mbcache.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438
  1. #include <linux/spinlock.h>
  2. #include <linux/slab.h>
  3. #include <linux/list.h>
  4. #include <linux/list_bl.h>
  5. #include <linux/module.h>
  6. #include <linux/sched.h>
  7. #include <linux/workqueue.h>
  8. #include <linux/mbcache.h>
  9. /*
  10. * Mbcache is a simple key-value store. Keys need not be unique, however
  11. * key-value pairs are expected to be unique (we use this fact in
  12. * mb_cache_entry_delete_block()).
  13. *
  14. * Ext2 and ext4 use this cache for deduplication of extended attribute blocks.
  15. * They use hash of a block contents as a key and block number as a value.
  16. * That's why keys need not be unique (different xattr blocks may end up having
  17. * the same hash). However block number always uniquely identifies a cache
  18. * entry.
  19. *
  20. * We provide functions for creation and removal of entries, search by key,
  21. * and a special "delete entry with given key-value pair" operation. Fixed
  22. * size hash table is used for fast key lookups.
  23. */
  24. struct mb_cache {
  25. /* Hash table of entries */
  26. struct hlist_bl_head *c_hash;
  27. /* log2 of hash table size */
  28. int c_bucket_bits;
  29. /* Maximum entries in cache to avoid degrading hash too much */
  30. int c_max_entries;
  31. /* Protects c_list, c_entry_count */
  32. spinlock_t c_list_lock;
  33. struct list_head c_list;
  34. /* Number of entries in cache */
  35. unsigned long c_entry_count;
  36. struct shrinker c_shrink;
  37. /* Work for shrinking when the cache has too many entries */
  38. struct work_struct c_shrink_work;
  39. };
  40. static struct kmem_cache *mb_entry_cache;
  41. static unsigned long mb_cache_shrink(struct mb_cache *cache,
  42. unsigned int nr_to_scan);
  43. static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache,
  44. u32 key)
  45. {
  46. return &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
  47. }
  48. /*
  49. * Number of entries to reclaim synchronously when there are too many entries
  50. * in cache
  51. */
  52. #define SYNC_SHRINK_BATCH 64
  53. /*
  54. * mb_cache_entry_create - create entry in cache
  55. * @cache - cache where the entry should be created
  56. * @mask - gfp mask with which the entry should be allocated
  57. * @key - key of the entry
  58. * @block - block that contains data
  59. * @reusable - is the block reusable by other inodes?
  60. *
  61. * Creates entry in @cache with key @key and records that data is stored in
  62. * block @block. The function returns -EBUSY if entry with the same key
  63. * and for the same block already exists in cache. Otherwise 0 is returned.
  64. */
  65. int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key,
  66. sector_t block, bool reusable)
  67. {
  68. struct mb_cache_entry *entry, *dup;
  69. struct hlist_bl_node *dup_node;
  70. struct hlist_bl_head *head;
  71. /* Schedule background reclaim if there are too many entries */
  72. if (cache->c_entry_count >= cache->c_max_entries)
  73. schedule_work(&cache->c_shrink_work);
  74. /* Do some sync reclaim if background reclaim cannot keep up */
  75. if (cache->c_entry_count >= 2*cache->c_max_entries)
  76. mb_cache_shrink(cache, SYNC_SHRINK_BATCH);
  77. entry = kmem_cache_alloc(mb_entry_cache, mask);
  78. if (!entry)
  79. return -ENOMEM;
  80. INIT_LIST_HEAD(&entry->e_list);
  81. /* One ref for hash, one ref returned */
  82. atomic_set(&entry->e_refcnt, 1);
  83. entry->e_key = key;
  84. entry->e_block = block;
  85. entry->e_reusable = reusable;
  86. entry->e_referenced = 0;
  87. head = mb_cache_entry_head(cache, key);
  88. hlist_bl_lock(head);
  89. hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) {
  90. if (dup->e_key == key && dup->e_block == block) {
  91. hlist_bl_unlock(head);
  92. kmem_cache_free(mb_entry_cache, entry);
  93. return -EBUSY;
  94. }
  95. }
  96. hlist_bl_add_head(&entry->e_hash_list, head);
  97. hlist_bl_unlock(head);
  98. spin_lock(&cache->c_list_lock);
  99. list_add_tail(&entry->e_list, &cache->c_list);
  100. /* Grab ref for LRU list */
  101. atomic_inc(&entry->e_refcnt);
  102. cache->c_entry_count++;
  103. spin_unlock(&cache->c_list_lock);
  104. return 0;
  105. }
  106. EXPORT_SYMBOL(mb_cache_entry_create);
  107. void __mb_cache_entry_free(struct mb_cache_entry *entry)
  108. {
  109. kmem_cache_free(mb_entry_cache, entry);
  110. }
  111. EXPORT_SYMBOL(__mb_cache_entry_free);
  112. static struct mb_cache_entry *__entry_find(struct mb_cache *cache,
  113. struct mb_cache_entry *entry,
  114. u32 key)
  115. {
  116. struct mb_cache_entry *old_entry = entry;
  117. struct hlist_bl_node *node;
  118. struct hlist_bl_head *head;
  119. head = mb_cache_entry_head(cache, key);
  120. hlist_bl_lock(head);
  121. if (entry && !hlist_bl_unhashed(&entry->e_hash_list))
  122. node = entry->e_hash_list.next;
  123. else
  124. node = hlist_bl_first(head);
  125. while (node) {
  126. entry = hlist_bl_entry(node, struct mb_cache_entry,
  127. e_hash_list);
  128. if (entry->e_key == key && entry->e_reusable) {
  129. atomic_inc(&entry->e_refcnt);
  130. goto out;
  131. }
  132. node = node->next;
  133. }
  134. entry = NULL;
  135. out:
  136. hlist_bl_unlock(head);
  137. if (old_entry)
  138. mb_cache_entry_put(cache, old_entry);
  139. return entry;
  140. }
  141. /*
  142. * mb_cache_entry_find_first - find the first entry in cache with given key
  143. * @cache: cache where we should search
  144. * @key: key to look for
  145. *
  146. * Search in @cache for entry with key @key. Grabs reference to the first
  147. * entry found and returns the entry.
  148. */
  149. struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache,
  150. u32 key)
  151. {
  152. return __entry_find(cache, NULL, key);
  153. }
  154. EXPORT_SYMBOL(mb_cache_entry_find_first);
  155. /*
  156. * mb_cache_entry_find_next - find next entry in cache with the same
  157. * @cache: cache where we should search
  158. * @entry: entry to start search from
  159. *
  160. * Finds next entry in the hash chain which has the same key as @entry.
  161. * If @entry is unhashed (which can happen when deletion of entry races
  162. * with the search), finds the first entry in the hash chain. The function
  163. * drops reference to @entry and returns with a reference to the found entry.
  164. */
  165. struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache,
  166. struct mb_cache_entry *entry)
  167. {
  168. return __entry_find(cache, entry, entry->e_key);
  169. }
  170. EXPORT_SYMBOL(mb_cache_entry_find_next);
  171. /*
  172. * mb_cache_entry_get - get a cache entry by block number (and key)
  173. * @cache - cache we work with
  174. * @key - key of block number @block
  175. * @block - block number
  176. */
  177. struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key,
  178. sector_t block)
  179. {
  180. struct hlist_bl_node *node;
  181. struct hlist_bl_head *head;
  182. struct mb_cache_entry *entry;
  183. head = mb_cache_entry_head(cache, key);
  184. hlist_bl_lock(head);
  185. hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
  186. if (entry->e_key == key && entry->e_block == block) {
  187. atomic_inc(&entry->e_refcnt);
  188. goto out;
  189. }
  190. }
  191. entry = NULL;
  192. out:
  193. hlist_bl_unlock(head);
  194. return entry;
  195. }
  196. EXPORT_SYMBOL(mb_cache_entry_get);
  197. /* mb_cache_entry_delete_block - remove information about block from cache
  198. * @cache - cache we work with
  199. * @key - key of block @block
  200. * @block - block number
  201. *
  202. * Remove entry from cache @cache with key @key with data stored in @block.
  203. */
  204. void mb_cache_entry_delete_block(struct mb_cache *cache, u32 key,
  205. sector_t block)
  206. {
  207. struct hlist_bl_node *node;
  208. struct hlist_bl_head *head;
  209. struct mb_cache_entry *entry;
  210. head = mb_cache_entry_head(cache, key);
  211. hlist_bl_lock(head);
  212. hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
  213. if (entry->e_key == key && entry->e_block == block) {
  214. /* We keep hash list reference to keep entry alive */
  215. hlist_bl_del_init(&entry->e_hash_list);
  216. hlist_bl_unlock(head);
  217. spin_lock(&cache->c_list_lock);
  218. if (!list_empty(&entry->e_list)) {
  219. list_del_init(&entry->e_list);
  220. cache->c_entry_count--;
  221. atomic_dec(&entry->e_refcnt);
  222. }
  223. spin_unlock(&cache->c_list_lock);
  224. mb_cache_entry_put(cache, entry);
  225. return;
  226. }
  227. }
  228. hlist_bl_unlock(head);
  229. }
  230. EXPORT_SYMBOL(mb_cache_entry_delete_block);
  231. /* mb_cache_entry_touch - cache entry got used
  232. * @cache - cache the entry belongs to
  233. * @entry - entry that got used
  234. *
  235. * Marks entry as used to give hit higher chances of surviving in cache.
  236. */
  237. void mb_cache_entry_touch(struct mb_cache *cache,
  238. struct mb_cache_entry *entry)
  239. {
  240. entry->e_referenced = 1;
  241. }
  242. EXPORT_SYMBOL(mb_cache_entry_touch);
  243. static unsigned long mb_cache_count(struct shrinker *shrink,
  244. struct shrink_control *sc)
  245. {
  246. struct mb_cache *cache = container_of(shrink, struct mb_cache,
  247. c_shrink);
  248. return cache->c_entry_count;
  249. }
  250. /* Shrink number of entries in cache */
  251. static unsigned long mb_cache_shrink(struct mb_cache *cache,
  252. unsigned int nr_to_scan)
  253. {
  254. struct mb_cache_entry *entry;
  255. struct hlist_bl_head *head;
  256. unsigned int shrunk = 0;
  257. spin_lock(&cache->c_list_lock);
  258. while (nr_to_scan-- && !list_empty(&cache->c_list)) {
  259. entry = list_first_entry(&cache->c_list,
  260. struct mb_cache_entry, e_list);
  261. if (entry->e_referenced) {
  262. entry->e_referenced = 0;
  263. list_move_tail(&cache->c_list, &entry->e_list);
  264. continue;
  265. }
  266. list_del_init(&entry->e_list);
  267. cache->c_entry_count--;
  268. /*
  269. * We keep LRU list reference so that entry doesn't go away
  270. * from under us.
  271. */
  272. spin_unlock(&cache->c_list_lock);
  273. head = mb_cache_entry_head(cache, entry->e_key);
  274. hlist_bl_lock(head);
  275. if (!hlist_bl_unhashed(&entry->e_hash_list)) {
  276. hlist_bl_del_init(&entry->e_hash_list);
  277. atomic_dec(&entry->e_refcnt);
  278. }
  279. hlist_bl_unlock(head);
  280. if (mb_cache_entry_put(cache, entry))
  281. shrunk++;
  282. cond_resched();
  283. spin_lock(&cache->c_list_lock);
  284. }
  285. spin_unlock(&cache->c_list_lock);
  286. return shrunk;
  287. }
  288. static unsigned long mb_cache_scan(struct shrinker *shrink,
  289. struct shrink_control *sc)
  290. {
  291. int nr_to_scan = sc->nr_to_scan;
  292. struct mb_cache *cache = container_of(shrink, struct mb_cache,
  293. c_shrink);
  294. return mb_cache_shrink(cache, nr_to_scan);
  295. }
  296. /* We shrink 1/X of the cache when we have too many entries in it */
  297. #define SHRINK_DIVISOR 16
  298. static void mb_cache_shrink_worker(struct work_struct *work)
  299. {
  300. struct mb_cache *cache = container_of(work, struct mb_cache,
  301. c_shrink_work);
  302. mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR);
  303. }
  304. /*
  305. * mb_cache_create - create cache
  306. * @bucket_bits: log2 of the hash table size
  307. *
  308. * Create cache for keys with 2^bucket_bits hash entries.
  309. */
  310. struct mb_cache *mb_cache_create(int bucket_bits)
  311. {
  312. struct mb_cache *cache;
  313. int bucket_count = 1 << bucket_bits;
  314. int i;
  315. if (!try_module_get(THIS_MODULE))
  316. return NULL;
  317. cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL);
  318. if (!cache)
  319. goto err_out;
  320. cache->c_bucket_bits = bucket_bits;
  321. cache->c_max_entries = bucket_count << 4;
  322. INIT_LIST_HEAD(&cache->c_list);
  323. spin_lock_init(&cache->c_list_lock);
  324. cache->c_hash = kmalloc(bucket_count * sizeof(struct hlist_bl_head),
  325. GFP_KERNEL);
  326. if (!cache->c_hash) {
  327. kfree(cache);
  328. goto err_out;
  329. }
  330. for (i = 0; i < bucket_count; i++)
  331. INIT_HLIST_BL_HEAD(&cache->c_hash[i]);
  332. cache->c_shrink.count_objects = mb_cache_count;
  333. cache->c_shrink.scan_objects = mb_cache_scan;
  334. cache->c_shrink.seeks = DEFAULT_SEEKS;
  335. if (register_shrinker(&cache->c_shrink)) {
  336. kfree(cache->c_hash);
  337. kfree(cache);
  338. goto err_out;
  339. }
  340. INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker);
  341. return cache;
  342. err_out:
  343. module_put(THIS_MODULE);
  344. return NULL;
  345. }
  346. EXPORT_SYMBOL(mb_cache_create);
  347. /*
  348. * mb_cache_destroy - destroy cache
  349. * @cache: the cache to destroy
  350. *
  351. * Free all entries in cache and cache itself. Caller must make sure nobody
  352. * (except shrinker) can reach @cache when calling this.
  353. */
  354. void mb_cache_destroy(struct mb_cache *cache)
  355. {
  356. struct mb_cache_entry *entry, *next;
  357. unregister_shrinker(&cache->c_shrink);
  358. /*
  359. * We don't bother with any locking. Cache must not be used at this
  360. * point.
  361. */
  362. list_for_each_entry_safe(entry, next, &cache->c_list, e_list) {
  363. if (!hlist_bl_unhashed(&entry->e_hash_list)) {
  364. hlist_bl_del_init(&entry->e_hash_list);
  365. atomic_dec(&entry->e_refcnt);
  366. } else
  367. WARN_ON(1);
  368. list_del(&entry->e_list);
  369. WARN_ON(atomic_read(&entry->e_refcnt) != 1);
  370. mb_cache_entry_put(cache, entry);
  371. }
  372. kfree(cache->c_hash);
  373. kfree(cache);
  374. module_put(THIS_MODULE);
  375. }
  376. EXPORT_SYMBOL(mb_cache_destroy);
  377. static int __init mbcache_init(void)
  378. {
  379. mb_entry_cache = kmem_cache_create("mbcache",
  380. sizeof(struct mb_cache_entry), 0,
  381. SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
  382. BUG_ON(!mb_entry_cache);
  383. return 0;
  384. }
  385. static void __exit mbcache_exit(void)
  386. {
  387. kmem_cache_destroy(mb_entry_cache);
  388. }
  389. module_init(mbcache_init)
  390. module_exit(mbcache_exit)
  391. MODULE_AUTHOR("Jan Kara <jack@suse.cz>");
  392. MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
  393. MODULE_LICENSE("GPL");