recovery.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545
  1. /*
  2. * This file is part of UBIFS.
  3. *
  4. * Copyright (C) 2006-2008 Nokia Corporation
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published by
  8. * the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc., 51
  17. * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18. *
  19. * Authors: Adrian Hunter
  20. * Artem Bityutskiy (Битюцкий Артём)
  21. */
  22. /*
  23. * This file implements functions needed to recover from unclean un-mounts.
  24. * When UBIFS is mounted, it checks a flag on the master node to determine if
  25. * an un-mount was completed successfully. If not, the process of mounting
  26. * incorporates additional checking and fixing of on-flash data structures.
  27. * UBIFS always cleans away all remnants of an unclean un-mount, so that
  28. * errors do not accumulate. However UBIFS defers recovery if it is mounted
  29. * read-only, and the flash is not modified in that case.
  30. *
  31. * The general UBIFS approach to the recovery is that it recovers from
  32. * corruptions which could be caused by power cuts, but it refuses to recover
  33. * from corruption caused by other reasons. And UBIFS tries to distinguish
  34. * between these 2 reasons of corruptions and silently recover in the former
  35. * case and loudly complain in the latter case.
  36. *
  37. * UBIFS writes only to erased LEBs, so it writes only to the flash space
  38. * containing only 0xFFs. UBIFS also always writes strictly from the beginning
  39. * of the LEB to the end. And UBIFS assumes that the underlying flash media
  40. * writes in @c->max_write_size bytes at a time.
  41. *
  42. * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
  43. * I/O unit corresponding to offset X to contain corrupted data, all the
  44. * following min. I/O units have to contain empty space (all 0xFFs). If this is
  45. * not true, the corruption cannot be the result of a power cut, and UBIFS
  46. * refuses to mount.
  47. */
  48. #include <linux/crc32.h>
  49. #include <linux/slab.h>
  50. #include "ubifs.h"
  51. /**
  52. * is_empty - determine whether a buffer is empty (contains all 0xff).
  53. * @buf: buffer to clean
  54. * @len: length of buffer
  55. *
  56. * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
  57. * %0 is returned.
  58. */
  59. static int is_empty(void *buf, int len)
  60. {
  61. uint8_t *p = buf;
  62. int i;
  63. for (i = 0; i < len; i++)
  64. if (*p++ != 0xff)
  65. return 0;
  66. return 1;
  67. }
  68. /**
  69. * first_non_ff - find offset of the first non-0xff byte.
  70. * @buf: buffer to search in
  71. * @len: length of buffer
  72. *
  73. * This function returns offset of the first non-0xff byte in @buf or %-1 if
  74. * the buffer contains only 0xff bytes.
  75. */
  76. static int first_non_ff(void *buf, int len)
  77. {
  78. uint8_t *p = buf;
  79. int i;
  80. for (i = 0; i < len; i++)
  81. if (*p++ != 0xff)
  82. return i;
  83. return -1;
  84. }
  85. /**
  86. * get_master_node - get the last valid master node allowing for corruption.
  87. * @c: UBIFS file-system description object
  88. * @lnum: LEB number
  89. * @pbuf: buffer containing the LEB read, is returned here
  90. * @mst: master node, if found, is returned here
  91. * @cor: corruption, if found, is returned here
  92. *
  93. * This function allocates a buffer, reads the LEB into it, and finds and
  94. * returns the last valid master node allowing for one area of corruption.
  95. * The corrupt area, if there is one, must be consistent with the assumption
  96. * that it is the result of an unclean unmount while the master node was being
  97. * written. Under those circumstances, it is valid to use the previously written
  98. * master node.
  99. *
  100. * This function returns %0 on success and a negative error code on failure.
  101. */
  102. static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
  103. struct ubifs_mst_node **mst, void **cor)
  104. {
  105. const int sz = c->mst_node_alsz;
  106. int err, offs, len;
  107. void *sbuf, *buf;
  108. sbuf = vmalloc(c->leb_size);
  109. if (!sbuf)
  110. return -ENOMEM;
  111. err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
  112. if (err && err != -EBADMSG)
  113. goto out_free;
  114. /* Find the first position that is definitely not a node */
  115. offs = 0;
  116. buf = sbuf;
  117. len = c->leb_size;
  118. while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
  119. struct ubifs_ch *ch = buf;
  120. if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
  121. break;
  122. offs += sz;
  123. buf += sz;
  124. len -= sz;
  125. }
  126. /* See if there was a valid master node before that */
  127. if (offs) {
  128. int ret;
  129. offs -= sz;
  130. buf -= sz;
  131. len += sz;
  132. ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
  133. if (ret != SCANNED_A_NODE && offs) {
  134. /* Could have been corruption so check one place back */
  135. offs -= sz;
  136. buf -= sz;
  137. len += sz;
  138. ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
  139. if (ret != SCANNED_A_NODE)
  140. /*
  141. * We accept only one area of corruption because
  142. * we are assuming that it was caused while
  143. * trying to write a master node.
  144. */
  145. goto out_err;
  146. }
  147. if (ret == SCANNED_A_NODE) {
  148. struct ubifs_ch *ch = buf;
  149. if (ch->node_type != UBIFS_MST_NODE)
  150. goto out_err;
  151. dbg_rcvry("found a master node at %d:%d", lnum, offs);
  152. *mst = buf;
  153. offs += sz;
  154. buf += sz;
  155. len -= sz;
  156. }
  157. }
  158. /* Check for corruption */
  159. if (offs < c->leb_size) {
  160. if (!is_empty(buf, min_t(int, len, sz))) {
  161. *cor = buf;
  162. dbg_rcvry("found corruption at %d:%d", lnum, offs);
  163. }
  164. offs += sz;
  165. buf += sz;
  166. len -= sz;
  167. }
  168. /* Check remaining empty space */
  169. if (offs < c->leb_size)
  170. if (!is_empty(buf, len))
  171. goto out_err;
  172. *pbuf = sbuf;
  173. return 0;
  174. out_err:
  175. err = -EINVAL;
  176. out_free:
  177. vfree(sbuf);
  178. *mst = NULL;
  179. *cor = NULL;
  180. return err;
  181. }
  182. /**
  183. * write_rcvrd_mst_node - write recovered master node.
  184. * @c: UBIFS file-system description object
  185. * @mst: master node
  186. *
  187. * This function returns %0 on success and a negative error code on failure.
  188. */
  189. static int write_rcvrd_mst_node(struct ubifs_info *c,
  190. struct ubifs_mst_node *mst)
  191. {
  192. int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
  193. __le32 save_flags;
  194. dbg_rcvry("recovery");
  195. save_flags = mst->flags;
  196. mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
  197. ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
  198. err = ubifs_leb_change(c, lnum, mst, sz);
  199. if (err)
  200. goto out;
  201. err = ubifs_leb_change(c, lnum + 1, mst, sz);
  202. if (err)
  203. goto out;
  204. out:
  205. mst->flags = save_flags;
  206. return err;
  207. }
  208. /**
  209. * ubifs_recover_master_node - recover the master node.
  210. * @c: UBIFS file-system description object
  211. *
  212. * This function recovers the master node from corruption that may occur due to
  213. * an unclean unmount.
  214. *
  215. * This function returns %0 on success and a negative error code on failure.
  216. */
  217. int ubifs_recover_master_node(struct ubifs_info *c)
  218. {
  219. void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
  220. struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
  221. const int sz = c->mst_node_alsz;
  222. int err, offs1, offs2;
  223. dbg_rcvry("recovery");
  224. err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
  225. if (err)
  226. goto out_free;
  227. err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
  228. if (err)
  229. goto out_free;
  230. if (mst1) {
  231. offs1 = (void *)mst1 - buf1;
  232. if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
  233. (offs1 == 0 && !cor1)) {
  234. /*
  235. * mst1 was written by recovery at offset 0 with no
  236. * corruption.
  237. */
  238. dbg_rcvry("recovery recovery");
  239. mst = mst1;
  240. } else if (mst2) {
  241. offs2 = (void *)mst2 - buf2;
  242. if (offs1 == offs2) {
  243. /* Same offset, so must be the same */
  244. if (memcmp((void *)mst1 + UBIFS_CH_SZ,
  245. (void *)mst2 + UBIFS_CH_SZ,
  246. UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
  247. goto out_err;
  248. mst = mst1;
  249. } else if (offs2 + sz == offs1) {
  250. /* 1st LEB was written, 2nd was not */
  251. if (cor1)
  252. goto out_err;
  253. mst = mst1;
  254. } else if (offs1 == 0 &&
  255. c->leb_size - offs2 - sz < sz) {
  256. /* 1st LEB was unmapped and written, 2nd not */
  257. if (cor1)
  258. goto out_err;
  259. mst = mst1;
  260. } else
  261. goto out_err;
  262. } else {
  263. /*
  264. * 2nd LEB was unmapped and about to be written, so
  265. * there must be only one master node in the first LEB
  266. * and no corruption.
  267. */
  268. if (offs1 != 0 || cor1)
  269. goto out_err;
  270. mst = mst1;
  271. }
  272. } else {
  273. if (!mst2)
  274. goto out_err;
  275. /*
  276. * 1st LEB was unmapped and about to be written, so there must
  277. * be no room left in 2nd LEB.
  278. */
  279. offs2 = (void *)mst2 - buf2;
  280. if (offs2 + sz + sz <= c->leb_size)
  281. goto out_err;
  282. mst = mst2;
  283. }
  284. ubifs_msg(c, "recovered master node from LEB %d",
  285. (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
  286. memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
  287. if (c->ro_mount) {
  288. /* Read-only mode. Keep a copy for switching to rw mode */
  289. c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
  290. if (!c->rcvrd_mst_node) {
  291. err = -ENOMEM;
  292. goto out_free;
  293. }
  294. memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
  295. /*
  296. * We had to recover the master node, which means there was an
  297. * unclean reboot. However, it is possible that the master node
  298. * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
  299. * E.g., consider the following chain of events:
  300. *
  301. * 1. UBIFS was cleanly unmounted, so the master node is clean
  302. * 2. UBIFS is being mounted R/W and starts changing the master
  303. * node in the first (%UBIFS_MST_LNUM). A power cut happens,
  304. * so this LEB ends up with some amount of garbage at the
  305. * end.
  306. * 3. UBIFS is being mounted R/O. We reach this place and
  307. * recover the master node from the second LEB
  308. * (%UBIFS_MST_LNUM + 1). But we cannot update the media
  309. * because we are being mounted R/O. We have to defer the
  310. * operation.
  311. * 4. However, this master node (@c->mst_node) is marked as
  312. * clean (since the step 1). And if we just return, the
  313. * mount code will be confused and won't recover the master
  314. * node when it is re-mounter R/W later.
  315. *
  316. * Thus, to force the recovery by marking the master node as
  317. * dirty.
  318. */
  319. c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
  320. } else {
  321. /* Write the recovered master node */
  322. c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
  323. err = write_rcvrd_mst_node(c, c->mst_node);
  324. if (err)
  325. goto out_free;
  326. }
  327. vfree(buf2);
  328. vfree(buf1);
  329. return 0;
  330. out_err:
  331. err = -EINVAL;
  332. out_free:
  333. ubifs_err(c, "failed to recover master node");
  334. if (mst1) {
  335. ubifs_err(c, "dumping first master node");
  336. ubifs_dump_node(c, mst1);
  337. }
  338. if (mst2) {
  339. ubifs_err(c, "dumping second master node");
  340. ubifs_dump_node(c, mst2);
  341. }
  342. vfree(buf2);
  343. vfree(buf1);
  344. return err;
  345. }
  346. /**
  347. * ubifs_write_rcvrd_mst_node - write the recovered master node.
  348. * @c: UBIFS file-system description object
  349. *
  350. * This function writes the master node that was recovered during mounting in
  351. * read-only mode and must now be written because we are remounting rw.
  352. *
  353. * This function returns %0 on success and a negative error code on failure.
  354. */
  355. int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
  356. {
  357. int err;
  358. if (!c->rcvrd_mst_node)
  359. return 0;
  360. c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
  361. c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
  362. err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
  363. if (err)
  364. return err;
  365. kfree(c->rcvrd_mst_node);
  366. c->rcvrd_mst_node = NULL;
  367. return 0;
  368. }
  369. /**
  370. * is_last_write - determine if an offset was in the last write to a LEB.
  371. * @c: UBIFS file-system description object
  372. * @buf: buffer to check
  373. * @offs: offset to check
  374. *
  375. * This function returns %1 if @offs was in the last write to the LEB whose data
  376. * is in @buf, otherwise %0 is returned. The determination is made by checking
  377. * for subsequent empty space starting from the next @c->max_write_size
  378. * boundary.
  379. */
  380. static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
  381. {
  382. int empty_offs, check_len;
  383. uint8_t *p;
  384. /*
  385. * Round up to the next @c->max_write_size boundary i.e. @offs is in
  386. * the last wbuf written. After that should be empty space.
  387. */
  388. empty_offs = ALIGN(offs + 1, c->max_write_size);
  389. check_len = c->leb_size - empty_offs;
  390. p = buf + empty_offs - offs;
  391. return is_empty(p, check_len);
  392. }
  393. /**
  394. * clean_buf - clean the data from an LEB sitting in a buffer.
  395. * @c: UBIFS file-system description object
  396. * @buf: buffer to clean
  397. * @lnum: LEB number to clean
  398. * @offs: offset from which to clean
  399. * @len: length of buffer
  400. *
  401. * This function pads up to the next min_io_size boundary (if there is one) and
  402. * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
  403. * @c->min_io_size boundary.
  404. */
  405. static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
  406. int *offs, int *len)
  407. {
  408. int empty_offs, pad_len;
  409. lnum = lnum;
  410. dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
  411. ubifs_assert(!(*offs & 7));
  412. empty_offs = ALIGN(*offs, c->min_io_size);
  413. pad_len = empty_offs - *offs;
  414. ubifs_pad(c, *buf, pad_len);
  415. *offs += pad_len;
  416. *buf += pad_len;
  417. *len -= pad_len;
  418. memset(*buf, 0xff, c->leb_size - empty_offs);
  419. }
  420. /**
  421. * no_more_nodes - determine if there are no more nodes in a buffer.
  422. * @c: UBIFS file-system description object
  423. * @buf: buffer to check
  424. * @len: length of buffer
  425. * @lnum: LEB number of the LEB from which @buf was read
  426. * @offs: offset from which @buf was read
  427. *
  428. * This function ensures that the corrupted node at @offs is the last thing
  429. * written to a LEB. This function returns %1 if more data is not found and
  430. * %0 if more data is found.
  431. */
  432. static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
  433. int lnum, int offs)
  434. {
  435. struct ubifs_ch *ch = buf;
  436. int skip, dlen = le32_to_cpu(ch->len);
  437. /* Check for empty space after the corrupt node's common header */
  438. skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
  439. if (is_empty(buf + skip, len - skip))
  440. return 1;
  441. /*
  442. * The area after the common header size is not empty, so the common
  443. * header must be intact. Check it.
  444. */
  445. if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
  446. dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
  447. return 0;
  448. }
  449. /* Now we know the corrupt node's length we can skip over it */
  450. skip = ALIGN(offs + dlen, c->max_write_size) - offs;
  451. /* After which there should be empty space */
  452. if (is_empty(buf + skip, len - skip))
  453. return 1;
  454. dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
  455. return 0;
  456. }
  457. /**
  458. * fix_unclean_leb - fix an unclean LEB.
  459. * @c: UBIFS file-system description object
  460. * @sleb: scanned LEB information
  461. * @start: offset where scan started
  462. */
  463. static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
  464. int start)
  465. {
  466. int lnum = sleb->lnum, endpt = start;
  467. /* Get the end offset of the last node we are keeping */
  468. if (!list_empty(&sleb->nodes)) {
  469. struct ubifs_scan_node *snod;
  470. snod = list_entry(sleb->nodes.prev,
  471. struct ubifs_scan_node, list);
  472. endpt = snod->offs + snod->len;
  473. }
  474. if (c->ro_mount && !c->remounting_rw) {
  475. /* Add to recovery list */
  476. struct ubifs_unclean_leb *ucleb;
  477. dbg_rcvry("need to fix LEB %d start %d endpt %d",
  478. lnum, start, sleb->endpt);
  479. ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
  480. if (!ucleb)
  481. return -ENOMEM;
  482. ucleb->lnum = lnum;
  483. ucleb->endpt = endpt;
  484. list_add_tail(&ucleb->list, &c->unclean_leb_list);
  485. } else {
  486. /* Write the fixed LEB back to flash */
  487. int err;
  488. dbg_rcvry("fixing LEB %d start %d endpt %d",
  489. lnum, start, sleb->endpt);
  490. if (endpt == 0) {
  491. err = ubifs_leb_unmap(c, lnum);
  492. if (err)
  493. return err;
  494. } else {
  495. int len = ALIGN(endpt, c->min_io_size);
  496. if (start) {
  497. err = ubifs_leb_read(c, lnum, sleb->buf, 0,
  498. start, 1);
  499. if (err)
  500. return err;
  501. }
  502. /* Pad to min_io_size */
  503. if (len > endpt) {
  504. int pad_len = len - ALIGN(endpt, 8);
  505. if (pad_len > 0) {
  506. void *buf = sleb->buf + len - pad_len;
  507. ubifs_pad(c, buf, pad_len);
  508. }
  509. }
  510. err = ubifs_leb_change(c, lnum, sleb->buf, len);
  511. if (err)
  512. return err;
  513. }
  514. }
  515. return 0;
  516. }
  517. /**
  518. * drop_last_group - drop the last group of nodes.
  519. * @sleb: scanned LEB information
  520. * @offs: offset of dropped nodes is returned here
  521. *
  522. * This is a helper function for 'ubifs_recover_leb()' which drops the last
  523. * group of nodes of the scanned LEB.
  524. */
  525. static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
  526. {
  527. while (!list_empty(&sleb->nodes)) {
  528. struct ubifs_scan_node *snod;
  529. struct ubifs_ch *ch;
  530. snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
  531. list);
  532. ch = snod->node;
  533. if (ch->group_type != UBIFS_IN_NODE_GROUP)
  534. break;
  535. dbg_rcvry("dropping grouped node at %d:%d",
  536. sleb->lnum, snod->offs);
  537. *offs = snod->offs;
  538. list_del(&snod->list);
  539. kfree(snod);
  540. sleb->nodes_cnt -= 1;
  541. }
  542. }
  543. /**
  544. * drop_last_node - drop the last node.
  545. * @sleb: scanned LEB information
  546. * @offs: offset of dropped nodes is returned here
  547. *
  548. * This is a helper function for 'ubifs_recover_leb()' which drops the last
  549. * node of the scanned LEB.
  550. */
  551. static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
  552. {
  553. struct ubifs_scan_node *snod;
  554. if (!list_empty(&sleb->nodes)) {
  555. snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
  556. list);
  557. dbg_rcvry("dropping last node at %d:%d",
  558. sleb->lnum, snod->offs);
  559. *offs = snod->offs;
  560. list_del(&snod->list);
  561. kfree(snod);
  562. sleb->nodes_cnt -= 1;
  563. }
  564. }
  565. /**
  566. * ubifs_recover_leb - scan and recover a LEB.
  567. * @c: UBIFS file-system description object
  568. * @lnum: LEB number
  569. * @offs: offset
  570. * @sbuf: LEB-sized buffer to use
  571. * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
  572. * belong to any journal head)
  573. *
  574. * This function does a scan of a LEB, but caters for errors that might have
  575. * been caused by the unclean unmount from which we are attempting to recover.
  576. * Returns the scanned information on success and a negative error code on
  577. * failure.
  578. */
  579. struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
  580. int offs, void *sbuf, int jhead)
  581. {
  582. int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
  583. int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
  584. struct ubifs_scan_leb *sleb;
  585. void *buf = sbuf + offs;
  586. dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
  587. sleb = ubifs_start_scan(c, lnum, offs, sbuf);
  588. if (IS_ERR(sleb))
  589. return sleb;
  590. ubifs_assert(len >= 8);
  591. while (len >= 8) {
  592. dbg_scan("look at LEB %d:%d (%d bytes left)",
  593. lnum, offs, len);
  594. cond_resched();
  595. /*
  596. * Scan quietly until there is an error from which we cannot
  597. * recover
  598. */
  599. ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
  600. if (ret == SCANNED_A_NODE) {
  601. /* A valid node, and not a padding node */
  602. struct ubifs_ch *ch = buf;
  603. int node_len;
  604. err = ubifs_add_snod(c, sleb, buf, offs);
  605. if (err)
  606. goto error;
  607. node_len = ALIGN(le32_to_cpu(ch->len), 8);
  608. offs += node_len;
  609. buf += node_len;
  610. len -= node_len;
  611. } else if (ret > 0) {
  612. /* Padding bytes or a valid padding node */
  613. offs += ret;
  614. buf += ret;
  615. len -= ret;
  616. } else if (ret == SCANNED_EMPTY_SPACE ||
  617. ret == SCANNED_GARBAGE ||
  618. ret == SCANNED_A_BAD_PAD_NODE ||
  619. ret == SCANNED_A_CORRUPT_NODE) {
  620. dbg_rcvry("found corruption (%d) at %d:%d",
  621. ret, lnum, offs);
  622. break;
  623. } else {
  624. ubifs_err(c, "unexpected return value %d", ret);
  625. err = -EINVAL;
  626. goto error;
  627. }
  628. }
  629. if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
  630. if (!is_last_write(c, buf, offs))
  631. goto corrupted_rescan;
  632. } else if (ret == SCANNED_A_CORRUPT_NODE) {
  633. if (!no_more_nodes(c, buf, len, lnum, offs))
  634. goto corrupted_rescan;
  635. } else if (!is_empty(buf, len)) {
  636. if (!is_last_write(c, buf, offs)) {
  637. int corruption = first_non_ff(buf, len);
  638. /*
  639. * See header comment for this file for more
  640. * explanations about the reasons we have this check.
  641. */
  642. ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
  643. lnum, offs, corruption);
  644. /* Make sure we dump interesting non-0xFF data */
  645. offs += corruption;
  646. buf += corruption;
  647. goto corrupted;
  648. }
  649. }
  650. min_io_unit = round_down(offs, c->min_io_size);
  651. if (grouped)
  652. /*
  653. * If nodes are grouped, always drop the incomplete group at
  654. * the end.
  655. */
  656. drop_last_group(sleb, &offs);
  657. if (jhead == GCHD) {
  658. /*
  659. * If this LEB belongs to the GC head then while we are in the
  660. * middle of the same min. I/O unit keep dropping nodes. So
  661. * basically, what we want is to make sure that the last min.
  662. * I/O unit where we saw the corruption is dropped completely
  663. * with all the uncorrupted nodes which may possibly sit there.
  664. *
  665. * In other words, let's name the min. I/O unit where the
  666. * corruption starts B, and the previous min. I/O unit A. The
  667. * below code tries to deal with a situation when half of B
  668. * contains valid nodes or the end of a valid node, and the
  669. * second half of B contains corrupted data or garbage. This
  670. * means that UBIFS had been writing to B just before the power
  671. * cut happened. I do not know how realistic is this scenario
  672. * that half of the min. I/O unit had been written successfully
  673. * and the other half not, but this is possible in our 'failure
  674. * mode emulation' infrastructure at least.
  675. *
  676. * So what is the problem, why we need to drop those nodes? Why
  677. * can't we just clean-up the second half of B by putting a
  678. * padding node there? We can, and this works fine with one
  679. * exception which was reproduced with power cut emulation
  680. * testing and happens extremely rarely.
  681. *
  682. * Imagine the file-system is full, we run GC which starts
  683. * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
  684. * the current GC head LEB). The @c->gc_lnum is -1, which means
  685. * that GC will retain LEB X and will try to continue. Imagine
  686. * that LEB X is currently the dirtiest LEB, and the amount of
  687. * used space in LEB Y is exactly the same as amount of free
  688. * space in LEB X.
  689. *
  690. * And a power cut happens when nodes are moved from LEB X to
  691. * LEB Y. We are here trying to recover LEB Y which is the GC
  692. * head LEB. We find the min. I/O unit B as described above.
  693. * Then we clean-up LEB Y by padding min. I/O unit. And later
  694. * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
  695. * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
  696. * does not match because the amount of valid nodes there does
  697. * not fit the free space in LEB Y any more! And this is
  698. * because of the padding node which we added to LEB Y. The
  699. * user-visible effect of this which I once observed and
  700. * analysed is that we cannot mount the file-system with
  701. * -ENOSPC error.
  702. *
  703. * So obviously, to make sure that situation does not happen we
  704. * should free min. I/O unit B in LEB Y completely and the last
  705. * used min. I/O unit in LEB Y should be A. This is basically
  706. * what the below code tries to do.
  707. */
  708. while (offs > min_io_unit)
  709. drop_last_node(sleb, &offs);
  710. }
  711. buf = sbuf + offs;
  712. len = c->leb_size - offs;
  713. clean_buf(c, &buf, lnum, &offs, &len);
  714. ubifs_end_scan(c, sleb, lnum, offs);
  715. err = fix_unclean_leb(c, sleb, start);
  716. if (err)
  717. goto error;
  718. return sleb;
  719. corrupted_rescan:
  720. /* Re-scan the corrupted data with verbose messages */
  721. ubifs_err(c, "corruption %d", ret);
  722. ubifs_scan_a_node(c, buf, len, lnum, offs, 0);
  723. corrupted:
  724. ubifs_scanned_corruption(c, lnum, offs, buf);
  725. err = -EUCLEAN;
  726. error:
  727. ubifs_err(c, "LEB %d scanning failed", lnum);
  728. ubifs_scan_destroy(sleb);
  729. return ERR_PTR(err);
  730. }
  731. /**
  732. * get_cs_sqnum - get commit start sequence number.
  733. * @c: UBIFS file-system description object
  734. * @lnum: LEB number of commit start node
  735. * @offs: offset of commit start node
  736. * @cs_sqnum: commit start sequence number is returned here
  737. *
  738. * This function returns %0 on success and a negative error code on failure.
  739. */
  740. static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
  741. unsigned long long *cs_sqnum)
  742. {
  743. struct ubifs_cs_node *cs_node = NULL;
  744. int err, ret;
  745. dbg_rcvry("at %d:%d", lnum, offs);
  746. cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
  747. if (!cs_node)
  748. return -ENOMEM;
  749. if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
  750. goto out_err;
  751. err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
  752. UBIFS_CS_NODE_SZ, 0);
  753. if (err && err != -EBADMSG)
  754. goto out_free;
  755. ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
  756. if (ret != SCANNED_A_NODE) {
  757. ubifs_err(c, "Not a valid node");
  758. goto out_err;
  759. }
  760. if (cs_node->ch.node_type != UBIFS_CS_NODE) {
  761. ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type);
  762. goto out_err;
  763. }
  764. if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
  765. ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
  766. (unsigned long long)le64_to_cpu(cs_node->cmt_no),
  767. c->cmt_no);
  768. goto out_err;
  769. }
  770. *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
  771. dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
  772. kfree(cs_node);
  773. return 0;
  774. out_err:
  775. err = -EINVAL;
  776. out_free:
  777. ubifs_err(c, "failed to get CS sqnum");
  778. kfree(cs_node);
  779. return err;
  780. }
  781. /**
  782. * ubifs_recover_log_leb - scan and recover a log LEB.
  783. * @c: UBIFS file-system description object
  784. * @lnum: LEB number
  785. * @offs: offset
  786. * @sbuf: LEB-sized buffer to use
  787. *
  788. * This function does a scan of a LEB, but caters for errors that might have
  789. * been caused by unclean reboots from which we are attempting to recover
  790. * (assume that only the last log LEB can be corrupted by an unclean reboot).
  791. *
  792. * This function returns %0 on success and a negative error code on failure.
  793. */
  794. struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
  795. int offs, void *sbuf)
  796. {
  797. struct ubifs_scan_leb *sleb;
  798. int next_lnum;
  799. dbg_rcvry("LEB %d", lnum);
  800. next_lnum = lnum + 1;
  801. if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
  802. next_lnum = UBIFS_LOG_LNUM;
  803. if (next_lnum != c->ltail_lnum) {
  804. /*
  805. * We can only recover at the end of the log, so check that the
  806. * next log LEB is empty or out of date.
  807. */
  808. sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
  809. if (IS_ERR(sleb))
  810. return sleb;
  811. if (sleb->nodes_cnt) {
  812. struct ubifs_scan_node *snod;
  813. unsigned long long cs_sqnum = c->cs_sqnum;
  814. snod = list_entry(sleb->nodes.next,
  815. struct ubifs_scan_node, list);
  816. if (cs_sqnum == 0) {
  817. int err;
  818. err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
  819. if (err) {
  820. ubifs_scan_destroy(sleb);
  821. return ERR_PTR(err);
  822. }
  823. }
  824. if (snod->sqnum > cs_sqnum) {
  825. ubifs_err(c, "unrecoverable log corruption in LEB %d",
  826. lnum);
  827. ubifs_scan_destroy(sleb);
  828. return ERR_PTR(-EUCLEAN);
  829. }
  830. }
  831. ubifs_scan_destroy(sleb);
  832. }
  833. return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
  834. }
  835. /**
  836. * recover_head - recover a head.
  837. * @c: UBIFS file-system description object
  838. * @lnum: LEB number of head to recover
  839. * @offs: offset of head to recover
  840. * @sbuf: LEB-sized buffer to use
  841. *
  842. * This function ensures that there is no data on the flash at a head location.
  843. *
  844. * This function returns %0 on success and a negative error code on failure.
  845. */
  846. static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
  847. {
  848. int len = c->max_write_size, err;
  849. if (offs + len > c->leb_size)
  850. len = c->leb_size - offs;
  851. if (!len)
  852. return 0;
  853. /* Read at the head location and check it is empty flash */
  854. err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
  855. if (err || !is_empty(sbuf, len)) {
  856. dbg_rcvry("cleaning head at %d:%d", lnum, offs);
  857. if (offs == 0)
  858. return ubifs_leb_unmap(c, lnum);
  859. err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
  860. if (err)
  861. return err;
  862. return ubifs_leb_change(c, lnum, sbuf, offs);
  863. }
  864. return 0;
  865. }
  866. /**
  867. * ubifs_recover_inl_heads - recover index and LPT heads.
  868. * @c: UBIFS file-system description object
  869. * @sbuf: LEB-sized buffer to use
  870. *
  871. * This function ensures that there is no data on the flash at the index and
  872. * LPT head locations.
  873. *
  874. * This deals with the recovery of a half-completed journal commit. UBIFS is
  875. * careful never to overwrite the last version of the index or the LPT. Because
  876. * the index and LPT are wandering trees, data from a half-completed commit will
  877. * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
  878. * assumed to be empty and will be unmapped anyway before use, or in the index
  879. * and LPT heads.
  880. *
  881. * This function returns %0 on success and a negative error code on failure.
  882. */
  883. int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
  884. {
  885. int err;
  886. ubifs_assert(!c->ro_mount || c->remounting_rw);
  887. dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
  888. err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
  889. if (err)
  890. return err;
  891. dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
  892. return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
  893. }
  894. /**
  895. * clean_an_unclean_leb - read and write a LEB to remove corruption.
  896. * @c: UBIFS file-system description object
  897. * @ucleb: unclean LEB information
  898. * @sbuf: LEB-sized buffer to use
  899. *
  900. * This function reads a LEB up to a point pre-determined by the mount recovery,
  901. * checks the nodes, and writes the result back to the flash, thereby cleaning
  902. * off any following corruption, or non-fatal ECC errors.
  903. *
  904. * This function returns %0 on success and a negative error code on failure.
  905. */
  906. static int clean_an_unclean_leb(struct ubifs_info *c,
  907. struct ubifs_unclean_leb *ucleb, void *sbuf)
  908. {
  909. int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
  910. void *buf = sbuf;
  911. dbg_rcvry("LEB %d len %d", lnum, len);
  912. if (len == 0) {
  913. /* Nothing to read, just unmap it */
  914. return ubifs_leb_unmap(c, lnum);
  915. }
  916. err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
  917. if (err && err != -EBADMSG)
  918. return err;
  919. while (len >= 8) {
  920. int ret;
  921. cond_resched();
  922. /* Scan quietly until there is an error */
  923. ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
  924. if (ret == SCANNED_A_NODE) {
  925. /* A valid node, and not a padding node */
  926. struct ubifs_ch *ch = buf;
  927. int node_len;
  928. node_len = ALIGN(le32_to_cpu(ch->len), 8);
  929. offs += node_len;
  930. buf += node_len;
  931. len -= node_len;
  932. continue;
  933. }
  934. if (ret > 0) {
  935. /* Padding bytes or a valid padding node */
  936. offs += ret;
  937. buf += ret;
  938. len -= ret;
  939. continue;
  940. }
  941. if (ret == SCANNED_EMPTY_SPACE) {
  942. ubifs_err(c, "unexpected empty space at %d:%d",
  943. lnum, offs);
  944. return -EUCLEAN;
  945. }
  946. if (quiet) {
  947. /* Redo the last scan but noisily */
  948. quiet = 0;
  949. continue;
  950. }
  951. ubifs_scanned_corruption(c, lnum, offs, buf);
  952. return -EUCLEAN;
  953. }
  954. /* Pad to min_io_size */
  955. len = ALIGN(ucleb->endpt, c->min_io_size);
  956. if (len > ucleb->endpt) {
  957. int pad_len = len - ALIGN(ucleb->endpt, 8);
  958. if (pad_len > 0) {
  959. buf = c->sbuf + len - pad_len;
  960. ubifs_pad(c, buf, pad_len);
  961. }
  962. }
  963. /* Write back the LEB atomically */
  964. err = ubifs_leb_change(c, lnum, sbuf, len);
  965. if (err)
  966. return err;
  967. dbg_rcvry("cleaned LEB %d", lnum);
  968. return 0;
  969. }
  970. /**
  971. * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
  972. * @c: UBIFS file-system description object
  973. * @sbuf: LEB-sized buffer to use
  974. *
  975. * This function cleans a LEB identified during recovery that needs to be
  976. * written but was not because UBIFS was mounted read-only. This happens when
  977. * remounting to read-write mode.
  978. *
  979. * This function returns %0 on success and a negative error code on failure.
  980. */
  981. int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
  982. {
  983. dbg_rcvry("recovery");
  984. while (!list_empty(&c->unclean_leb_list)) {
  985. struct ubifs_unclean_leb *ucleb;
  986. int err;
  987. ucleb = list_entry(c->unclean_leb_list.next,
  988. struct ubifs_unclean_leb, list);
  989. err = clean_an_unclean_leb(c, ucleb, sbuf);
  990. if (err)
  991. return err;
  992. list_del(&ucleb->list);
  993. kfree(ucleb);
  994. }
  995. return 0;
  996. }
  997. /**
  998. * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
  999. * @c: UBIFS file-system description object
  1000. *
  1001. * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
  1002. * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
  1003. * zero in case of success and a negative error code in case of failure.
  1004. */
  1005. static int grab_empty_leb(struct ubifs_info *c)
  1006. {
  1007. int lnum, err;
  1008. /*
  1009. * Note, it is very important to first search for an empty LEB and then
  1010. * run the commit, not vice-versa. The reason is that there might be
  1011. * only one empty LEB at the moment, the one which has been the
  1012. * @c->gc_lnum just before the power cut happened. During the regular
  1013. * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
  1014. * one but GC can grab it. But at this moment this single empty LEB is
  1015. * not marked as taken, so if we run commit - what happens? Right, the
  1016. * commit will grab it and write the index there. Remember that the
  1017. * index always expands as long as there is free space, and it only
  1018. * starts consolidating when we run out of space.
  1019. *
  1020. * IOW, if we run commit now, we might not be able to find a free LEB
  1021. * after this.
  1022. */
  1023. lnum = ubifs_find_free_leb_for_idx(c);
  1024. if (lnum < 0) {
  1025. ubifs_err(c, "could not find an empty LEB");
  1026. ubifs_dump_lprops(c);
  1027. ubifs_dump_budg(c, &c->bi);
  1028. return lnum;
  1029. }
  1030. /* Reset the index flag */
  1031. err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
  1032. LPROPS_INDEX, 0);
  1033. if (err)
  1034. return err;
  1035. c->gc_lnum = lnum;
  1036. dbg_rcvry("found empty LEB %d, run commit", lnum);
  1037. return ubifs_run_commit(c);
  1038. }
  1039. /**
  1040. * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
  1041. * @c: UBIFS file-system description object
  1042. *
  1043. * Out-of-place garbage collection requires always one empty LEB with which to
  1044. * start garbage collection. The LEB number is recorded in c->gc_lnum and is
  1045. * written to the master node on unmounting. In the case of an unclean unmount
  1046. * the value of gc_lnum recorded in the master node is out of date and cannot
  1047. * be used. Instead, recovery must allocate an empty LEB for this purpose.
  1048. * However, there may not be enough empty space, in which case it must be
  1049. * possible to GC the dirtiest LEB into the GC head LEB.
  1050. *
  1051. * This function also runs the commit which causes the TNC updates from
  1052. * size-recovery and orphans to be written to the flash. That is important to
  1053. * ensure correct replay order for subsequent mounts.
  1054. *
  1055. * This function returns %0 on success and a negative error code on failure.
  1056. */
  1057. int ubifs_rcvry_gc_commit(struct ubifs_info *c)
  1058. {
  1059. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  1060. struct ubifs_lprops lp;
  1061. int err;
  1062. dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
  1063. c->gc_lnum = -1;
  1064. if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
  1065. return grab_empty_leb(c);
  1066. err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
  1067. if (err) {
  1068. if (err != -ENOSPC)
  1069. return err;
  1070. dbg_rcvry("could not find a dirty LEB");
  1071. return grab_empty_leb(c);
  1072. }
  1073. ubifs_assert(!(lp.flags & LPROPS_INDEX));
  1074. ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
  1075. /*
  1076. * We run the commit before garbage collection otherwise subsequent
  1077. * mounts will see the GC and orphan deletion in a different order.
  1078. */
  1079. dbg_rcvry("committing");
  1080. err = ubifs_run_commit(c);
  1081. if (err)
  1082. return err;
  1083. dbg_rcvry("GC'ing LEB %d", lp.lnum);
  1084. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  1085. err = ubifs_garbage_collect_leb(c, &lp);
  1086. if (err >= 0) {
  1087. int err2 = ubifs_wbuf_sync_nolock(wbuf);
  1088. if (err2)
  1089. err = err2;
  1090. }
  1091. mutex_unlock(&wbuf->io_mutex);
  1092. if (err < 0) {
  1093. ubifs_err(c, "GC failed, error %d", err);
  1094. if (err == -EAGAIN)
  1095. err = -EINVAL;
  1096. return err;
  1097. }
  1098. ubifs_assert(err == LEB_RETAINED);
  1099. if (err != LEB_RETAINED)
  1100. return -EINVAL;
  1101. err = ubifs_leb_unmap(c, c->gc_lnum);
  1102. if (err)
  1103. return err;
  1104. dbg_rcvry("allocated LEB %d for GC", lp.lnum);
  1105. return 0;
  1106. }
  1107. /**
  1108. * struct size_entry - inode size information for recovery.
  1109. * @rb: link in the RB-tree of sizes
  1110. * @inum: inode number
  1111. * @i_size: size on inode
  1112. * @d_size: maximum size based on data nodes
  1113. * @exists: indicates whether the inode exists
  1114. * @inode: inode if pinned in memory awaiting rw mode to fix it
  1115. */
  1116. struct size_entry {
  1117. struct rb_node rb;
  1118. ino_t inum;
  1119. loff_t i_size;
  1120. loff_t d_size;
  1121. int exists;
  1122. struct inode *inode;
  1123. };
  1124. /**
  1125. * add_ino - add an entry to the size tree.
  1126. * @c: UBIFS file-system description object
  1127. * @inum: inode number
  1128. * @i_size: size on inode
  1129. * @d_size: maximum size based on data nodes
  1130. * @exists: indicates whether the inode exists
  1131. */
  1132. static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
  1133. loff_t d_size, int exists)
  1134. {
  1135. struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
  1136. struct size_entry *e;
  1137. while (*p) {
  1138. parent = *p;
  1139. e = rb_entry(parent, struct size_entry, rb);
  1140. if (inum < e->inum)
  1141. p = &(*p)->rb_left;
  1142. else
  1143. p = &(*p)->rb_right;
  1144. }
  1145. e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
  1146. if (!e)
  1147. return -ENOMEM;
  1148. e->inum = inum;
  1149. e->i_size = i_size;
  1150. e->d_size = d_size;
  1151. e->exists = exists;
  1152. rb_link_node(&e->rb, parent, p);
  1153. rb_insert_color(&e->rb, &c->size_tree);
  1154. return 0;
  1155. }
  1156. /**
  1157. * find_ino - find an entry on the size tree.
  1158. * @c: UBIFS file-system description object
  1159. * @inum: inode number
  1160. */
  1161. static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
  1162. {
  1163. struct rb_node *p = c->size_tree.rb_node;
  1164. struct size_entry *e;
  1165. while (p) {
  1166. e = rb_entry(p, struct size_entry, rb);
  1167. if (inum < e->inum)
  1168. p = p->rb_left;
  1169. else if (inum > e->inum)
  1170. p = p->rb_right;
  1171. else
  1172. return e;
  1173. }
  1174. return NULL;
  1175. }
  1176. /**
  1177. * remove_ino - remove an entry from the size tree.
  1178. * @c: UBIFS file-system description object
  1179. * @inum: inode number
  1180. */
  1181. static void remove_ino(struct ubifs_info *c, ino_t inum)
  1182. {
  1183. struct size_entry *e = find_ino(c, inum);
  1184. if (!e)
  1185. return;
  1186. rb_erase(&e->rb, &c->size_tree);
  1187. kfree(e);
  1188. }
  1189. /**
  1190. * ubifs_destroy_size_tree - free resources related to the size tree.
  1191. * @c: UBIFS file-system description object
  1192. */
  1193. void ubifs_destroy_size_tree(struct ubifs_info *c)
  1194. {
  1195. struct size_entry *e, *n;
  1196. rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
  1197. iput(e->inode);
  1198. kfree(e);
  1199. }
  1200. c->size_tree = RB_ROOT;
  1201. }
  1202. /**
  1203. * ubifs_recover_size_accum - accumulate inode sizes for recovery.
  1204. * @c: UBIFS file-system description object
  1205. * @key: node key
  1206. * @deletion: node is for a deletion
  1207. * @new_size: inode size
  1208. *
  1209. * This function has two purposes:
  1210. * 1) to ensure there are no data nodes that fall outside the inode size
  1211. * 2) to ensure there are no data nodes for inodes that do not exist
  1212. * To accomplish those purposes, a rb-tree is constructed containing an entry
  1213. * for each inode number in the journal that has not been deleted, and recording
  1214. * the size from the inode node, the maximum size of any data node (also altered
  1215. * by truncations) and a flag indicating a inode number for which no inode node
  1216. * was present in the journal.
  1217. *
  1218. * Note that there is still the possibility that there are data nodes that have
  1219. * been committed that are beyond the inode size, however the only way to find
  1220. * them would be to scan the entire index. Alternatively, some provision could
  1221. * be made to record the size of inodes at the start of commit, which would seem
  1222. * very cumbersome for a scenario that is quite unlikely and the only negative
  1223. * consequence of which is wasted space.
  1224. *
  1225. * This functions returns %0 on success and a negative error code on failure.
  1226. */
  1227. int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
  1228. int deletion, loff_t new_size)
  1229. {
  1230. ino_t inum = key_inum(c, key);
  1231. struct size_entry *e;
  1232. int err;
  1233. switch (key_type(c, key)) {
  1234. case UBIFS_INO_KEY:
  1235. if (deletion)
  1236. remove_ino(c, inum);
  1237. else {
  1238. e = find_ino(c, inum);
  1239. if (e) {
  1240. e->i_size = new_size;
  1241. e->exists = 1;
  1242. } else {
  1243. err = add_ino(c, inum, new_size, 0, 1);
  1244. if (err)
  1245. return err;
  1246. }
  1247. }
  1248. break;
  1249. case UBIFS_DATA_KEY:
  1250. e = find_ino(c, inum);
  1251. if (e) {
  1252. if (new_size > e->d_size)
  1253. e->d_size = new_size;
  1254. } else {
  1255. err = add_ino(c, inum, 0, new_size, 0);
  1256. if (err)
  1257. return err;
  1258. }
  1259. break;
  1260. case UBIFS_TRUN_KEY:
  1261. e = find_ino(c, inum);
  1262. if (e)
  1263. e->d_size = new_size;
  1264. break;
  1265. }
  1266. return 0;
  1267. }
  1268. /**
  1269. * fix_size_in_place - fix inode size in place on flash.
  1270. * @c: UBIFS file-system description object
  1271. * @e: inode size information for recovery
  1272. */
  1273. static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
  1274. {
  1275. struct ubifs_ino_node *ino = c->sbuf;
  1276. unsigned char *p;
  1277. union ubifs_key key;
  1278. int err, lnum, offs, len;
  1279. loff_t i_size;
  1280. uint32_t crc;
  1281. /* Locate the inode node LEB number and offset */
  1282. ino_key_init(c, &key, e->inum);
  1283. err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
  1284. if (err)
  1285. goto out;
  1286. /*
  1287. * If the size recorded on the inode node is greater than the size that
  1288. * was calculated from nodes in the journal then don't change the inode.
  1289. */
  1290. i_size = le64_to_cpu(ino->size);
  1291. if (i_size >= e->d_size)
  1292. return 0;
  1293. /* Read the LEB */
  1294. err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
  1295. if (err)
  1296. goto out;
  1297. /* Change the size field and recalculate the CRC */
  1298. ino = c->sbuf + offs;
  1299. ino->size = cpu_to_le64(e->d_size);
  1300. len = le32_to_cpu(ino->ch.len);
  1301. crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
  1302. ino->ch.crc = cpu_to_le32(crc);
  1303. /* Work out where data in the LEB ends and free space begins */
  1304. p = c->sbuf;
  1305. len = c->leb_size - 1;
  1306. while (p[len] == 0xff)
  1307. len -= 1;
  1308. len = ALIGN(len + 1, c->min_io_size);
  1309. /* Atomically write the fixed LEB back again */
  1310. err = ubifs_leb_change(c, lnum, c->sbuf, len);
  1311. if (err)
  1312. goto out;
  1313. dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
  1314. (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
  1315. return 0;
  1316. out:
  1317. ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
  1318. (unsigned long)e->inum, e->i_size, e->d_size, err);
  1319. return err;
  1320. }
  1321. /**
  1322. * ubifs_recover_size - recover inode size.
  1323. * @c: UBIFS file-system description object
  1324. *
  1325. * This function attempts to fix inode size discrepancies identified by the
  1326. * 'ubifs_recover_size_accum()' function.
  1327. *
  1328. * This functions returns %0 on success and a negative error code on failure.
  1329. */
  1330. int ubifs_recover_size(struct ubifs_info *c)
  1331. {
  1332. struct rb_node *this = rb_first(&c->size_tree);
  1333. while (this) {
  1334. struct size_entry *e;
  1335. int err;
  1336. e = rb_entry(this, struct size_entry, rb);
  1337. if (!e->exists) {
  1338. union ubifs_key key;
  1339. ino_key_init(c, &key, e->inum);
  1340. err = ubifs_tnc_lookup(c, &key, c->sbuf);
  1341. if (err && err != -ENOENT)
  1342. return err;
  1343. if (err == -ENOENT) {
  1344. /* Remove data nodes that have no inode */
  1345. dbg_rcvry("removing ino %lu",
  1346. (unsigned long)e->inum);
  1347. err = ubifs_tnc_remove_ino(c, e->inum);
  1348. if (err)
  1349. return err;
  1350. } else {
  1351. struct ubifs_ino_node *ino = c->sbuf;
  1352. e->exists = 1;
  1353. e->i_size = le64_to_cpu(ino->size);
  1354. }
  1355. }
  1356. if (e->exists && e->i_size < e->d_size) {
  1357. if (c->ro_mount) {
  1358. /* Fix the inode size and pin it in memory */
  1359. struct inode *inode;
  1360. struct ubifs_inode *ui;
  1361. ubifs_assert(!e->inode);
  1362. inode = ubifs_iget(c->vfs_sb, e->inum);
  1363. if (IS_ERR(inode))
  1364. return PTR_ERR(inode);
  1365. ui = ubifs_inode(inode);
  1366. if (inode->i_size < e->d_size) {
  1367. dbg_rcvry("ino %lu size %lld -> %lld",
  1368. (unsigned long)e->inum,
  1369. inode->i_size, e->d_size);
  1370. inode->i_size = e->d_size;
  1371. ui->ui_size = e->d_size;
  1372. ui->synced_i_size = e->d_size;
  1373. e->inode = inode;
  1374. this = rb_next(this);
  1375. continue;
  1376. }
  1377. iput(inode);
  1378. } else {
  1379. /* Fix the size in place */
  1380. err = fix_size_in_place(c, e);
  1381. if (err)
  1382. return err;
  1383. iput(e->inode);
  1384. }
  1385. }
  1386. this = rb_next(this);
  1387. rb_erase(&e->rb, &c->size_tree);
  1388. kfree(e);
  1389. }
  1390. return 0;
  1391. }