123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514 |
- /*
- * arch/sparc/math-emu/math.c
- *
- * Copyright (C) 1998 Peter Maydell ([email protected])
- * Copyright (C) 1997, 1999 Jakub Jelinek ([email protected])
- * Copyright (C) 1999 David S. Miller ([email protected])
- *
- * This is a good place to start if you're trying to understand the
- * emulation code, because it's pretty simple. What we do is
- * essentially analyse the instruction to work out what the operation
- * is and which registers are involved. We then execute the appropriate
- * FXXXX function. [The floating point queue introduces a minor wrinkle;
- * see below...]
- * The fxxxxx.c files each emulate a single insn. They look relatively
- * simple because the complexity is hidden away in an unholy tangle
- * of preprocessor macros.
- *
- * The first layer of macros is single.h, double.h, quad.h. Generally
- * these files define macros for working with floating point numbers
- * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles,
- * for instance. These macros are usually defined as calls to more
- * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number
- * of machine words required to store the given IEEE format is passed
- * as a parameter. [double.h and co check the number of bits in a word
- * and define FP_ADD_D & co appropriately].
- * The generic macros are defined in op-common.h. This is where all
- * the grotty stuff like handling NaNs is coded. To handle the possible
- * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc()
- * where wc is the 'number of machine words' parameter (here 2).
- * These are defined in the third layer of macros: op-1.h, op-2.h
- * and op-4.h. These handle operations on floating point numbers composed
- * of 1,2 and 4 machine words respectively. [For example, on sparc64
- * doubles are one machine word so macros in double.h eventually use
- * constructs in op-1.h, but on sparc32 they use op-2.h definitions.]
- * soft-fp.h is on the same level as op-common.h, and defines some
- * macros which are independent of both word size and FP format.
- * Finally, sfp-machine.h is the machine dependent part of the
- * code: it defines the word size and what type a word is. It also
- * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h
- * provide several possible flavours of multiply algorithm, most
- * of which require that you supply some form of asm or C primitive to
- * do the actual multiply. (such asm primitives should be defined
- * in sfp-machine.h too). udivmodti4.c is the same sort of thing.
- *
- * There may be some errors here because I'm working from a
- * SPARC architecture manual V9, and what I really want is V8...
- * Also, the insns which can generate exceptions seem to be a
- * greater subset of the FPops than for V9 (for example, FCMPED
- * has to be emulated on V8). So I think I'm going to have
- * to emulate them all just to be on the safe side...
- *
- * Emulation routines originate from soft-fp package, which is
- * part of glibc and has appropriate copyrights in it (allegedly).
- *
- * NB: on sparc int == long == 4 bytes, long long == 8 bytes.
- * Most bits of the kernel seem to go for long rather than int,
- * so we follow that practice...
- */
- /* TODO:
- * fpsave() saves the FP queue but fpload() doesn't reload it.
- * Therefore when we context switch or change FPU ownership
- * we have to check to see if the queue had anything in it and
- * emulate it if it did. This is going to be a pain.
- */
- #include <linux/types.h>
- #include <linux/sched.h>
- #include <linux/mm.h>
- #include <linux/perf_event.h>
- #include <asm/uaccess.h>
- #include "sfp-util_32.h"
- #include <math-emu/soft-fp.h>
- #include <math-emu/single.h>
- #include <math-emu/double.h>
- #include <math-emu/quad.h>
- #define FLOATFUNC(x) extern int x(void *,void *,void *)
- /* The Vn labels indicate what version of the SPARC architecture gas thinks
- * each insn is. This is from the binutils source :->
- */
- /* quadword instructions */
- #define FSQRTQ 0x02b /* v8 */
- #define FADDQ 0x043 /* v8 */
- #define FSUBQ 0x047 /* v8 */
- #define FMULQ 0x04b /* v8 */
- #define FDIVQ 0x04f /* v8 */
- #define FDMULQ 0x06e /* v8 */
- #define FQTOS 0x0c7 /* v8 */
- #define FQTOD 0x0cb /* v8 */
- #define FITOQ 0x0cc /* v8 */
- #define FSTOQ 0x0cd /* v8 */
- #define FDTOQ 0x0ce /* v8 */
- #define FQTOI 0x0d3 /* v8 */
- #define FCMPQ 0x053 /* v8 */
- #define FCMPEQ 0x057 /* v8 */
- /* single/double instructions (subnormal): should all work */
- #define FSQRTS 0x029 /* v7 */
- #define FSQRTD 0x02a /* v7 */
- #define FADDS 0x041 /* v6 */
- #define FADDD 0x042 /* v6 */
- #define FSUBS 0x045 /* v6 */
- #define FSUBD 0x046 /* v6 */
- #define FMULS 0x049 /* v6 */
- #define FMULD 0x04a /* v6 */
- #define FDIVS 0x04d /* v6 */
- #define FDIVD 0x04e /* v6 */
- #define FSMULD 0x069 /* v6 */
- #define FDTOS 0x0c6 /* v6 */
- #define FSTOD 0x0c9 /* v6 */
- #define FSTOI 0x0d1 /* v6 */
- #define FDTOI 0x0d2 /* v6 */
- #define FABSS 0x009 /* v6 */
- #define FCMPS 0x051 /* v6 */
- #define FCMPES 0x055 /* v6 */
- #define FCMPD 0x052 /* v6 */
- #define FCMPED 0x056 /* v6 */
- #define FMOVS 0x001 /* v6 */
- #define FNEGS 0x005 /* v6 */
- #define FITOS 0x0c4 /* v6 */
- #define FITOD 0x0c8 /* v6 */
- #define FSR_TEM_SHIFT 23UL
- #define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT)
- #define FSR_AEXC_SHIFT 5UL
- #define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT)
- #define FSR_CEXC_SHIFT 0UL
- #define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT)
- static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs);
- /* Unlike the Sparc64 version (which has a struct fpustate), we
- * pass the taskstruct corresponding to the task which currently owns the
- * FPU. This is partly because we don't have the fpustate struct and
- * partly because the task owning the FPU isn't always current (as is
- * the case for the Sparc64 port). This is probably SMP-related...
- * This function returns 1 if all queued insns were emulated successfully.
- * The test for unimplemented FPop in kernel mode has been moved into
- * kernel/traps.c for simplicity.
- */
- int do_mathemu(struct pt_regs *regs, struct task_struct *fpt)
- {
- /* regs->pc isn't necessarily the PC at which the offending insn is sitting.
- * The FPU maintains a queue of FPops which cause traps.
- * When it hits an instruction that requires that the trapped op succeeded
- * (usually because it reads a reg. that the trapped op wrote) then it
- * causes this exception. We need to emulate all the insns on the queue
- * and then allow the op to proceed.
- * This code should also handle the case where the trap was precise,
- * in which case the queue length is zero and regs->pc points at the
- * single FPop to be emulated. (this case is untested, though :->)
- * You'll need this case if you want to be able to emulate all FPops
- * because the FPU either doesn't exist or has been software-disabled.
- * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it
- * might sound because the Ultra does funky things with a superscalar
- * architecture.]
- */
- /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */
- int i;
- int retcode = 0; /* assume all succeed */
- unsigned long insn;
- perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
- #ifdef DEBUG_MATHEMU
- printk("In do_mathemu()... pc is %08lx\n", regs->pc);
- printk("fpqdepth is %ld\n", fpt->thread.fpqdepth);
- for (i = 0; i < fpt->thread.fpqdepth; i++)
- printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn,
- (unsigned long)fpt->thread.fpqueue[i].insn_addr);
- #endif
- if (fpt->thread.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */
- #ifdef DEBUG_MATHEMU
- printk("precise trap at %08lx\n", regs->pc);
- #endif
- if (!get_user(insn, (u32 __user *) regs->pc)) {
- retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs);
- if (retcode) {
- /* in this case we need to fix up PC & nPC */
- regs->pc = regs->npc;
- regs->npc += 4;
- }
- }
- return retcode;
- }
- /* Normal case: need to empty the queue... */
- for (i = 0; i < fpt->thread.fpqdepth; i++) {
- retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs);
- if (!retcode) /* insn failed, no point doing any more */
- break;
- }
- /* Now empty the queue and clear the queue_not_empty flag */
- if (retcode)
- fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK);
- else
- fpt->thread.fsr &= ~0x3000;
- fpt->thread.fpqdepth = 0;
- return retcode;
- }
- /* All routines returning an exception to raise should detect
- * such exceptions _before_ rounding to be consistent with
- * the behavior of the hardware in the implemented cases
- * (and thus with the recommendations in the V9 architecture
- * manual).
- *
- * We return 0 if a SIGFPE should be sent, 1 otherwise.
- */
- static inline int record_exception(unsigned long *pfsr, int eflag)
- {
- unsigned long fsr = *pfsr;
- int would_trap;
- /* Determine if this exception would have generated a trap. */
- would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
- /* If trapping, we only want to signal one bit. */
- if (would_trap != 0) {
- eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
- if ((eflag & (eflag - 1)) != 0) {
- if (eflag & FP_EX_INVALID)
- eflag = FP_EX_INVALID;
- else if (eflag & FP_EX_OVERFLOW)
- eflag = FP_EX_OVERFLOW;
- else if (eflag & FP_EX_UNDERFLOW)
- eflag = FP_EX_UNDERFLOW;
- else if (eflag & FP_EX_DIVZERO)
- eflag = FP_EX_DIVZERO;
- else if (eflag & FP_EX_INEXACT)
- eflag = FP_EX_INEXACT;
- }
- }
- /* Set CEXC, here is the rule:
- *
- * In general all FPU ops will set one and only one
- * bit in the CEXC field, this is always the case
- * when the IEEE exception trap is enabled in TEM.
- */
- fsr &= ~(FSR_CEXC_MASK);
- fsr |= ((long)eflag << FSR_CEXC_SHIFT);
- /* Set the AEXC field, rule is:
- *
- * If a trap would not be generated, the
- * CEXC just generated is OR'd into the
- * existing value of AEXC.
- */
- if (would_trap == 0)
- fsr |= ((long)eflag << FSR_AEXC_SHIFT);
- /* If trapping, indicate fault trap type IEEE. */
- if (would_trap != 0)
- fsr |= (1UL << 14);
- *pfsr = fsr;
- return (would_trap ? 0 : 1);
- }
- typedef union {
- u32 s;
- u64 d;
- u64 q[2];
- } *argp;
- static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs)
- {
- /* Emulate the given insn, updating fsr and fregs appropriately. */
- int type = 0;
- /* r is rd, b is rs2 and a is rs1. The *u arg tells
- whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
- non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
- #define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6)
- int freg;
- argp rs1 = NULL, rs2 = NULL, rd = NULL;
- FP_DECL_EX;
- FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
- FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
- FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
- int IR;
- long fsr;
- #ifdef DEBUG_MATHEMU
- printk("In do_mathemu(), emulating %08lx\n", insn);
- #endif
- if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
- switch ((insn >> 5) & 0x1ff) {
- case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
- case FADDQ:
- case FSUBQ:
- case FMULQ:
- case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
- case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
- case FQTOS: TYPE(3,1,1,3,1,0,0); break;
- case FQTOD: TYPE(3,2,1,3,1,0,0); break;
- case FITOQ: TYPE(3,3,1,1,0,0,0); break;
- case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
- case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
- case FQTOI: TYPE(3,1,0,3,1,0,0); break;
- case FSQRTS: TYPE(2,1,1,1,1,0,0); break;
- case FSQRTD: TYPE(2,2,1,2,1,0,0); break;
- case FADDD:
- case FSUBD:
- case FMULD:
- case FDIVD: TYPE(2,2,1,2,1,2,1); break;
- case FADDS:
- case FSUBS:
- case FMULS:
- case FDIVS: TYPE(2,1,1,1,1,1,1); break;
- case FSMULD: TYPE(2,2,1,1,1,1,1); break;
- case FDTOS: TYPE(2,1,1,2,1,0,0); break;
- case FSTOD: TYPE(2,2,1,1,1,0,0); break;
- case FSTOI: TYPE(2,1,0,1,1,0,0); break;
- case FDTOI: TYPE(2,1,0,2,1,0,0); break;
- case FITOS: TYPE(2,1,1,1,0,0,0); break;
- case FITOD: TYPE(2,2,1,1,0,0,0); break;
- case FMOVS:
- case FABSS:
- case FNEGS: TYPE(2,1,0,1,0,0,0); break;
- }
- } else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
- switch ((insn >> 5) & 0x1ff) {
- case FCMPS: TYPE(3,0,0,1,1,1,1); break;
- case FCMPES: TYPE(3,0,0,1,1,1,1); break;
- case FCMPD: TYPE(3,0,0,2,1,2,1); break;
- case FCMPED: TYPE(3,0,0,2,1,2,1); break;
- case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
- case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
- }
- }
- if (!type) { /* oops, didn't recognise that FPop */
- #ifdef DEBUG_MATHEMU
- printk("attempt to emulate unrecognised FPop!\n");
- #endif
- return 0;
- }
- /* Decode the registers to be used */
- freg = (*pfsr >> 14) & 0xf;
- *pfsr &= ~0x1c000; /* clear the traptype bits */
-
- freg = ((insn >> 14) & 0x1f);
- switch (type & 0x3) { /* is rs1 single, double or quad? */
- case 3:
- if (freg & 3) { /* quadwords must have bits 4&5 of the */
- /* encoded reg. number set to zero. */
- *pfsr |= (6 << 14);
- return 0; /* simulate invalid_fp_register exception */
- }
- /* fall through */
- case 2:
- if (freg & 1) { /* doublewords must have bit 5 zeroed */
- *pfsr |= (6 << 14);
- return 0;
- }
- }
- rs1 = (argp)&fregs[freg];
- switch (type & 0x7) {
- case 7: FP_UNPACK_QP (QA, rs1); break;
- case 6: FP_UNPACK_DP (DA, rs1); break;
- case 5: FP_UNPACK_SP (SA, rs1); break;
- }
- freg = (insn & 0x1f);
- switch ((type >> 3) & 0x3) { /* same again for rs2 */
- case 3:
- if (freg & 3) { /* quadwords must have bits 4&5 of the */
- /* encoded reg. number set to zero. */
- *pfsr |= (6 << 14);
- return 0; /* simulate invalid_fp_register exception */
- }
- /* fall through */
- case 2:
- if (freg & 1) { /* doublewords must have bit 5 zeroed */
- *pfsr |= (6 << 14);
- return 0;
- }
- }
- rs2 = (argp)&fregs[freg];
- switch ((type >> 3) & 0x7) {
- case 7: FP_UNPACK_QP (QB, rs2); break;
- case 6: FP_UNPACK_DP (DB, rs2); break;
- case 5: FP_UNPACK_SP (SB, rs2); break;
- }
- freg = ((insn >> 25) & 0x1f);
- switch ((type >> 6) & 0x3) { /* and finally rd. This one's a bit different */
- case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */
- if (freg) { /* V8 has only one set of condition codes, so */
- /* anything but 0 in the rd field is an error */
- *pfsr |= (6 << 14); /* (should probably flag as invalid opcode */
- return 0; /* but SIGFPE will do :-> ) */
- }
- break;
- case 3:
- if (freg & 3) { /* quadwords must have bits 4&5 of the */
- /* encoded reg. number set to zero. */
- *pfsr |= (6 << 14);
- return 0; /* simulate invalid_fp_register exception */
- }
- /* fall through */
- case 2:
- if (freg & 1) { /* doublewords must have bit 5 zeroed */
- *pfsr |= (6 << 14);
- return 0;
- }
- /* fall through */
- case 1:
- rd = (void *)&fregs[freg];
- break;
- }
- #ifdef DEBUG_MATHEMU
- printk("executing insn...\n");
- #endif
- /* do the Right Thing */
- switch ((insn >> 5) & 0x1ff) {
- /* + */
- case FADDS: FP_ADD_S (SR, SA, SB); break;
- case FADDD: FP_ADD_D (DR, DA, DB); break;
- case FADDQ: FP_ADD_Q (QR, QA, QB); break;
- /* - */
- case FSUBS: FP_SUB_S (SR, SA, SB); break;
- case FSUBD: FP_SUB_D (DR, DA, DB); break;
- case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
- /* * */
- case FMULS: FP_MUL_S (SR, SA, SB); break;
- case FSMULD: FP_CONV (D, S, 2, 1, DA, SA);
- FP_CONV (D, S, 2, 1, DB, SB);
- case FMULD: FP_MUL_D (DR, DA, DB); break;
- case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA);
- FP_CONV (Q, D, 4, 2, QB, DB);
- case FMULQ: FP_MUL_Q (QR, QA, QB); break;
- /* / */
- case FDIVS: FP_DIV_S (SR, SA, SB); break;
- case FDIVD: FP_DIV_D (DR, DA, DB); break;
- case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
- /* sqrt */
- case FSQRTS: FP_SQRT_S (SR, SB); break;
- case FSQRTD: FP_SQRT_D (DR, DB); break;
- case FSQRTQ: FP_SQRT_Q (QR, QB); break;
- /* mov */
- case FMOVS: rd->s = rs2->s; break;
- case FABSS: rd->s = rs2->s & 0x7fffffff; break;
- case FNEGS: rd->s = rs2->s ^ 0x80000000; break;
- /* float to int */
- case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
- case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
- case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
- /* int to float */
- case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
- case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
- case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
- /* float to float */
- case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break;
- case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break;
- case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break;
- case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break;
- case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break;
- case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break;
- /* comparison */
- case FCMPS:
- case FCMPES:
- FP_CMP_S(IR, SB, SA, 3);
- if (IR == 3 &&
- (((insn >> 5) & 0x1ff) == FCMPES ||
- FP_ISSIGNAN_S(SA) ||
- FP_ISSIGNAN_S(SB)))
- FP_SET_EXCEPTION (FP_EX_INVALID);
- break;
- case FCMPD:
- case FCMPED:
- FP_CMP_D(IR, DB, DA, 3);
- if (IR == 3 &&
- (((insn >> 5) & 0x1ff) == FCMPED ||
- FP_ISSIGNAN_D(DA) ||
- FP_ISSIGNAN_D(DB)))
- FP_SET_EXCEPTION (FP_EX_INVALID);
- break;
- case FCMPQ:
- case FCMPEQ:
- FP_CMP_Q(IR, QB, QA, 3);
- if (IR == 3 &&
- (((insn >> 5) & 0x1ff) == FCMPEQ ||
- FP_ISSIGNAN_Q(QA) ||
- FP_ISSIGNAN_Q(QB)))
- FP_SET_EXCEPTION (FP_EX_INVALID);
- }
- if (!FP_INHIBIT_RESULTS) {
- switch ((type >> 6) & 0x7) {
- case 0: fsr = *pfsr;
- if (IR == -1) IR = 2;
- /* fcc is always fcc0 */
- fsr &= ~0xc00; fsr |= (IR << 10);
- *pfsr = fsr;
- break;
- case 1: rd->s = IR; break;
- case 5: FP_PACK_SP (rd, SR); break;
- case 6: FP_PACK_DP (rd, DR); break;
- case 7: FP_PACK_QP (rd, QR); break;
- }
- }
- if (_fex == 0)
- return 1; /* success! */
- return record_exception(pfsr, _fex);
- }
|