1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015 |
- /*
- * Dynamic DMA mapping support.
- *
- * This implementation is a fallback for platforms that do not support
- * I/O TLBs (aka DMA address translation hardware).
- * Copyright (C) 2000 Asit Mallick <[email protected]>
- * Copyright (C) 2000 Goutham Rao <[email protected]>
- * Copyright (C) 2000, 2003 Hewlett-Packard Co
- * David Mosberger-Tang <[email protected]>
- *
- * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
- * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
- * unnecessary i-cache flushing.
- * 04/07/.. ak Better overflow handling. Assorted fixes.
- * 05/09/10 linville Add support for syncing ranges, support syncing for
- * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
- * 08/12/11 beckyb Add highmem support
- */
- #define pr_fmt(fmt) "software IO TLB: " fmt
- #include <linux/cache.h>
- #include <linux/dma-mapping.h>
- #include <linux/mm.h>
- #include <linux/export.h>
- #include <linux/spinlock.h>
- #include <linux/string.h>
- #include <linux/swiotlb.h>
- #include <linux/pfn.h>
- #include <linux/types.h>
- #include <linux/ctype.h>
- #include <linux/highmem.h>
- #include <linux/gfp.h>
- #include <linux/scatterlist.h>
- #include <asm/io.h>
- #include <asm/dma.h>
- #include <linux/init.h>
- #include <linux/bootmem.h>
- #include <linux/iommu-helper.h>
- #define CREATE_TRACE_POINTS
- #include <trace/events/swiotlb.h>
- #define OFFSET(val,align) ((unsigned long) \
- ( (val) & ( (align) - 1)))
- #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
- /*
- * Minimum IO TLB size to bother booting with. Systems with mainly
- * 64bit capable cards will only lightly use the swiotlb. If we can't
- * allocate a contiguous 1MB, we're probably in trouble anyway.
- */
- #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
- enum swiotlb_force swiotlb_force;
- /*
- * Used to do a quick range check in swiotlb_tbl_unmap_single and
- * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
- * API.
- */
- static phys_addr_t io_tlb_start, io_tlb_end;
- /*
- * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
- * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
- */
- static unsigned long io_tlb_nslabs;
- /*
- * When the IOMMU overflows we return a fallback buffer. This sets the size.
- */
- static unsigned long io_tlb_overflow = 32*1024;
- static phys_addr_t io_tlb_overflow_buffer;
- /*
- * This is a free list describing the number of free entries available from
- * each index
- */
- static unsigned int *io_tlb_list;
- static unsigned int io_tlb_index;
- /*
- * We need to save away the original address corresponding to a mapped entry
- * for the sync operations.
- */
- #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
- static phys_addr_t *io_tlb_orig_addr;
- /*
- * Protect the above data structures in the map and unmap calls
- */
- static DEFINE_SPINLOCK(io_tlb_lock);
- static int late_alloc;
- static int __init
- setup_io_tlb_npages(char *str)
- {
- if (isdigit(*str)) {
- io_tlb_nslabs = simple_strtoul(str, &str, 0);
- /* avoid tail segment of size < IO_TLB_SEGSIZE */
- io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
- }
- if (*str == ',')
- ++str;
- if (!strcmp(str, "force")) {
- swiotlb_force = SWIOTLB_FORCE;
- } else if (!strcmp(str, "noforce")) {
- swiotlb_force = SWIOTLB_NO_FORCE;
- io_tlb_nslabs = 1;
- }
- return 0;
- }
- early_param("swiotlb", setup_io_tlb_npages);
- /* make io_tlb_overflow tunable too? */
- unsigned long swiotlb_nr_tbl(void)
- {
- return io_tlb_nslabs;
- }
- EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
- /* default to 64MB */
- #define IO_TLB_DEFAULT_SIZE (64UL<<20)
- unsigned long swiotlb_size_or_default(void)
- {
- unsigned long size;
- size = io_tlb_nslabs << IO_TLB_SHIFT;
- return size ? size : (IO_TLB_DEFAULT_SIZE);
- }
- /* Note that this doesn't work with highmem page */
- static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
- volatile void *address)
- {
- return phys_to_dma(hwdev, virt_to_phys(address));
- }
- static bool no_iotlb_memory;
- void swiotlb_print_info(void)
- {
- unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
- if (no_iotlb_memory) {
- pr_warn("No low mem\n");
- return;
- }
- pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
- (unsigned long long)io_tlb_start,
- (unsigned long long)io_tlb_end,
- bytes >> 20);
- }
- int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
- {
- void *v_overflow_buffer;
- unsigned long i, bytes;
- bytes = nslabs << IO_TLB_SHIFT;
- io_tlb_nslabs = nslabs;
- io_tlb_start = __pa(tlb);
- io_tlb_end = io_tlb_start + bytes;
- /*
- * Get the overflow emergency buffer
- */
- v_overflow_buffer = memblock_virt_alloc_low_nopanic(
- PAGE_ALIGN(io_tlb_overflow),
- PAGE_SIZE);
- if (!v_overflow_buffer)
- return -ENOMEM;
- io_tlb_overflow_buffer = __pa(v_overflow_buffer);
- /*
- * Allocate and initialize the free list array. This array is used
- * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
- * between io_tlb_start and io_tlb_end.
- */
- io_tlb_list = memblock_virt_alloc(
- PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
- PAGE_SIZE);
- io_tlb_orig_addr = memblock_virt_alloc(
- PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
- PAGE_SIZE);
- for (i = 0; i < io_tlb_nslabs; i++) {
- io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
- io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
- }
- io_tlb_index = 0;
- if (verbose)
- swiotlb_print_info();
- return 0;
- }
- /*
- * Statically reserve bounce buffer space and initialize bounce buffer data
- * structures for the software IO TLB used to implement the DMA API.
- */
- void __init
- swiotlb_init(int verbose)
- {
- size_t default_size = IO_TLB_DEFAULT_SIZE;
- unsigned char *vstart;
- unsigned long bytes;
- if (!io_tlb_nslabs) {
- io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
- io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
- }
- bytes = io_tlb_nslabs << IO_TLB_SHIFT;
- /* Get IO TLB memory from the low pages */
- vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
- if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
- return;
- if (io_tlb_start)
- memblock_free_early(io_tlb_start,
- PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
- pr_warn("Cannot allocate buffer");
- no_iotlb_memory = true;
- }
- /*
- * Systems with larger DMA zones (those that don't support ISA) can
- * initialize the swiotlb later using the slab allocator if needed.
- * This should be just like above, but with some error catching.
- */
- int
- swiotlb_late_init_with_default_size(size_t default_size)
- {
- unsigned long bytes, req_nslabs = io_tlb_nslabs;
- unsigned char *vstart = NULL;
- unsigned int order;
- int rc = 0;
- if (!io_tlb_nslabs) {
- io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
- io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
- }
- /*
- * Get IO TLB memory from the low pages
- */
- order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
- io_tlb_nslabs = SLABS_PER_PAGE << order;
- bytes = io_tlb_nslabs << IO_TLB_SHIFT;
- while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
- vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
- order);
- if (vstart)
- break;
- order--;
- }
- if (!vstart) {
- io_tlb_nslabs = req_nslabs;
- return -ENOMEM;
- }
- if (order != get_order(bytes)) {
- pr_warn("only able to allocate %ld MB\n",
- (PAGE_SIZE << order) >> 20);
- io_tlb_nslabs = SLABS_PER_PAGE << order;
- }
- rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
- if (rc)
- free_pages((unsigned long)vstart, order);
- return rc;
- }
- int
- swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
- {
- unsigned long i, bytes;
- unsigned char *v_overflow_buffer;
- bytes = nslabs << IO_TLB_SHIFT;
- io_tlb_nslabs = nslabs;
- io_tlb_start = virt_to_phys(tlb);
- io_tlb_end = io_tlb_start + bytes;
- memset(tlb, 0, bytes);
- /*
- * Get the overflow emergency buffer
- */
- v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
- get_order(io_tlb_overflow));
- if (!v_overflow_buffer)
- goto cleanup2;
- io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
- /*
- * Allocate and initialize the free list array. This array is used
- * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
- * between io_tlb_start and io_tlb_end.
- */
- io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
- get_order(io_tlb_nslabs * sizeof(int)));
- if (!io_tlb_list)
- goto cleanup3;
- io_tlb_orig_addr = (phys_addr_t *)
- __get_free_pages(GFP_KERNEL,
- get_order(io_tlb_nslabs *
- sizeof(phys_addr_t)));
- if (!io_tlb_orig_addr)
- goto cleanup4;
- for (i = 0; i < io_tlb_nslabs; i++) {
- io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
- io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
- }
- io_tlb_index = 0;
- swiotlb_print_info();
- late_alloc = 1;
- return 0;
- cleanup4:
- free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
- sizeof(int)));
- io_tlb_list = NULL;
- cleanup3:
- free_pages((unsigned long)v_overflow_buffer,
- get_order(io_tlb_overflow));
- io_tlb_overflow_buffer = 0;
- cleanup2:
- io_tlb_end = 0;
- io_tlb_start = 0;
- io_tlb_nslabs = 0;
- return -ENOMEM;
- }
- void __init swiotlb_free(void)
- {
- if (!io_tlb_orig_addr)
- return;
- if (late_alloc) {
- free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
- get_order(io_tlb_overflow));
- free_pages((unsigned long)io_tlb_orig_addr,
- get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
- free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
- sizeof(int)));
- free_pages((unsigned long)phys_to_virt(io_tlb_start),
- get_order(io_tlb_nslabs << IO_TLB_SHIFT));
- } else {
- memblock_free_late(io_tlb_overflow_buffer,
- PAGE_ALIGN(io_tlb_overflow));
- memblock_free_late(__pa(io_tlb_orig_addr),
- PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
- memblock_free_late(__pa(io_tlb_list),
- PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
- memblock_free_late(io_tlb_start,
- PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
- }
- io_tlb_nslabs = 0;
- }
- int is_swiotlb_buffer(phys_addr_t paddr)
- {
- return paddr >= io_tlb_start && paddr < io_tlb_end;
- }
- /*
- * Bounce: copy the swiotlb buffer back to the original dma location
- */
- static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
- size_t size, enum dma_data_direction dir)
- {
- unsigned long pfn = PFN_DOWN(orig_addr);
- unsigned char *vaddr = phys_to_virt(tlb_addr);
- if (PageHighMem(pfn_to_page(pfn))) {
- /* The buffer does not have a mapping. Map it in and copy */
- unsigned int offset = orig_addr & ~PAGE_MASK;
- char *buffer;
- unsigned int sz = 0;
- unsigned long flags;
- while (size) {
- sz = min_t(size_t, PAGE_SIZE - offset, size);
- local_irq_save(flags);
- buffer = kmap_atomic(pfn_to_page(pfn));
- if (dir == DMA_TO_DEVICE)
- memcpy(vaddr, buffer + offset, sz);
- else
- memcpy(buffer + offset, vaddr, sz);
- kunmap_atomic(buffer);
- local_irq_restore(flags);
- size -= sz;
- pfn++;
- vaddr += sz;
- offset = 0;
- }
- } else if (dir == DMA_TO_DEVICE) {
- memcpy(vaddr, phys_to_virt(orig_addr), size);
- } else {
- memcpy(phys_to_virt(orig_addr), vaddr, size);
- }
- }
- phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
- dma_addr_t tbl_dma_addr,
- phys_addr_t orig_addr, size_t size,
- enum dma_data_direction dir)
- {
- unsigned long flags;
- phys_addr_t tlb_addr;
- unsigned int nslots, stride, index, wrap;
- int i;
- unsigned long mask;
- unsigned long offset_slots;
- unsigned long max_slots;
- if (no_iotlb_memory)
- panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
- mask = dma_get_seg_boundary(hwdev);
- tbl_dma_addr &= mask;
- offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
- /*
- * Carefully handle integer overflow which can occur when mask == ~0UL.
- */
- max_slots = mask + 1
- ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
- : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
- /*
- * For mappings greater than or equal to a page, we limit the stride
- * (and hence alignment) to a page size.
- */
- nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
- if (size >= PAGE_SIZE)
- stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
- else
- stride = 1;
- BUG_ON(!nslots);
- /*
- * Find suitable number of IO TLB entries size that will fit this
- * request and allocate a buffer from that IO TLB pool.
- */
- spin_lock_irqsave(&io_tlb_lock, flags);
- index = ALIGN(io_tlb_index, stride);
- if (index >= io_tlb_nslabs)
- index = 0;
- wrap = index;
- do {
- while (iommu_is_span_boundary(index, nslots, offset_slots,
- max_slots)) {
- index += stride;
- if (index >= io_tlb_nslabs)
- index = 0;
- if (index == wrap)
- goto not_found;
- }
- /*
- * If we find a slot that indicates we have 'nslots' number of
- * contiguous buffers, we allocate the buffers from that slot
- * and mark the entries as '0' indicating unavailable.
- */
- if (io_tlb_list[index] >= nslots) {
- int count = 0;
- for (i = index; i < (int) (index + nslots); i++)
- io_tlb_list[i] = 0;
- for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
- io_tlb_list[i] = ++count;
- tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
- /*
- * Update the indices to avoid searching in the next
- * round.
- */
- io_tlb_index = ((index + nslots) < io_tlb_nslabs
- ? (index + nslots) : 0);
- goto found;
- }
- index += stride;
- if (index >= io_tlb_nslabs)
- index = 0;
- } while (index != wrap);
- not_found:
- spin_unlock_irqrestore(&io_tlb_lock, flags);
- if (printk_ratelimit())
- dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
- return SWIOTLB_MAP_ERROR;
- found:
- spin_unlock_irqrestore(&io_tlb_lock, flags);
- /*
- * Save away the mapping from the original address to the DMA address.
- * This is needed when we sync the memory. Then we sync the buffer if
- * needed.
- */
- for (i = 0; i < nslots; i++)
- io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
- if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
- swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
- return tlb_addr;
- }
- EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
- /*
- * Allocates bounce buffer and returns its kernel virtual address.
- */
- static phys_addr_t
- map_single(struct device *hwdev, phys_addr_t phys, size_t size,
- enum dma_data_direction dir)
- {
- dma_addr_t start_dma_addr;
- if (swiotlb_force == SWIOTLB_NO_FORCE) {
- dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
- &phys);
- return SWIOTLB_MAP_ERROR;
- }
- start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
- return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
- }
- /*
- * dma_addr is the kernel virtual address of the bounce buffer to unmap.
- */
- void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
- size_t size, enum dma_data_direction dir)
- {
- unsigned long flags;
- int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
- int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
- phys_addr_t orig_addr = io_tlb_orig_addr[index];
- /*
- * First, sync the memory before unmapping the entry
- */
- if (orig_addr != INVALID_PHYS_ADDR &&
- ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
- swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
- /*
- * Return the buffer to the free list by setting the corresponding
- * entries to indicate the number of contiguous entries available.
- * While returning the entries to the free list, we merge the entries
- * with slots below and above the pool being returned.
- */
- spin_lock_irqsave(&io_tlb_lock, flags);
- {
- count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
- io_tlb_list[index + nslots] : 0);
- /*
- * Step 1: return the slots to the free list, merging the
- * slots with superceeding slots
- */
- for (i = index + nslots - 1; i >= index; i--) {
- io_tlb_list[i] = ++count;
- io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
- }
- /*
- * Step 2: merge the returned slots with the preceding slots,
- * if available (non zero)
- */
- for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
- io_tlb_list[i] = ++count;
- }
- spin_unlock_irqrestore(&io_tlb_lock, flags);
- }
- EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
- void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
- size_t size, enum dma_data_direction dir,
- enum dma_sync_target target)
- {
- int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
- phys_addr_t orig_addr = io_tlb_orig_addr[index];
- if (orig_addr == INVALID_PHYS_ADDR)
- return;
- orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
- switch (target) {
- case SYNC_FOR_CPU:
- if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
- swiotlb_bounce(orig_addr, tlb_addr,
- size, DMA_FROM_DEVICE);
- else
- BUG_ON(dir != DMA_TO_DEVICE);
- break;
- case SYNC_FOR_DEVICE:
- if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
- swiotlb_bounce(orig_addr, tlb_addr,
- size, DMA_TO_DEVICE);
- else
- BUG_ON(dir != DMA_FROM_DEVICE);
- break;
- default:
- BUG();
- }
- }
- EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
- void *
- swiotlb_alloc_coherent(struct device *hwdev, size_t size,
- dma_addr_t *dma_handle, gfp_t flags)
- {
- dma_addr_t dev_addr;
- void *ret;
- int order = get_order(size);
- u64 dma_mask = DMA_BIT_MASK(32);
- if (hwdev && hwdev->coherent_dma_mask)
- dma_mask = hwdev->coherent_dma_mask;
- ret = (void *)__get_free_pages(flags, order);
- if (ret) {
- dev_addr = swiotlb_virt_to_bus(hwdev, ret);
- if (dev_addr + size - 1 > dma_mask) {
- /*
- * The allocated memory isn't reachable by the device.
- */
- free_pages((unsigned long) ret, order);
- ret = NULL;
- }
- }
- if (!ret) {
- /*
- * We are either out of memory or the device can't DMA to
- * GFP_DMA memory; fall back on map_single(), which
- * will grab memory from the lowest available address range.
- */
- phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
- if (paddr == SWIOTLB_MAP_ERROR)
- goto err_warn;
- ret = phys_to_virt(paddr);
- dev_addr = phys_to_dma(hwdev, paddr);
- /* Confirm address can be DMA'd by device */
- if (dev_addr + size - 1 > dma_mask) {
- printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
- (unsigned long long)dma_mask,
- (unsigned long long)dev_addr);
- /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
- swiotlb_tbl_unmap_single(hwdev, paddr,
- size, DMA_TO_DEVICE);
- goto err_warn;
- }
- }
- *dma_handle = dev_addr;
- memset(ret, 0, size);
- return ret;
- err_warn:
- pr_warn("coherent allocation failed for device %s size=%zu\n",
- dev_name(hwdev), size);
- dump_stack();
- return NULL;
- }
- EXPORT_SYMBOL(swiotlb_alloc_coherent);
- void
- swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
- dma_addr_t dev_addr)
- {
- phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
- WARN_ON(irqs_disabled());
- if (!is_swiotlb_buffer(paddr))
- free_pages((unsigned long)vaddr, get_order(size));
- else
- /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
- swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
- }
- EXPORT_SYMBOL(swiotlb_free_coherent);
- static void
- swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
- int do_panic)
- {
- if (swiotlb_force == SWIOTLB_NO_FORCE)
- return;
- /*
- * Ran out of IOMMU space for this operation. This is very bad.
- * Unfortunately the drivers cannot handle this operation properly.
- * unless they check for dma_mapping_error (most don't)
- * When the mapping is small enough return a static buffer to limit
- * the damage, or panic when the transfer is too big.
- */
- printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
- "device %s\n", size, dev ? dev_name(dev) : "?");
- if (size <= io_tlb_overflow || !do_panic)
- return;
- if (dir == DMA_BIDIRECTIONAL)
- panic("DMA: Random memory could be DMA accessed\n");
- if (dir == DMA_FROM_DEVICE)
- panic("DMA: Random memory could be DMA written\n");
- if (dir == DMA_TO_DEVICE)
- panic("DMA: Random memory could be DMA read\n");
- }
- /*
- * Map a single buffer of the indicated size for DMA in streaming mode. The
- * physical address to use is returned.
- *
- * Once the device is given the dma address, the device owns this memory until
- * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
- */
- dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
- unsigned long offset, size_t size,
- enum dma_data_direction dir,
- unsigned long attrs)
- {
- phys_addr_t map, phys = page_to_phys(page) + offset;
- dma_addr_t dev_addr = phys_to_dma(dev, phys);
- BUG_ON(dir == DMA_NONE);
- /*
- * If the address happens to be in the device's DMA window,
- * we can safely return the device addr and not worry about bounce
- * buffering it.
- */
- if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
- return dev_addr;
- trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
- /* Oh well, have to allocate and map a bounce buffer. */
- map = map_single(dev, phys, size, dir);
- if (map == SWIOTLB_MAP_ERROR) {
- swiotlb_full(dev, size, dir, 1);
- return phys_to_dma(dev, io_tlb_overflow_buffer);
- }
- dev_addr = phys_to_dma(dev, map);
- /* Ensure that the address returned is DMA'ble */
- if (!dma_capable(dev, dev_addr, size)) {
- swiotlb_tbl_unmap_single(dev, map, size, dir);
- return phys_to_dma(dev, io_tlb_overflow_buffer);
- }
- return dev_addr;
- }
- EXPORT_SYMBOL_GPL(swiotlb_map_page);
- /*
- * Unmap a single streaming mode DMA translation. The dma_addr and size must
- * match what was provided for in a previous swiotlb_map_page call. All
- * other usages are undefined.
- *
- * After this call, reads by the cpu to the buffer are guaranteed to see
- * whatever the device wrote there.
- */
- static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
- size_t size, enum dma_data_direction dir)
- {
- phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
- BUG_ON(dir == DMA_NONE);
- if (is_swiotlb_buffer(paddr)) {
- swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
- return;
- }
- if (dir != DMA_FROM_DEVICE)
- return;
- /*
- * phys_to_virt doesn't work with hihgmem page but we could
- * call dma_mark_clean() with hihgmem page here. However, we
- * are fine since dma_mark_clean() is null on POWERPC. We can
- * make dma_mark_clean() take a physical address if necessary.
- */
- dma_mark_clean(phys_to_virt(paddr), size);
- }
- void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
- size_t size, enum dma_data_direction dir,
- unsigned long attrs)
- {
- unmap_single(hwdev, dev_addr, size, dir);
- }
- EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
- /*
- * Make physical memory consistent for a single streaming mode DMA translation
- * after a transfer.
- *
- * If you perform a swiotlb_map_page() but wish to interrogate the buffer
- * using the cpu, yet do not wish to teardown the dma mapping, you must
- * call this function before doing so. At the next point you give the dma
- * address back to the card, you must first perform a
- * swiotlb_dma_sync_for_device, and then the device again owns the buffer
- */
- static void
- swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
- size_t size, enum dma_data_direction dir,
- enum dma_sync_target target)
- {
- phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
- BUG_ON(dir == DMA_NONE);
- if (is_swiotlb_buffer(paddr)) {
- swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
- return;
- }
- if (dir != DMA_FROM_DEVICE)
- return;
- dma_mark_clean(phys_to_virt(paddr), size);
- }
- void
- swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
- size_t size, enum dma_data_direction dir)
- {
- swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
- }
- EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
- void
- swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
- size_t size, enum dma_data_direction dir)
- {
- swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
- }
- EXPORT_SYMBOL(swiotlb_sync_single_for_device);
- /*
- * Map a set of buffers described by scatterlist in streaming mode for DMA.
- * This is the scatter-gather version of the above swiotlb_map_page
- * interface. Here the scatter gather list elements are each tagged with the
- * appropriate dma address and length. They are obtained via
- * sg_dma_{address,length}(SG).
- *
- * NOTE: An implementation may be able to use a smaller number of
- * DMA address/length pairs than there are SG table elements.
- * (for example via virtual mapping capabilities)
- * The routine returns the number of addr/length pairs actually
- * used, at most nents.
- *
- * Device ownership issues as mentioned above for swiotlb_map_page are the
- * same here.
- */
- int
- swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
- enum dma_data_direction dir, unsigned long attrs)
- {
- struct scatterlist *sg;
- int i;
- BUG_ON(dir == DMA_NONE);
- for_each_sg(sgl, sg, nelems, i) {
- phys_addr_t paddr = sg_phys(sg);
- dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
- if (swiotlb_force == SWIOTLB_FORCE ||
- !dma_capable(hwdev, dev_addr, sg->length)) {
- phys_addr_t map = map_single(hwdev, sg_phys(sg),
- sg->length, dir);
- if (map == SWIOTLB_MAP_ERROR) {
- /* Don't panic here, we expect map_sg users
- to do proper error handling. */
- swiotlb_full(hwdev, sg->length, dir, 0);
- swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
- attrs);
- sg_dma_len(sgl) = 0;
- return 0;
- }
- sg->dma_address = phys_to_dma(hwdev, map);
- } else
- sg->dma_address = dev_addr;
- sg_dma_len(sg) = sg->length;
- }
- return nelems;
- }
- EXPORT_SYMBOL(swiotlb_map_sg_attrs);
- int
- swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
- enum dma_data_direction dir)
- {
- return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, 0);
- }
- EXPORT_SYMBOL(swiotlb_map_sg);
- /*
- * Unmap a set of streaming mode DMA translations. Again, cpu read rules
- * concerning calls here are the same as for swiotlb_unmap_page() above.
- */
- void
- swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
- int nelems, enum dma_data_direction dir,
- unsigned long attrs)
- {
- struct scatterlist *sg;
- int i;
- BUG_ON(dir == DMA_NONE);
- for_each_sg(sgl, sg, nelems, i)
- unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
- }
- EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
- void
- swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
- enum dma_data_direction dir)
- {
- return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, 0);
- }
- EXPORT_SYMBOL(swiotlb_unmap_sg);
- /*
- * Make physical memory consistent for a set of streaming mode DMA translations
- * after a transfer.
- *
- * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
- * and usage.
- */
- static void
- swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
- int nelems, enum dma_data_direction dir,
- enum dma_sync_target target)
- {
- struct scatterlist *sg;
- int i;
- for_each_sg(sgl, sg, nelems, i)
- swiotlb_sync_single(hwdev, sg->dma_address,
- sg_dma_len(sg), dir, target);
- }
- void
- swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
- int nelems, enum dma_data_direction dir)
- {
- swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
- }
- EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
- void
- swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
- int nelems, enum dma_data_direction dir)
- {
- swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
- }
- EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
- int
- swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
- {
- return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
- }
- EXPORT_SYMBOL(swiotlb_dma_mapping_error);
- /*
- * Return whether the given device DMA address mask can be supported
- * properly. For example, if your device can only drive the low 24-bits
- * during bus mastering, then you would pass 0x00ffffff as the mask to
- * this function.
- */
- int
- swiotlb_dma_supported(struct device *hwdev, u64 mask)
- {
- return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
- }
- EXPORT_SYMBOL(swiotlb_dma_supported);
|