ide-timings.c 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. /*
  2. * Copyright (c) 1999-2001 Vojtech Pavlik
  3. * Copyright (c) 2007-2008 Bartlomiej Zolnierkiewicz
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Should you need to contact me, the author, you can do so either by
  20. * e-mail - mail your message to <[email protected]>, or by paper mail:
  21. * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/ide.h>
  25. #include <linux/module.h>
  26. /*
  27. * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
  28. * These were taken from ATA/ATAPI-6 standard, rev 0a, except
  29. * for PIO 5, which is a nonstandard extension and UDMA6, which
  30. * is currently supported only by Maxtor drives.
  31. */
  32. static struct ide_timing ide_timing[] = {
  33. { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
  34. { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
  35. { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
  36. { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
  37. { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
  38. { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
  39. { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
  40. { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
  41. { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
  42. { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
  43. { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
  44. { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
  45. { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
  46. { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
  47. { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
  48. { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
  49. { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
  50. { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
  51. { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
  52. { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
  53. { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
  54. { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
  55. { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 },
  56. { 0xff }
  57. };
  58. struct ide_timing *ide_timing_find_mode(u8 speed)
  59. {
  60. struct ide_timing *t;
  61. for (t = ide_timing; t->mode != speed; t++)
  62. if (t->mode == 0xff)
  63. return NULL;
  64. return t;
  65. }
  66. EXPORT_SYMBOL_GPL(ide_timing_find_mode);
  67. u16 ide_pio_cycle_time(ide_drive_t *drive, u8 pio)
  68. {
  69. u16 *id = drive->id;
  70. struct ide_timing *t = ide_timing_find_mode(XFER_PIO_0 + pio);
  71. u16 cycle = 0;
  72. if (id[ATA_ID_FIELD_VALID] & 2) {
  73. if (ata_id_has_iordy(drive->id))
  74. cycle = id[ATA_ID_EIDE_PIO_IORDY];
  75. else
  76. cycle = id[ATA_ID_EIDE_PIO];
  77. /* conservative "downgrade" for all pre-ATA2 drives */
  78. if (pio < 3 && cycle < t->cycle)
  79. cycle = 0; /* use standard timing */
  80. /* Use the standard timing for the CF specific modes too */
  81. if (pio > 4 && ata_id_is_cfa(id))
  82. cycle = 0;
  83. }
  84. return cycle ? cycle : t->cycle;
  85. }
  86. EXPORT_SYMBOL_GPL(ide_pio_cycle_time);
  87. #define ENOUGH(v, unit) (((v) - 1) / (unit) + 1)
  88. #define EZ(v, unit) ((v) ? ENOUGH(v, unit) : 0)
  89. static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q,
  90. int T, int UT)
  91. {
  92. q->setup = EZ(t->setup * 1000, T);
  93. q->act8b = EZ(t->act8b * 1000, T);
  94. q->rec8b = EZ(t->rec8b * 1000, T);
  95. q->cyc8b = EZ(t->cyc8b * 1000, T);
  96. q->active = EZ(t->active * 1000, T);
  97. q->recover = EZ(t->recover * 1000, T);
  98. q->cycle = EZ(t->cycle * 1000, T);
  99. q->udma = EZ(t->udma * 1000, UT);
  100. }
  101. void ide_timing_merge(struct ide_timing *a, struct ide_timing *b,
  102. struct ide_timing *m, unsigned int what)
  103. {
  104. if (what & IDE_TIMING_SETUP)
  105. m->setup = max(a->setup, b->setup);
  106. if (what & IDE_TIMING_ACT8B)
  107. m->act8b = max(a->act8b, b->act8b);
  108. if (what & IDE_TIMING_REC8B)
  109. m->rec8b = max(a->rec8b, b->rec8b);
  110. if (what & IDE_TIMING_CYC8B)
  111. m->cyc8b = max(a->cyc8b, b->cyc8b);
  112. if (what & IDE_TIMING_ACTIVE)
  113. m->active = max(a->active, b->active);
  114. if (what & IDE_TIMING_RECOVER)
  115. m->recover = max(a->recover, b->recover);
  116. if (what & IDE_TIMING_CYCLE)
  117. m->cycle = max(a->cycle, b->cycle);
  118. if (what & IDE_TIMING_UDMA)
  119. m->udma = max(a->udma, b->udma);
  120. }
  121. EXPORT_SYMBOL_GPL(ide_timing_merge);
  122. int ide_timing_compute(ide_drive_t *drive, u8 speed,
  123. struct ide_timing *t, int T, int UT)
  124. {
  125. u16 *id = drive->id;
  126. struct ide_timing *s, p;
  127. /*
  128. * Find the mode.
  129. */
  130. s = ide_timing_find_mode(speed);
  131. if (s == NULL)
  132. return -EINVAL;
  133. /*
  134. * Copy the timing from the table.
  135. */
  136. *t = *s;
  137. /*
  138. * If the drive is an EIDE drive, it can tell us it needs extended
  139. * PIO/MWDMA cycle timing.
  140. */
  141. if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
  142. memset(&p, 0, sizeof(p));
  143. if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
  144. if (speed <= XFER_PIO_2)
  145. p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
  146. else if ((speed <= XFER_PIO_4) ||
  147. (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
  148. p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
  149. } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
  150. p.cycle = id[ATA_ID_EIDE_DMA_MIN];
  151. ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
  152. }
  153. /*
  154. * Convert the timing to bus clock counts.
  155. */
  156. ide_timing_quantize(t, t, T, UT);
  157. /*
  158. * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
  159. * S.M.A.R.T and some other commands. We have to ensure that the
  160. * DMA cycle timing is slower/equal than the current PIO timing.
  161. */
  162. if (speed >= XFER_SW_DMA_0) {
  163. ide_timing_compute(drive, drive->pio_mode, &p, T, UT);
  164. ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
  165. }
  166. /*
  167. * Lengthen active & recovery time so that cycle time is correct.
  168. */
  169. if (t->act8b + t->rec8b < t->cyc8b) {
  170. t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
  171. t->rec8b = t->cyc8b - t->act8b;
  172. }
  173. if (t->active + t->recover < t->cycle) {
  174. t->active += (t->cycle - (t->active + t->recover)) / 2;
  175. t->recover = t->cycle - t->active;
  176. }
  177. return 0;
  178. }
  179. EXPORT_SYMBOL_GPL(ide_timing_compute);