSB_SIZE_BYTES (32 * 1024)
- #define KERNEL_TSB_NENTRIES \
- (KERNEL_TSB_SIZE_BYTES / 16)
- #define KERNEL_TSB4M_NENTRIES 4096
- /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
- * on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries
- * and the found TTE will be left in REG1. REG3 and REG4 must
- * be an even/odd pair of registers.
- *
- * VADDR and TAG will be preserved and not clobbered by this macro.
- */
- #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
- 661: sethi %uhi(swapper_tsb), REG1; \
- sethi %hi(swapper_tsb), REG2; \
- or REG1, %ulo(swapper_tsb), REG1; \
- or REG2, %lo(swapper_tsb), REG2; \
- .section .swapper_tsb_phys_patch, "ax"; \
- .word 661b; \
- .previous; \
- sllx REG1, 32, REG1; \
- or REG1, REG2, REG1; \
- srlx VADDR, PAGE_SHIFT, REG2; \
- and REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
- sllx REG2, 4, REG2; \
- add REG1, REG2, REG2; \
- TSB_LOAD_QUAD(REG2, REG3); \
- cmp REG3, TAG; \
- be,a,pt %xcc, OK_LABEL; \
- mov REG4, REG1;
- #ifndef CONFIG_DEBUG_PAGEALLOC
- /* This version uses a trick, the TAG is already (VADDR >> 22) so
- * we can make use of that for the index computation.
- */
- #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
- 661: sethi %uhi(swapper_4m_tsb), REG1; \
- sethi %hi(swapper_4m_tsb), REG2; \
- or REG1, %ulo(swapper_4m_tsb), REG1; \
- or REG2, %lo(swapper_4m_tsb), REG2; \
- .section .swapper_4m_tsb_phys_patch, "ax"; \
- .word 661b; \
- .previous; \
- sllx REG1, 32, REG1; \
- or REG1, REG2, REG1; \
- and TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
- sllx REG2, 4, REG2; \
- add REG1, REG2, REG2; \
- TSB_LOAD_QUAD(REG2, REG3); \
- cmp REG3, TAG; \
- be,a,pt %xcc, OK_LABEL; \
- mov REG4, REG1;
- #endif
- #endif /* !(_SPARC64_TSB_H) */
|