123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 |
- /*
- * This contains encryption functions for per-file encryption.
- *
- * Copyright (C) 2015, Google, Inc.
- * Copyright (C) 2015, Motorola Mobility
- *
- * Written by Michael Halcrow, 2014.
- *
- * Filename encryption additions
- * Uday Savagaonkar, 2014
- * Encryption policy handling additions
- * Ildar Muslukhov, 2014
- * Add fscrypt_pullback_bio_page()
- * Jaegeuk Kim, 2015.
- *
- * This has not yet undergone a rigorous security audit.
- *
- * The usage of AES-XTS should conform to recommendations in NIST
- * Special Publication 800-38E and IEEE P1619/D16.
- */
- #include <linux/pagemap.h>
- #include <linux/mempool.h>
- #include <linux/module.h>
- #include <linux/scatterlist.h>
- #include <linux/ratelimit.h>
- #include <linux/dcache.h>
- #include <linux/namei.h>
- #include <crypto/aes.h>
- #include <crypto/skcipher.h>
- #include "fscrypt_private.h"
- static unsigned int num_prealloc_crypto_pages = 32;
- static unsigned int num_prealloc_crypto_ctxs = 128;
- module_param(num_prealloc_crypto_pages, uint, 0444);
- MODULE_PARM_DESC(num_prealloc_crypto_pages,
- "Number of crypto pages to preallocate");
- module_param(num_prealloc_crypto_ctxs, uint, 0444);
- MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
- "Number of crypto contexts to preallocate");
- static mempool_t *fscrypt_bounce_page_pool = NULL;
- static LIST_HEAD(fscrypt_free_ctxs);
- static DEFINE_SPINLOCK(fscrypt_ctx_lock);
- static struct workqueue_struct *fscrypt_read_workqueue;
- static DEFINE_MUTEX(fscrypt_init_mutex);
- static struct kmem_cache *fscrypt_ctx_cachep;
- struct kmem_cache *fscrypt_info_cachep;
- void fscrypt_enqueue_decrypt_work(struct work_struct *work)
- {
- queue_work(fscrypt_read_workqueue, work);
- }
- EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
- /**
- * fscrypt_release_ctx() - Releases an encryption context
- * @ctx: The encryption context to release.
- *
- * If the encryption context was allocated from the pre-allocated pool, returns
- * it to that pool. Else, frees it.
- *
- * If there's a bounce page in the context, this frees that.
- */
- void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
- {
- unsigned long flags;
- if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
- mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
- ctx->w.bounce_page = NULL;
- }
- ctx->w.control_page = NULL;
- if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
- kmem_cache_free(fscrypt_ctx_cachep, ctx);
- } else {
- spin_lock_irqsave(&fscrypt_ctx_lock, flags);
- list_add(&ctx->free_list, &fscrypt_free_ctxs);
- spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
- }
- }
- EXPORT_SYMBOL(fscrypt_release_ctx);
- /**
- * fscrypt_get_ctx() - Gets an encryption context
- * @inode: The inode for which we are doing the crypto
- * @gfp_flags: The gfp flag for memory allocation
- *
- * Allocates and initializes an encryption context.
- *
- * Return: An allocated and initialized encryption context on success; error
- * value or NULL otherwise.
- */
- struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
- {
- struct fscrypt_ctx *ctx = NULL;
- struct fscrypt_info *ci = inode->i_crypt_info;
- unsigned long flags;
- if (ci == NULL)
- return ERR_PTR(-ENOKEY);
- /*
- * We first try getting the ctx from a free list because in
- * the common case the ctx will have an allocated and
- * initialized crypto tfm, so it's probably a worthwhile
- * optimization. For the bounce page, we first try getting it
- * from the kernel allocator because that's just about as fast
- * as getting it from a list and because a cache of free pages
- * should generally be a "last resort" option for a filesystem
- * to be able to do its job.
- */
- spin_lock_irqsave(&fscrypt_ctx_lock, flags);
- ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
- struct fscrypt_ctx, free_list);
- if (ctx)
- list_del(&ctx->free_list);
- spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
- if (!ctx) {
- ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
- if (!ctx)
- return ERR_PTR(-ENOMEM);
- ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
- } else {
- ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
- }
- ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
- return ctx;
- }
- EXPORT_SYMBOL(fscrypt_get_ctx);
- void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
- const struct fscrypt_info *ci)
- {
- memset(iv, 0, ci->ci_mode->ivsize);
- iv->lblk_num = cpu_to_le64(lblk_num);
- if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY)
- memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
- if (ci->ci_essiv_tfm != NULL)
- crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
- }
- int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
- u64 lblk_num, struct page *src_page,
- struct page *dest_page, unsigned int len,
- unsigned int offs, gfp_t gfp_flags)
- {
- union fscrypt_iv iv;
- struct skcipher_request *req = NULL;
- DECLARE_CRYPTO_WAIT(wait);
- struct scatterlist dst, src;
- struct fscrypt_info *ci = inode->i_crypt_info;
- struct crypto_skcipher *tfm = ci->ci_ctfm;
- int res = 0;
- BUG_ON(len == 0);
- fscrypt_generate_iv(&iv, lblk_num, ci);
- req = skcipher_request_alloc(tfm, gfp_flags);
- if (!req)
- return -ENOMEM;
- skcipher_request_set_callback(
- req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
- crypto_req_done, &wait);
- sg_init_table(&dst, 1);
- sg_set_page(&dst, dest_page, len, offs);
- sg_init_table(&src, 1);
- sg_set_page(&src, src_page, len, offs);
- skcipher_request_set_crypt(req, &src, &dst, len, &iv);
- if (rw == FS_DECRYPT)
- res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
- else
- res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
- skcipher_request_free(req);
- if (res) {
- fscrypt_err(inode->i_sb,
- "%scryption failed for inode %lu, block %llu: %d",
- (rw == FS_DECRYPT ? "de" : "en"),
- inode->i_ino, lblk_num, res);
- return res;
- }
- return 0;
- }
- struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
- gfp_t gfp_flags)
- {
- ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
- if (ctx->w.bounce_page == NULL)
- return ERR_PTR(-ENOMEM);
- ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
- return ctx->w.bounce_page;
- }
- /**
- * fscypt_encrypt_page() - Encrypts a page
- * @inode: The inode for which the encryption should take place
- * @page: The page to encrypt. Must be locked for bounce-page
- * encryption.
- * @len: Length of data to encrypt in @page and encrypted
- * data in returned page.
- * @offs: Offset of data within @page and returned
- * page holding encrypted data.
- * @lblk_num: Logical block number. This must be unique for multiple
- * calls with same inode, except when overwriting
- * previously written data.
- * @gfp_flags: The gfp flag for memory allocation
- *
- * Encrypts @page using the ctx encryption context. Performs encryption
- * either in-place or into a newly allocated bounce page.
- * Called on the page write path.
- *
- * Bounce page allocation is the default.
- * In this case, the contents of @page are encrypted and stored in an
- * allocated bounce page. @page has to be locked and the caller must call
- * fscrypt_restore_control_page() on the returned ciphertext page to
- * release the bounce buffer and the encryption context.
- *
- * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
- * fscrypt_operations. Here, the input-page is returned with its content
- * encrypted.
- *
- * Return: A page with the encrypted content on success. Else, an
- * error value or NULL.
- */
- struct page *fscrypt_encrypt_page(const struct inode *inode,
- struct page *page,
- unsigned int len,
- unsigned int offs,
- u64 lblk_num, gfp_t gfp_flags)
- {
- struct fscrypt_ctx *ctx;
- struct page *ciphertext_page = page;
- int err;
- BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
- if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
- /* with inplace-encryption we just encrypt the page */
- err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
- ciphertext_page, len, offs,
- gfp_flags);
- if (err)
- return ERR_PTR(err);
- return ciphertext_page;
- }
- BUG_ON(!PageLocked(page));
- ctx = fscrypt_get_ctx(inode, gfp_flags);
- if (IS_ERR(ctx))
- return (struct page *)ctx;
- /* The encryption operation will require a bounce page. */
- ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
- if (IS_ERR(ciphertext_page))
- goto errout;
- ctx->w.control_page = page;
- err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
- page, ciphertext_page, len, offs,
- gfp_flags);
- if (err) {
- ciphertext_page = ERR_PTR(err);
- goto errout;
- }
- SetPagePrivate(ciphertext_page);
- set_page_private(ciphertext_page, (unsigned long)ctx);
- lock_page(ciphertext_page);
- return ciphertext_page;
- errout:
- fscrypt_release_ctx(ctx);
- return ciphertext_page;
- }
- EXPORT_SYMBOL(fscrypt_encrypt_page);
- /**
- * fscrypt_decrypt_page() - Decrypts a page in-place
- * @inode: The corresponding inode for the page to decrypt.
- * @page: The page to decrypt. Must be locked in case
- * it is a writeback page (FS_CFLG_OWN_PAGES unset).
- * @len: Number of bytes in @page to be decrypted.
- * @offs: Start of data in @page.
- * @lblk_num: Logical block number.
- *
- * Decrypts page in-place using the ctx encryption context.
- *
- * Called from the read completion callback.
- *
- * Return: Zero on success, non-zero otherwise.
- */
- int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
- unsigned int len, unsigned int offs, u64 lblk_num)
- {
- if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
- BUG_ON(!PageLocked(page));
- return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
- len, offs, GFP_NOFS);
- }
- EXPORT_SYMBOL(fscrypt_decrypt_page);
- /*
- * Validate dentries for encrypted directories to make sure we aren't
- * potentially caching stale data after a key has been added or
- * removed.
- */
- static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
- {
- struct dentry *dir;
- int dir_has_key, cached_with_key;
- if (flags & LOOKUP_RCU)
- return -ECHILD;
- dir = dget_parent(dentry);
- if (!IS_ENCRYPTED(d_inode(dir))) {
- dput(dir);
- return 0;
- }
- spin_lock(&dentry->d_lock);
- cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
- spin_unlock(&dentry->d_lock);
- dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
- dput(dir);
- /*
- * If the dentry was cached without the key, and it is a
- * negative dentry, it might be a valid name. We can't check
- * if the key has since been made available due to locking
- * reasons, so we fail the validation so ext4_lookup() can do
- * this check.
- *
- * We also fail the validation if the dentry was created with
- * the key present, but we no longer have the key, or vice versa.
- */
- if ((!cached_with_key && d_is_negative(dentry)) ||
- (!cached_with_key && dir_has_key) ||
- (cached_with_key && !dir_has_key))
- return 0;
- return 1;
- }
- const struct dentry_operations fscrypt_d_ops = {
- .d_revalidate = fscrypt_d_revalidate,
- };
- void fscrypt_restore_control_page(struct page *page)
- {
- struct fscrypt_ctx *ctx;
- ctx = (struct fscrypt_ctx *)page_private(page);
- set_page_private(page, (unsigned long)NULL);
- ClearPagePrivate(page);
- unlock_page(page);
- fscrypt_release_ctx(ctx);
- }
- EXPORT_SYMBOL(fscrypt_restore_control_page);
- static void fscrypt_destroy(void)
- {
- struct fscrypt_ctx *pos, *n;
- list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
- kmem_cache_free(fscrypt_ctx_cachep, pos);
- INIT_LIST_HEAD(&fscrypt_free_ctxs);
- mempool_destroy(fscrypt_bounce_page_pool);
- fscrypt_bounce_page_pool = NULL;
- }
- /**
- * fscrypt_initialize() - allocate major buffers for fs encryption.
- * @cop_flags: fscrypt operations flags
- *
- * We only call this when we start accessing encrypted files, since it
- * results in memory getting allocated that wouldn't otherwise be used.
- *
- * Return: Zero on success, non-zero otherwise.
- */
- int fscrypt_initialize(unsigned int cop_flags)
- {
- int i, res = -ENOMEM;
- /* No need to allocate a bounce page pool if this FS won't use it. */
- if (cop_flags & FS_CFLG_OWN_PAGES)
- return 0;
- mutex_lock(&fscrypt_init_mutex);
- if (fscrypt_bounce_page_pool)
- goto already_initialized;
- for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
- struct fscrypt_ctx *ctx;
- ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
- if (!ctx)
- goto fail;
- list_add(&ctx->free_list, &fscrypt_free_ctxs);
- }
- fscrypt_bounce_page_pool =
- mempool_create_page_pool(num_prealloc_crypto_pages, 0);
- if (!fscrypt_bounce_page_pool)
- goto fail;
- already_initialized:
- mutex_unlock(&fscrypt_init_mutex);
- return 0;
- fail:
- fscrypt_destroy();
- mutex_unlock(&fscrypt_init_mutex);
- return res;
- }
- void fscrypt_msg(struct super_block *sb, const char *level,
- const char *fmt, ...)
- {
- static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
- DEFAULT_RATELIMIT_BURST);
- struct va_format vaf;
- va_list args;
- if (!__ratelimit(&rs))
- return;
- va_start(args, fmt);
- vaf.fmt = fmt;
- vaf.va = &args;
- if (sb)
- printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
- else
- printk("%sfscrypt: %pV\n", level, &vaf);
- va_end(args);
- }
- /**
- * fscrypt_init() - Set up for fs encryption.
- */
- static int __init fscrypt_init(void)
- {
- /*
- * Use an unbound workqueue to allow bios to be decrypted in parallel
- * even when they happen to complete on the same CPU. This sacrifices
- * locality, but it's worthwhile since decryption is CPU-intensive.
- *
- * Also use a high-priority workqueue to prioritize decryption work,
- * which blocks reads from completing, over regular application tasks.
- */
- fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
- WQ_UNBOUND | WQ_HIGHPRI,
- num_online_cpus());
- if (!fscrypt_read_workqueue)
- goto fail;
- fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
- if (!fscrypt_ctx_cachep)
- goto fail_free_queue;
- fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
- if (!fscrypt_info_cachep)
- goto fail_free_ctx;
- return 0;
- fail_free_ctx:
- kmem_cache_destroy(fscrypt_ctx_cachep);
- fail_free_queue:
- destroy_workqueue(fscrypt_read_workqueue);
- fail:
- return -ENOMEM;
- }
- module_init(fscrypt_init)
- /**
- * fscrypt_exit() - Shutdown the fs encryption system
- */
- static void __exit fscrypt_exit(void)
- {
- fscrypt_destroy();
- if (fscrypt_read_workqueue)
- destroy_workqueue(fscrypt_read_workqueue);
- kmem_cache_destroy(fscrypt_ctx_cachep);
- kmem_cache_destroy(fscrypt_info_cachep);
- fscrypt_essiv_cleanup();
- }
- module_exit(fscrypt_exit);
- MODULE_LICENSE("GPL");
|