dir.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657
  1. /*
  2. * linux/fs/ext4/dir.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card ([email protected])
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/dir.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * ext4 directory handling functions
  16. *
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller ([email protected]), 1995
  19. *
  20. * Hash Tree Directory indexing (c) 2001 Daniel Phillips
  21. *
  22. */
  23. #include <linux/fs.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/slab.h>
  26. #include "ext4.h"
  27. #include "xattr.h"
  28. static int ext4_dx_readdir(struct file *, struct dir_context *);
  29. /**
  30. * Check if the given dir-inode refers to an htree-indexed directory
  31. * (or a directory which could potentially get converted to use htree
  32. * indexing).
  33. *
  34. * Return 1 if it is a dx dir, 0 if not
  35. */
  36. static int is_dx_dir(struct inode *inode)
  37. {
  38. struct super_block *sb = inode->i_sb;
  39. if (ext4_has_feature_dir_index(inode->i_sb) &&
  40. ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
  41. ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
  42. ext4_has_inline_data(inode)))
  43. return 1;
  44. return 0;
  45. }
  46. /*
  47. * Return 0 if the directory entry is OK, and 1 if there is a problem
  48. *
  49. * Note: this is the opposite of what ext2 and ext3 historically returned...
  50. *
  51. * bh passed here can be an inode block or a dir data block, depending
  52. * on the inode inline data flag.
  53. */
  54. int __ext4_check_dir_entry(const char *function, unsigned int line,
  55. struct inode *dir, struct file *filp,
  56. struct ext4_dir_entry_2 *de,
  57. struct buffer_head *bh, char *buf, int size,
  58. unsigned int offset)
  59. {
  60. const char *error_msg = NULL;
  61. const int rlen = ext4_rec_len_from_disk(de->rec_len,
  62. dir->i_sb->s_blocksize);
  63. if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
  64. error_msg = "rec_len is smaller than minimal";
  65. else if (unlikely(rlen % 4 != 0))
  66. error_msg = "rec_len % 4 != 0";
  67. else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
  68. error_msg = "rec_len is too small for name_len";
  69. else if (unlikely(((char *) de - buf) + rlen > size))
  70. error_msg = "directory entry overrun";
  71. else if (unlikely(le32_to_cpu(de->inode) >
  72. le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
  73. error_msg = "inode out of bounds";
  74. else
  75. return 0;
  76. if (filp)
  77. ext4_error_file(filp, function, line, bh->b_blocknr,
  78. "bad entry in directory: %s - offset=%u, "
  79. "inode=%u, rec_len=%d, name_len=%d, size=%d",
  80. error_msg, offset, le32_to_cpu(de->inode),
  81. rlen, de->name_len, size);
  82. else
  83. ext4_error_inode(dir, function, line, bh->b_blocknr,
  84. "bad entry in directory: %s - offset=%u, "
  85. "inode=%u, rec_len=%d, name_len=%d, size=%d",
  86. error_msg, offset, le32_to_cpu(de->inode),
  87. rlen, de->name_len, size);
  88. return 1;
  89. }
  90. static int ext4_readdir(struct file *file, struct dir_context *ctx)
  91. {
  92. unsigned int offset;
  93. int i;
  94. struct ext4_dir_entry_2 *de;
  95. int err;
  96. struct inode *inode = file_inode(file);
  97. struct super_block *sb = inode->i_sb;
  98. struct buffer_head *bh = NULL;
  99. struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
  100. if (IS_ENCRYPTED(inode)) {
  101. err = fscrypt_get_encryption_info(inode);
  102. if (err && err != -ENOKEY)
  103. return err;
  104. }
  105. if (is_dx_dir(inode)) {
  106. err = ext4_dx_readdir(file, ctx);
  107. if (err != ERR_BAD_DX_DIR) {
  108. return err;
  109. }
  110. /*
  111. * We don't set the inode dirty flag since it's not
  112. * critical that it get flushed back to the disk.
  113. */
  114. ext4_clear_inode_flag(file_inode(file),
  115. EXT4_INODE_INDEX);
  116. }
  117. if (ext4_has_inline_data(inode)) {
  118. int has_inline_data = 1;
  119. err = ext4_read_inline_dir(file, ctx,
  120. &has_inline_data);
  121. if (has_inline_data)
  122. return err;
  123. }
  124. if (IS_ENCRYPTED(inode)) {
  125. err = fscrypt_fname_alloc_buffer(inode, EXT4_NAME_LEN, &fstr);
  126. if (err < 0)
  127. return err;
  128. }
  129. while (ctx->pos < inode->i_size) {
  130. struct ext4_map_blocks map;
  131. if (fatal_signal_pending(current)) {
  132. err = -ERESTARTSYS;
  133. goto errout;
  134. }
  135. cond_resched();
  136. offset = ctx->pos & (sb->s_blocksize - 1);
  137. map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
  138. map.m_len = 1;
  139. err = ext4_map_blocks(NULL, inode, &map, 0);
  140. if (err == 0) {
  141. /* m_len should never be zero but let's avoid
  142. * an infinite loop if it somehow is */
  143. if (map.m_len == 0)
  144. map.m_len = 1;
  145. ctx->pos += map.m_len * sb->s_blocksize;
  146. continue;
  147. }
  148. if (err > 0) {
  149. pgoff_t index = map.m_pblk >>
  150. (PAGE_SHIFT - inode->i_blkbits);
  151. if (!ra_has_index(&file->f_ra, index))
  152. page_cache_sync_readahead(
  153. sb->s_bdev->bd_inode->i_mapping,
  154. &file->f_ra, file,
  155. index, 1);
  156. file->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
  157. bh = ext4_bread(NULL, inode, map.m_lblk, 0);
  158. if (IS_ERR(bh)) {
  159. err = PTR_ERR(bh);
  160. bh = NULL;
  161. goto errout;
  162. }
  163. }
  164. if (!bh) {
  165. /* corrupt size? Maybe no more blocks to read */
  166. if (ctx->pos > inode->i_blocks << 9)
  167. break;
  168. ctx->pos += sb->s_blocksize - offset;
  169. continue;
  170. }
  171. /* Check the checksum */
  172. if (!buffer_verified(bh) &&
  173. !ext4_dirent_csum_verify(inode,
  174. (struct ext4_dir_entry *)bh->b_data)) {
  175. EXT4_ERROR_FILE(file, 0, "directory fails checksum "
  176. "at offset %llu",
  177. (unsigned long long)ctx->pos);
  178. ctx->pos += sb->s_blocksize - offset;
  179. brelse(bh);
  180. bh = NULL;
  181. continue;
  182. }
  183. set_buffer_verified(bh);
  184. /* If the dir block has changed since the last call to
  185. * readdir(2), then we might be pointing to an invalid
  186. * dirent right now. Scan from the start of the block
  187. * to make sure. */
  188. if (file->f_version != inode->i_version) {
  189. for (i = 0; i < sb->s_blocksize && i < offset; ) {
  190. de = (struct ext4_dir_entry_2 *)
  191. (bh->b_data + i);
  192. /* It's too expensive to do a full
  193. * dirent test each time round this
  194. * loop, but we do have to test at
  195. * least that it is non-zero. A
  196. * failure will be detected in the
  197. * dirent test below. */
  198. if (ext4_rec_len_from_disk(de->rec_len,
  199. sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
  200. break;
  201. i += ext4_rec_len_from_disk(de->rec_len,
  202. sb->s_blocksize);
  203. }
  204. offset = i;
  205. ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
  206. | offset;
  207. file->f_version = inode->i_version;
  208. }
  209. while (ctx->pos < inode->i_size
  210. && offset < sb->s_blocksize) {
  211. de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
  212. if (ext4_check_dir_entry(inode, file, de, bh,
  213. bh->b_data, bh->b_size,
  214. offset)) {
  215. /*
  216. * On error, skip to the next block
  217. */
  218. ctx->pos = (ctx->pos |
  219. (sb->s_blocksize - 1)) + 1;
  220. break;
  221. }
  222. offset += ext4_rec_len_from_disk(de->rec_len,
  223. sb->s_blocksize);
  224. if (le32_to_cpu(de->inode)) {
  225. if (!IS_ENCRYPTED(inode)) {
  226. if (!dir_emit(ctx, de->name,
  227. de->name_len,
  228. le32_to_cpu(de->inode),
  229. get_dtype(sb, de->file_type)))
  230. goto done;
  231. } else {
  232. int save_len = fstr.len;
  233. struct fscrypt_str de_name =
  234. FSTR_INIT(de->name,
  235. de->name_len);
  236. /* Directory is encrypted */
  237. err = fscrypt_fname_disk_to_usr(inode,
  238. 0, 0, &de_name, &fstr);
  239. de_name = fstr;
  240. fstr.len = save_len;
  241. if (err)
  242. goto errout;
  243. if (!dir_emit(ctx,
  244. de_name.name, de_name.len,
  245. le32_to_cpu(de->inode),
  246. get_dtype(sb, de->file_type)))
  247. goto done;
  248. }
  249. }
  250. ctx->pos += ext4_rec_len_from_disk(de->rec_len,
  251. sb->s_blocksize);
  252. }
  253. if ((ctx->pos < inode->i_size) && !dir_relax_shared(inode))
  254. goto done;
  255. brelse(bh);
  256. bh = NULL;
  257. offset = 0;
  258. }
  259. done:
  260. err = 0;
  261. errout:
  262. fscrypt_fname_free_buffer(&fstr);
  263. brelse(bh);
  264. return err;
  265. }
  266. static inline int is_32bit_api(void)
  267. {
  268. #ifdef CONFIG_COMPAT
  269. return in_compat_syscall();
  270. #else
  271. return (BITS_PER_LONG == 32);
  272. #endif
  273. }
  274. /*
  275. * These functions convert from the major/minor hash to an f_pos
  276. * value for dx directories
  277. *
  278. * Upper layer (for example NFS) should specify FMODE_32BITHASH or
  279. * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
  280. * directly on both 32-bit and 64-bit nodes, under such case, neither
  281. * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
  282. */
  283. static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
  284. {
  285. if ((filp->f_mode & FMODE_32BITHASH) ||
  286. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  287. return major >> 1;
  288. else
  289. return ((__u64)(major >> 1) << 32) | (__u64)minor;
  290. }
  291. static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
  292. {
  293. if ((filp->f_mode & FMODE_32BITHASH) ||
  294. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  295. return (pos << 1) & 0xffffffff;
  296. else
  297. return ((pos >> 32) << 1) & 0xffffffff;
  298. }
  299. static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
  300. {
  301. if ((filp->f_mode & FMODE_32BITHASH) ||
  302. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  303. return 0;
  304. else
  305. return pos & 0xffffffff;
  306. }
  307. /*
  308. * Return 32- or 64-bit end-of-file for dx directories
  309. */
  310. static inline loff_t ext4_get_htree_eof(struct file *filp)
  311. {
  312. if ((filp->f_mode & FMODE_32BITHASH) ||
  313. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  314. return EXT4_HTREE_EOF_32BIT;
  315. else
  316. return EXT4_HTREE_EOF_64BIT;
  317. }
  318. /*
  319. * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
  320. * directories, where the "offset" is in terms of the filename hash
  321. * value instead of the byte offset.
  322. *
  323. * Because we may return a 64-bit hash that is well beyond offset limits,
  324. * we need to pass the max hash as the maximum allowable offset in
  325. * the htree directory case.
  326. *
  327. * For non-htree, ext4_llseek already chooses the proper max offset.
  328. */
  329. static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
  330. {
  331. struct inode *inode = file->f_mapping->host;
  332. int dx_dir = is_dx_dir(inode);
  333. loff_t htree_max = ext4_get_htree_eof(file);
  334. if (likely(dx_dir))
  335. return generic_file_llseek_size(file, offset, whence,
  336. htree_max, htree_max);
  337. else
  338. return ext4_llseek(file, offset, whence);
  339. }
  340. /*
  341. * This structure holds the nodes of the red-black tree used to store
  342. * the directory entry in hash order.
  343. */
  344. struct fname {
  345. __u32 hash;
  346. __u32 minor_hash;
  347. struct rb_node rb_hash;
  348. struct fname *next;
  349. __u32 inode;
  350. __u8 name_len;
  351. __u8 file_type;
  352. char name[0];
  353. };
  354. /*
  355. * This functoin implements a non-recursive way of freeing all of the
  356. * nodes in the red-black tree.
  357. */
  358. static void free_rb_tree_fname(struct rb_root *root)
  359. {
  360. struct fname *fname, *next;
  361. rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash)
  362. while (fname) {
  363. struct fname *old = fname;
  364. fname = fname->next;
  365. kfree(old);
  366. }
  367. *root = RB_ROOT;
  368. }
  369. static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
  370. loff_t pos)
  371. {
  372. struct dir_private_info *p;
  373. p = kzalloc(sizeof(struct dir_private_info), GFP_KERNEL);
  374. if (!p)
  375. return NULL;
  376. p->curr_hash = pos2maj_hash(filp, pos);
  377. p->curr_minor_hash = pos2min_hash(filp, pos);
  378. return p;
  379. }
  380. void ext4_htree_free_dir_info(struct dir_private_info *p)
  381. {
  382. free_rb_tree_fname(&p->root);
  383. kfree(p);
  384. }
  385. /*
  386. * Given a directory entry, enter it into the fname rb tree.
  387. *
  388. * When filename encryption is enabled, the dirent will hold the
  389. * encrypted filename, while the htree will hold decrypted filename.
  390. * The decrypted filename is passed in via ent_name. parameter.
  391. */
  392. int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
  393. __u32 minor_hash,
  394. struct ext4_dir_entry_2 *dirent,
  395. struct fscrypt_str *ent_name)
  396. {
  397. struct rb_node **p, *parent = NULL;
  398. struct fname *fname, *new_fn;
  399. struct dir_private_info *info;
  400. int len;
  401. info = dir_file->private_data;
  402. p = &info->root.rb_node;
  403. /* Create and allocate the fname structure */
  404. len = sizeof(struct fname) + ent_name->len + 1;
  405. new_fn = kzalloc(len, GFP_KERNEL);
  406. if (!new_fn)
  407. return -ENOMEM;
  408. new_fn->hash = hash;
  409. new_fn->minor_hash = minor_hash;
  410. new_fn->inode = le32_to_cpu(dirent->inode);
  411. new_fn->name_len = ent_name->len;
  412. new_fn->file_type = dirent->file_type;
  413. memcpy(new_fn->name, ent_name->name, ent_name->len);
  414. new_fn->name[ent_name->len] = 0;
  415. while (*p) {
  416. parent = *p;
  417. fname = rb_entry(parent, struct fname, rb_hash);
  418. /*
  419. * If the hash and minor hash match up, then we put
  420. * them on a linked list. This rarely happens...
  421. */
  422. if ((new_fn->hash == fname->hash) &&
  423. (new_fn->minor_hash == fname->minor_hash)) {
  424. new_fn->next = fname->next;
  425. fname->next = new_fn;
  426. return 0;
  427. }
  428. if (new_fn->hash < fname->hash)
  429. p = &(*p)->rb_left;
  430. else if (new_fn->hash > fname->hash)
  431. p = &(*p)->rb_right;
  432. else if (new_fn->minor_hash < fname->minor_hash)
  433. p = &(*p)->rb_left;
  434. else /* if (new_fn->minor_hash > fname->minor_hash) */
  435. p = &(*p)->rb_right;
  436. }
  437. rb_link_node(&new_fn->rb_hash, parent, p);
  438. rb_insert_color(&new_fn->rb_hash, &info->root);
  439. return 0;
  440. }
  441. /*
  442. * This is a helper function for ext4_dx_readdir. It calls filldir
  443. * for all entres on the fname linked list. (Normally there is only
  444. * one entry on the linked list, unless there are 62 bit hash collisions.)
  445. */
  446. static int call_filldir(struct file *file, struct dir_context *ctx,
  447. struct fname *fname)
  448. {
  449. struct dir_private_info *info = file->private_data;
  450. struct inode *inode = file_inode(file);
  451. struct super_block *sb = inode->i_sb;
  452. if (!fname) {
  453. ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
  454. "called with null fname?!?", __func__, __LINE__,
  455. inode->i_ino, current->comm);
  456. return 0;
  457. }
  458. ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
  459. while (fname) {
  460. if (!dir_emit(ctx, fname->name,
  461. fname->name_len,
  462. fname->inode,
  463. get_dtype(sb, fname->file_type))) {
  464. info->extra_fname = fname;
  465. return 1;
  466. }
  467. fname = fname->next;
  468. }
  469. return 0;
  470. }
  471. static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
  472. {
  473. struct dir_private_info *info = file->private_data;
  474. struct inode *inode = file_inode(file);
  475. struct fname *fname;
  476. int ret;
  477. if (!info) {
  478. info = ext4_htree_create_dir_info(file, ctx->pos);
  479. if (!info)
  480. return -ENOMEM;
  481. file->private_data = info;
  482. }
  483. if (ctx->pos == ext4_get_htree_eof(file))
  484. return 0; /* EOF */
  485. /* Some one has messed with f_pos; reset the world */
  486. if (info->last_pos != ctx->pos) {
  487. free_rb_tree_fname(&info->root);
  488. info->curr_node = NULL;
  489. info->extra_fname = NULL;
  490. info->curr_hash = pos2maj_hash(file, ctx->pos);
  491. info->curr_minor_hash = pos2min_hash(file, ctx->pos);
  492. }
  493. /*
  494. * If there are any leftover names on the hash collision
  495. * chain, return them first.
  496. */
  497. if (info->extra_fname) {
  498. if (call_filldir(file, ctx, info->extra_fname))
  499. goto finished;
  500. info->extra_fname = NULL;
  501. goto next_node;
  502. } else if (!info->curr_node)
  503. info->curr_node = rb_first(&info->root);
  504. while (1) {
  505. /*
  506. * Fill the rbtree if we have no more entries,
  507. * or the inode has changed since we last read in the
  508. * cached entries.
  509. */
  510. if ((!info->curr_node) ||
  511. (file->f_version != inode->i_version)) {
  512. info->curr_node = NULL;
  513. free_rb_tree_fname(&info->root);
  514. file->f_version = inode->i_version;
  515. ret = ext4_htree_fill_tree(file, info->curr_hash,
  516. info->curr_minor_hash,
  517. &info->next_hash);
  518. if (ret < 0)
  519. return ret;
  520. if (ret == 0) {
  521. ctx->pos = ext4_get_htree_eof(file);
  522. break;
  523. }
  524. info->curr_node = rb_first(&info->root);
  525. }
  526. fname = rb_entry(info->curr_node, struct fname, rb_hash);
  527. info->curr_hash = fname->hash;
  528. info->curr_minor_hash = fname->minor_hash;
  529. if (call_filldir(file, ctx, fname))
  530. break;
  531. next_node:
  532. info->curr_node = rb_next(info->curr_node);
  533. if (info->curr_node) {
  534. fname = rb_entry(info->curr_node, struct fname,
  535. rb_hash);
  536. info->curr_hash = fname->hash;
  537. info->curr_minor_hash = fname->minor_hash;
  538. } else {
  539. if (info->next_hash == ~0) {
  540. ctx->pos = ext4_get_htree_eof(file);
  541. break;
  542. }
  543. info->curr_hash = info->next_hash;
  544. info->curr_minor_hash = 0;
  545. }
  546. }
  547. finished:
  548. info->last_pos = ctx->pos;
  549. return 0;
  550. }
  551. static int ext4_dir_open(struct inode * inode, struct file * filp)
  552. {
  553. if (IS_ENCRYPTED(inode))
  554. return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
  555. return 0;
  556. }
  557. static int ext4_release_dir(struct inode *inode, struct file *filp)
  558. {
  559. if (filp->private_data)
  560. ext4_htree_free_dir_info(filp->private_data);
  561. return 0;
  562. }
  563. int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf,
  564. int buf_size)
  565. {
  566. struct ext4_dir_entry_2 *de;
  567. int rlen;
  568. unsigned int offset = 0;
  569. char *top;
  570. de = (struct ext4_dir_entry_2 *)buf;
  571. top = buf + buf_size;
  572. while ((char *) de < top) {
  573. if (ext4_check_dir_entry(dir, NULL, de, bh,
  574. buf, buf_size, offset))
  575. return -EFSCORRUPTED;
  576. rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
  577. de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
  578. offset += rlen;
  579. }
  580. if ((char *) de > top)
  581. return -EFSCORRUPTED;
  582. return 0;
  583. }
  584. const struct file_operations ext4_dir_operations = {
  585. .llseek = ext4_dir_llseek,
  586. .read = generic_read_dir,
  587. .iterate_shared = ext4_readdir,
  588. .unlocked_ioctl = ext4_ioctl,
  589. #ifdef CONFIG_COMPAT
  590. .compat_ioctl = ext4_compat_ioctl,
  591. #endif
  592. .fsync = ext4_sync_file,
  593. .open = ext4_dir_open,
  594. .release = ext4_release_dir,
  595. };