page_alloc.c 208 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page_ext.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <linux/memcontrol.h>
  66. #include <linux/show_mem_notifier.h>
  67. #include <linux/psi.h>
  68. #include <asm/sections.h>
  69. #include <asm/tlbflush.h>
  70. #include <asm/div64.h>
  71. #include "internal.h"
  72. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  73. static DEFINE_MUTEX(pcp_batch_high_lock);
  74. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  75. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  76. DEFINE_PER_CPU(int, numa_node);
  77. EXPORT_PER_CPU_SYMBOL(numa_node);
  78. #endif
  79. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  80. /*
  81. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  82. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  83. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  84. * defined in <linux/topology.h>.
  85. */
  86. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  87. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  88. int _node_numa_mem_[MAX_NUMNODES];
  89. #endif
  90. #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
  91. volatile unsigned long latent_entropy __latent_entropy;
  92. EXPORT_SYMBOL(latent_entropy);
  93. #endif
  94. /*
  95. * Array of node states.
  96. */
  97. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  98. [N_POSSIBLE] = NODE_MASK_ALL,
  99. [N_ONLINE] = { { [0] = 1UL } },
  100. #ifndef CONFIG_NUMA
  101. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  102. #ifdef CONFIG_HIGHMEM
  103. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  104. #endif
  105. #ifdef CONFIG_MOVABLE_NODE
  106. [N_MEMORY] = { { [0] = 1UL } },
  107. #endif
  108. [N_CPU] = { { [0] = 1UL } },
  109. #endif /* NUMA */
  110. };
  111. EXPORT_SYMBOL(node_states);
  112. /* Protect totalram_pages and zone->managed_pages */
  113. static DEFINE_SPINLOCK(managed_page_count_lock);
  114. unsigned long totalram_pages __read_mostly;
  115. unsigned long totalreserve_pages __read_mostly;
  116. unsigned long totalcma_pages __read_mostly;
  117. int percpu_pagelist_fraction;
  118. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  119. /*
  120. * A cached value of the page's pageblock's migratetype, used when the page is
  121. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  122. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  123. * Also the migratetype set in the page does not necessarily match the pcplist
  124. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  125. * other index - this ensures that it will be put on the correct CMA freelist.
  126. */
  127. static inline int get_pcppage_migratetype(struct page *page)
  128. {
  129. return page->index;
  130. }
  131. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  132. {
  133. page->index = migratetype;
  134. }
  135. #ifdef CONFIG_PM_SLEEP
  136. /*
  137. * The following functions are used by the suspend/hibernate code to temporarily
  138. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  139. * while devices are suspended. To avoid races with the suspend/hibernate code,
  140. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  141. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  142. * guaranteed not to run in parallel with that modification).
  143. */
  144. static gfp_t saved_gfp_mask;
  145. void pm_restore_gfp_mask(void)
  146. {
  147. WARN_ON(!mutex_is_locked(&pm_mutex));
  148. if (saved_gfp_mask) {
  149. gfp_allowed_mask = saved_gfp_mask;
  150. saved_gfp_mask = 0;
  151. }
  152. }
  153. void pm_restrict_gfp_mask(void)
  154. {
  155. WARN_ON(!mutex_is_locked(&pm_mutex));
  156. WARN_ON(saved_gfp_mask);
  157. saved_gfp_mask = gfp_allowed_mask;
  158. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  159. }
  160. bool pm_suspended_storage(void)
  161. {
  162. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  163. return false;
  164. return true;
  165. }
  166. #endif /* CONFIG_PM_SLEEP */
  167. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  168. unsigned int pageblock_order __read_mostly;
  169. #endif
  170. static void __free_pages_ok(struct page *page, unsigned int order);
  171. /*
  172. * results with 256, 32 in the lowmem_reserve sysctl:
  173. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  174. * 1G machine -> (16M dma, 784M normal, 224M high)
  175. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  176. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  177. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  178. *
  179. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  180. * don't need any ZONE_NORMAL reservation
  181. */
  182. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  183. #ifdef CONFIG_ZONE_DMA
  184. 256,
  185. #endif
  186. #ifdef CONFIG_ZONE_DMA32
  187. 256,
  188. #endif
  189. #ifdef CONFIG_HIGHMEM
  190. 32,
  191. #endif
  192. 32,
  193. };
  194. EXPORT_SYMBOL(totalram_pages);
  195. static char * const zone_names[MAX_NR_ZONES] = {
  196. #ifdef CONFIG_ZONE_DMA
  197. "DMA",
  198. #endif
  199. #ifdef CONFIG_ZONE_DMA32
  200. "DMA32",
  201. #endif
  202. "Normal",
  203. #ifdef CONFIG_HIGHMEM
  204. "HighMem",
  205. #endif
  206. "Movable",
  207. #ifdef CONFIG_ZONE_DEVICE
  208. "Device",
  209. #endif
  210. };
  211. char * const migratetype_names[MIGRATE_TYPES] = {
  212. "Unmovable",
  213. "Movable",
  214. "Reclaimable",
  215. #ifdef CONFIG_CMA
  216. "CMA",
  217. #endif
  218. "HighAtomic",
  219. #ifdef CONFIG_MEMORY_ISOLATION
  220. "Isolate",
  221. #endif
  222. };
  223. compound_page_dtor * const compound_page_dtors[] = {
  224. NULL,
  225. free_compound_page,
  226. #ifdef CONFIG_HUGETLB_PAGE
  227. free_huge_page,
  228. #endif
  229. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  230. free_transhuge_page,
  231. #endif
  232. };
  233. /*
  234. * Try to keep at least this much lowmem free. Do not allow normal
  235. * allocations below this point, only high priority ones. Automatically
  236. * tuned according to the amount of memory in the system.
  237. */
  238. int min_free_kbytes = 1024;
  239. int user_min_free_kbytes = -1;
  240. int watermark_scale_factor;
  241. /*
  242. * Extra memory for the system to try freeing. Used to temporarily
  243. * free memory, to make space for new workloads. Anyone can allocate
  244. * down to the min watermarks controlled by min_free_kbytes above.
  245. */
  246. int extra_free_kbytes = 0;
  247. static unsigned long __meminitdata nr_kernel_pages;
  248. static unsigned long __meminitdata nr_all_pages;
  249. static unsigned long __meminitdata dma_reserve;
  250. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  251. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  252. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  253. static unsigned long __initdata required_kernelcore;
  254. static unsigned long __initdata required_movablecore;
  255. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  256. static bool mirrored_kernelcore;
  257. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  258. int movable_zone;
  259. EXPORT_SYMBOL(movable_zone);
  260. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  261. #if MAX_NUMNODES > 1
  262. int nr_node_ids __read_mostly = MAX_NUMNODES;
  263. int nr_online_nodes __read_mostly = 1;
  264. EXPORT_SYMBOL(nr_node_ids);
  265. EXPORT_SYMBOL(nr_online_nodes);
  266. #endif
  267. int page_group_by_mobility_disabled __read_mostly;
  268. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  269. /*
  270. * Determine how many pages need to be initialized durig early boot
  271. * (non-deferred initialization).
  272. * The value of first_deferred_pfn will be set later, once non-deferred pages
  273. * are initialized, but for now set it ULONG_MAX.
  274. */
  275. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  276. {
  277. phys_addr_t start_addr, end_addr;
  278. unsigned long max_pgcnt;
  279. unsigned long reserved;
  280. /*
  281. * Initialise at least 2G of a node but also take into account that
  282. * two large system hashes that can take up 1GB for 0.25TB/node.
  283. */
  284. max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
  285. (pgdat->node_spanned_pages >> 8));
  286. /*
  287. * Compensate the all the memblock reservations (e.g. crash kernel)
  288. * from the initial estimation to make sure we will initialize enough
  289. * memory to boot.
  290. */
  291. start_addr = PFN_PHYS(pgdat->node_start_pfn);
  292. end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
  293. reserved = memblock_reserved_memory_within(start_addr, end_addr);
  294. max_pgcnt += PHYS_PFN(reserved);
  295. pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
  296. pgdat->first_deferred_pfn = ULONG_MAX;
  297. }
  298. /* Returns true if the struct page for the pfn is uninitialised */
  299. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  300. {
  301. int nid = early_pfn_to_nid(pfn);
  302. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  303. return true;
  304. return false;
  305. }
  306. /*
  307. * Returns false when the remaining initialisation should be deferred until
  308. * later in the boot cycle when it can be parallelised.
  309. */
  310. static inline bool update_defer_init(pg_data_t *pgdat,
  311. unsigned long pfn, unsigned long zone_end,
  312. unsigned long *nr_initialised)
  313. {
  314. /* Always populate low zones for address-contrained allocations */
  315. if (zone_end < pgdat_end_pfn(pgdat))
  316. return true;
  317. (*nr_initialised)++;
  318. if ((*nr_initialised > pgdat->static_init_pgcnt) &&
  319. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  320. pgdat->first_deferred_pfn = pfn;
  321. return false;
  322. }
  323. return true;
  324. }
  325. #else
  326. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  327. {
  328. }
  329. static inline bool early_page_uninitialised(unsigned long pfn)
  330. {
  331. return false;
  332. }
  333. static inline bool update_defer_init(pg_data_t *pgdat,
  334. unsigned long pfn, unsigned long zone_end,
  335. unsigned long *nr_initialised)
  336. {
  337. return true;
  338. }
  339. #endif
  340. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  341. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  342. unsigned long pfn)
  343. {
  344. #ifdef CONFIG_SPARSEMEM
  345. return __pfn_to_section(pfn)->pageblock_flags;
  346. #else
  347. return page_zone(page)->pageblock_flags;
  348. #endif /* CONFIG_SPARSEMEM */
  349. }
  350. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  351. {
  352. #ifdef CONFIG_SPARSEMEM
  353. pfn &= (PAGES_PER_SECTION-1);
  354. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  355. #else
  356. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  357. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  358. #endif /* CONFIG_SPARSEMEM */
  359. }
  360. /**
  361. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  362. * @page: The page within the block of interest
  363. * @pfn: The target page frame number
  364. * @end_bitidx: The last bit of interest to retrieve
  365. * @mask: mask of bits that the caller is interested in
  366. *
  367. * Return: pageblock_bits flags
  368. */
  369. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  370. unsigned long pfn,
  371. unsigned long end_bitidx,
  372. unsigned long mask)
  373. {
  374. unsigned long *bitmap;
  375. unsigned long bitidx, word_bitidx;
  376. unsigned long word;
  377. bitmap = get_pageblock_bitmap(page, pfn);
  378. bitidx = pfn_to_bitidx(page, pfn);
  379. word_bitidx = bitidx / BITS_PER_LONG;
  380. bitidx &= (BITS_PER_LONG-1);
  381. word = bitmap[word_bitidx];
  382. bitidx += end_bitidx;
  383. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  384. }
  385. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  386. unsigned long end_bitidx,
  387. unsigned long mask)
  388. {
  389. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  390. }
  391. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  392. {
  393. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  394. }
  395. /**
  396. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  397. * @page: The page within the block of interest
  398. * @flags: The flags to set
  399. * @pfn: The target page frame number
  400. * @end_bitidx: The last bit of interest
  401. * @mask: mask of bits that the caller is interested in
  402. */
  403. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  404. unsigned long pfn,
  405. unsigned long end_bitidx,
  406. unsigned long mask)
  407. {
  408. unsigned long *bitmap;
  409. unsigned long bitidx, word_bitidx;
  410. unsigned long old_word, word;
  411. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  412. bitmap = get_pageblock_bitmap(page, pfn);
  413. bitidx = pfn_to_bitidx(page, pfn);
  414. word_bitidx = bitidx / BITS_PER_LONG;
  415. bitidx &= (BITS_PER_LONG-1);
  416. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  417. bitidx += end_bitidx;
  418. mask <<= (BITS_PER_LONG - bitidx - 1);
  419. flags <<= (BITS_PER_LONG - bitidx - 1);
  420. word = READ_ONCE(bitmap[word_bitidx]);
  421. for (;;) {
  422. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  423. if (word == old_word)
  424. break;
  425. word = old_word;
  426. }
  427. }
  428. void set_pageblock_migratetype(struct page *page, int migratetype)
  429. {
  430. if (unlikely(page_group_by_mobility_disabled &&
  431. migratetype < MIGRATE_PCPTYPES))
  432. migratetype = MIGRATE_UNMOVABLE;
  433. set_pageblock_flags_group(page, (unsigned long)migratetype,
  434. PB_migrate, PB_migrate_end);
  435. }
  436. #ifdef CONFIG_DEBUG_VM
  437. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  438. {
  439. int ret = 0;
  440. unsigned seq;
  441. unsigned long pfn = page_to_pfn(page);
  442. unsigned long sp, start_pfn;
  443. do {
  444. seq = zone_span_seqbegin(zone);
  445. start_pfn = zone->zone_start_pfn;
  446. sp = zone->spanned_pages;
  447. if (!zone_spans_pfn(zone, pfn))
  448. ret = 1;
  449. } while (zone_span_seqretry(zone, seq));
  450. if (ret)
  451. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  452. pfn, zone_to_nid(zone), zone->name,
  453. start_pfn, start_pfn + sp);
  454. return ret;
  455. }
  456. static int page_is_consistent(struct zone *zone, struct page *page)
  457. {
  458. if (!pfn_valid_within(page_to_pfn(page)))
  459. return 0;
  460. if (zone != page_zone(page))
  461. return 0;
  462. return 1;
  463. }
  464. /*
  465. * Temporary debugging check for pages not lying within a given zone.
  466. */
  467. static int bad_range(struct zone *zone, struct page *page)
  468. {
  469. if (page_outside_zone_boundaries(zone, page))
  470. return 1;
  471. if (!page_is_consistent(zone, page))
  472. return 1;
  473. return 0;
  474. }
  475. #else
  476. static inline int bad_range(struct zone *zone, struct page *page)
  477. {
  478. return 0;
  479. }
  480. #endif
  481. static void bad_page(struct page *page, const char *reason,
  482. unsigned long bad_flags)
  483. {
  484. static unsigned long resume;
  485. static unsigned long nr_shown;
  486. static unsigned long nr_unshown;
  487. /*
  488. * Allow a burst of 60 reports, then keep quiet for that minute;
  489. * or allow a steady drip of one report per second.
  490. */
  491. if (nr_shown == 60) {
  492. if (time_before(jiffies, resume)) {
  493. nr_unshown++;
  494. goto out;
  495. }
  496. if (nr_unshown) {
  497. pr_alert(
  498. "BUG: Bad page state: %lu messages suppressed\n",
  499. nr_unshown);
  500. nr_unshown = 0;
  501. }
  502. nr_shown = 0;
  503. }
  504. if (nr_shown++ == 0)
  505. resume = jiffies + 60 * HZ;
  506. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  507. current->comm, page_to_pfn(page));
  508. __dump_page(page, reason);
  509. bad_flags &= page->flags;
  510. if (bad_flags)
  511. pr_alert("bad because of flags: %#lx(%pGp)\n",
  512. bad_flags, &bad_flags);
  513. dump_page_owner(page);
  514. print_modules();
  515. dump_stack();
  516. out:
  517. /* Leave bad fields for debug, except PageBuddy could make trouble */
  518. page_mapcount_reset(page); /* remove PageBuddy */
  519. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  520. }
  521. /*
  522. * Higher-order pages are called "compound pages". They are structured thusly:
  523. *
  524. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  525. *
  526. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  527. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  528. *
  529. * The first tail page's ->compound_dtor holds the offset in array of compound
  530. * page destructors. See compound_page_dtors.
  531. *
  532. * The first tail page's ->compound_order holds the order of allocation.
  533. * This usage means that zero-order pages may not be compound.
  534. */
  535. void free_compound_page(struct page *page)
  536. {
  537. __free_pages_ok(page, compound_order(page));
  538. }
  539. void prep_compound_page(struct page *page, unsigned int order)
  540. {
  541. int i;
  542. int nr_pages = 1 << order;
  543. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  544. set_compound_order(page, order);
  545. __SetPageHead(page);
  546. for (i = 1; i < nr_pages; i++) {
  547. struct page *p = page + i;
  548. set_page_count(p, 0);
  549. p->mapping = TAIL_MAPPING;
  550. set_compound_head(p, page);
  551. }
  552. atomic_set(compound_mapcount_ptr(page), -1);
  553. }
  554. #ifdef CONFIG_DEBUG_PAGEALLOC
  555. unsigned int _debug_guardpage_minorder;
  556. bool _debug_pagealloc_enabled __read_mostly
  557. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  558. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  559. bool _debug_guardpage_enabled __read_mostly;
  560. static int __init early_debug_pagealloc(char *buf)
  561. {
  562. if (!buf)
  563. return -EINVAL;
  564. return kstrtobool(buf, &_debug_pagealloc_enabled);
  565. }
  566. early_param("debug_pagealloc", early_debug_pagealloc);
  567. static bool need_debug_guardpage(void)
  568. {
  569. /* If we don't use debug_pagealloc, we don't need guard page */
  570. if (!debug_pagealloc_enabled())
  571. return false;
  572. if (!debug_guardpage_minorder())
  573. return false;
  574. return true;
  575. }
  576. static void init_debug_guardpage(void)
  577. {
  578. if (!debug_pagealloc_enabled())
  579. return;
  580. if (!debug_guardpage_minorder())
  581. return;
  582. _debug_guardpage_enabled = true;
  583. }
  584. struct page_ext_operations debug_guardpage_ops = {
  585. .need = need_debug_guardpage,
  586. .init = init_debug_guardpage,
  587. };
  588. static int __init debug_guardpage_minorder_setup(char *buf)
  589. {
  590. unsigned long res;
  591. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  592. pr_err("Bad debug_guardpage_minorder value\n");
  593. return 0;
  594. }
  595. _debug_guardpage_minorder = res;
  596. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  597. return 0;
  598. }
  599. early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
  600. static inline bool set_page_guard(struct zone *zone, struct page *page,
  601. unsigned int order, int migratetype)
  602. {
  603. struct page_ext *page_ext;
  604. if (!debug_guardpage_enabled())
  605. return false;
  606. if (order >= debug_guardpage_minorder())
  607. return false;
  608. page_ext = lookup_page_ext(page);
  609. if (unlikely(!page_ext))
  610. return false;
  611. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  612. INIT_LIST_HEAD(&page->lru);
  613. set_page_private(page, order);
  614. /* Guard pages are not available for any usage */
  615. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  616. return true;
  617. }
  618. static inline void clear_page_guard(struct zone *zone, struct page *page,
  619. unsigned int order, int migratetype)
  620. {
  621. struct page_ext *page_ext;
  622. if (!debug_guardpage_enabled())
  623. return;
  624. page_ext = lookup_page_ext(page);
  625. if (unlikely(!page_ext))
  626. return;
  627. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  628. set_page_private(page, 0);
  629. if (!is_migrate_isolate(migratetype))
  630. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  631. }
  632. #else
  633. struct page_ext_operations debug_guardpage_ops;
  634. static inline bool set_page_guard(struct zone *zone, struct page *page,
  635. unsigned int order, int migratetype) { return false; }
  636. static inline void clear_page_guard(struct zone *zone, struct page *page,
  637. unsigned int order, int migratetype) {}
  638. #endif
  639. static inline void set_page_order(struct page *page, unsigned int order)
  640. {
  641. set_page_private(page, order);
  642. __SetPageBuddy(page);
  643. }
  644. static inline void rmv_page_order(struct page *page)
  645. {
  646. __ClearPageBuddy(page);
  647. set_page_private(page, 0);
  648. }
  649. /*
  650. * This function checks whether a page is free && is the buddy
  651. * we can do coalesce a page and its buddy if
  652. * (a) the buddy is not in a hole &&
  653. * (b) the buddy is in the buddy system &&
  654. * (c) a page and its buddy have the same order &&
  655. * (d) a page and its buddy are in the same zone.
  656. *
  657. * For recording whether a page is in the buddy system, we set ->_mapcount
  658. * PAGE_BUDDY_MAPCOUNT_VALUE.
  659. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  660. * serialized by zone->lock.
  661. *
  662. * For recording page's order, we use page_private(page).
  663. */
  664. static inline int page_is_buddy(struct page *page, struct page *buddy,
  665. unsigned int order)
  666. {
  667. if (!pfn_valid_within(page_to_pfn(buddy)))
  668. return 0;
  669. if (page_is_guard(buddy) && page_order(buddy) == order) {
  670. if (page_zone_id(page) != page_zone_id(buddy))
  671. return 0;
  672. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  673. return 1;
  674. }
  675. if (PageBuddy(buddy) && page_order(buddy) == order) {
  676. /*
  677. * zone check is done late to avoid uselessly
  678. * calculating zone/node ids for pages that could
  679. * never merge.
  680. */
  681. if (page_zone_id(page) != page_zone_id(buddy))
  682. return 0;
  683. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  684. return 1;
  685. }
  686. return 0;
  687. }
  688. /*
  689. * Freeing function for a buddy system allocator.
  690. *
  691. * The concept of a buddy system is to maintain direct-mapped table
  692. * (containing bit values) for memory blocks of various "orders".
  693. * The bottom level table contains the map for the smallest allocatable
  694. * units of memory (here, pages), and each level above it describes
  695. * pairs of units from the levels below, hence, "buddies".
  696. * At a high level, all that happens here is marking the table entry
  697. * at the bottom level available, and propagating the changes upward
  698. * as necessary, plus some accounting needed to play nicely with other
  699. * parts of the VM system.
  700. * At each level, we keep a list of pages, which are heads of continuous
  701. * free pages of length of (1 << order) and marked with _mapcount
  702. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  703. * field.
  704. * So when we are allocating or freeing one, we can derive the state of the
  705. * other. That is, if we allocate a small block, and both were
  706. * free, the remainder of the region must be split into blocks.
  707. * If a block is freed, and its buddy is also free, then this
  708. * triggers coalescing into a block of larger size.
  709. *
  710. * -- nyc
  711. */
  712. static inline void __free_one_page(struct page *page,
  713. unsigned long pfn,
  714. struct zone *zone, unsigned int order,
  715. int migratetype)
  716. {
  717. unsigned long page_idx;
  718. unsigned long combined_idx;
  719. unsigned long uninitialized_var(buddy_idx);
  720. struct page *buddy;
  721. unsigned int max_order;
  722. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  723. VM_BUG_ON(!zone_is_initialized(zone));
  724. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  725. VM_BUG_ON(migratetype == -1);
  726. if (likely(!is_migrate_isolate(migratetype)))
  727. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  728. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  729. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  730. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  731. continue_merging:
  732. while (order < max_order - 1) {
  733. buddy_idx = __find_buddy_index(page_idx, order);
  734. buddy = page + (buddy_idx - page_idx);
  735. if (!page_is_buddy(page, buddy, order))
  736. goto done_merging;
  737. /*
  738. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  739. * merge with it and move up one order.
  740. */
  741. if (page_is_guard(buddy)) {
  742. clear_page_guard(zone, buddy, order, migratetype);
  743. } else {
  744. list_del(&buddy->lru);
  745. zone->free_area[order].nr_free--;
  746. rmv_page_order(buddy);
  747. }
  748. combined_idx = buddy_idx & page_idx;
  749. page = page + (combined_idx - page_idx);
  750. page_idx = combined_idx;
  751. order++;
  752. }
  753. if (max_order < MAX_ORDER) {
  754. /* If we are here, it means order is >= pageblock_order.
  755. * We want to prevent merge between freepages on isolate
  756. * pageblock and normal pageblock. Without this, pageblock
  757. * isolation could cause incorrect freepage or CMA accounting.
  758. *
  759. * We don't want to hit this code for the more frequent
  760. * low-order merging.
  761. */
  762. if (unlikely(has_isolate_pageblock(zone))) {
  763. int buddy_mt;
  764. buddy_idx = __find_buddy_index(page_idx, order);
  765. buddy = page + (buddy_idx - page_idx);
  766. buddy_mt = get_pageblock_migratetype(buddy);
  767. if (migratetype != buddy_mt
  768. && (is_migrate_isolate(migratetype) ||
  769. is_migrate_isolate(buddy_mt)))
  770. goto done_merging;
  771. }
  772. max_order++;
  773. goto continue_merging;
  774. }
  775. done_merging:
  776. set_page_order(page, order);
  777. /*
  778. * If this is not the largest possible page, check if the buddy
  779. * of the next-highest order is free. If it is, it's possible
  780. * that pages are being freed that will coalesce soon. In case,
  781. * that is happening, add the free page to the tail of the list
  782. * so it's less likely to be used soon and more likely to be merged
  783. * as a higher order page
  784. */
  785. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  786. struct page *higher_page, *higher_buddy;
  787. combined_idx = buddy_idx & page_idx;
  788. higher_page = page + (combined_idx - page_idx);
  789. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  790. higher_buddy = higher_page + (buddy_idx - combined_idx);
  791. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  792. list_add_tail(&page->lru,
  793. &zone->free_area[order].free_list[migratetype]);
  794. goto out;
  795. }
  796. }
  797. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  798. out:
  799. zone->free_area[order].nr_free++;
  800. }
  801. /*
  802. * A bad page could be due to a number of fields. Instead of multiple branches,
  803. * try and check multiple fields with one check. The caller must do a detailed
  804. * check if necessary.
  805. */
  806. static inline bool page_expected_state(struct page *page,
  807. unsigned long check_flags)
  808. {
  809. if (unlikely(atomic_read(&page->_mapcount) != -1))
  810. return false;
  811. if (unlikely((unsigned long)page->mapping |
  812. page_ref_count(page) |
  813. #ifdef CONFIG_MEMCG
  814. (unsigned long)page->mem_cgroup |
  815. #endif
  816. (page->flags & check_flags)))
  817. return false;
  818. return true;
  819. }
  820. static void free_pages_check_bad(struct page *page)
  821. {
  822. const char *bad_reason;
  823. unsigned long bad_flags;
  824. bad_reason = NULL;
  825. bad_flags = 0;
  826. if (unlikely(atomic_read(&page->_mapcount) != -1))
  827. bad_reason = "nonzero mapcount";
  828. if (unlikely(page->mapping != NULL))
  829. bad_reason = "non-NULL mapping";
  830. if (unlikely(page_ref_count(page) != 0))
  831. bad_reason = "nonzero _refcount";
  832. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  833. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  834. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  835. }
  836. #ifdef CONFIG_MEMCG
  837. if (unlikely(page->mem_cgroup))
  838. bad_reason = "page still charged to cgroup";
  839. #endif
  840. bad_page(page, bad_reason, bad_flags);
  841. }
  842. static inline int free_pages_check(struct page *page)
  843. {
  844. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  845. return 0;
  846. /* Something has gone sideways, find it */
  847. free_pages_check_bad(page);
  848. return 1;
  849. }
  850. static int free_tail_pages_check(struct page *head_page, struct page *page)
  851. {
  852. int ret = 1;
  853. /*
  854. * We rely page->lru.next never has bit 0 set, unless the page
  855. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  856. */
  857. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  858. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  859. ret = 0;
  860. goto out;
  861. }
  862. switch (page - head_page) {
  863. case 1:
  864. /* the first tail page: ->mapping is compound_mapcount() */
  865. if (unlikely(compound_mapcount(page))) {
  866. bad_page(page, "nonzero compound_mapcount", 0);
  867. goto out;
  868. }
  869. break;
  870. case 2:
  871. /*
  872. * the second tail page: ->mapping is
  873. * page_deferred_list().next -- ignore value.
  874. */
  875. break;
  876. default:
  877. if (page->mapping != TAIL_MAPPING) {
  878. bad_page(page, "corrupted mapping in tail page", 0);
  879. goto out;
  880. }
  881. break;
  882. }
  883. if (unlikely(!PageTail(page))) {
  884. bad_page(page, "PageTail not set", 0);
  885. goto out;
  886. }
  887. if (unlikely(compound_head(page) != head_page)) {
  888. bad_page(page, "compound_head not consistent", 0);
  889. goto out;
  890. }
  891. ret = 0;
  892. out:
  893. page->mapping = NULL;
  894. clear_compound_head(page);
  895. return ret;
  896. }
  897. static __always_inline bool free_pages_prepare(struct page *page,
  898. unsigned int order, bool check_free)
  899. {
  900. int bad = 0;
  901. VM_BUG_ON_PAGE(PageTail(page), page);
  902. trace_mm_page_free(page, order);
  903. kmemcheck_free_shadow(page, order);
  904. /*
  905. * Check tail pages before head page information is cleared to
  906. * avoid checking PageCompound for order-0 pages.
  907. */
  908. if (unlikely(order)) {
  909. bool compound = PageCompound(page);
  910. int i;
  911. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  912. if (compound)
  913. ClearPageDoubleMap(page);
  914. for (i = 1; i < (1 << order); i++) {
  915. if (compound)
  916. bad += free_tail_pages_check(page, page + i);
  917. if (unlikely(free_pages_check(page + i))) {
  918. bad++;
  919. continue;
  920. }
  921. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  922. }
  923. }
  924. if (PageMappingFlags(page))
  925. page->mapping = NULL;
  926. if (memcg_kmem_enabled() && PageKmemcg(page))
  927. memcg_kmem_uncharge(page, order);
  928. if (check_free)
  929. bad += free_pages_check(page);
  930. if (bad)
  931. return false;
  932. page_cpupid_reset_last(page);
  933. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  934. reset_page_owner(page, order);
  935. if (!PageHighMem(page)) {
  936. debug_check_no_locks_freed(page_address(page),
  937. PAGE_SIZE << order);
  938. debug_check_no_obj_freed(page_address(page),
  939. PAGE_SIZE << order);
  940. }
  941. arch_free_page(page, order);
  942. kernel_poison_pages(page, 1 << order, 0);
  943. kernel_map_pages(page, 1 << order, 0);
  944. kasan_free_pages(page, order);
  945. return true;
  946. }
  947. #ifdef CONFIG_DEBUG_VM
  948. static inline bool free_pcp_prepare(struct page *page)
  949. {
  950. return free_pages_prepare(page, 0, true);
  951. }
  952. static inline bool bulkfree_pcp_prepare(struct page *page)
  953. {
  954. return false;
  955. }
  956. #else
  957. static bool free_pcp_prepare(struct page *page)
  958. {
  959. return free_pages_prepare(page, 0, false);
  960. }
  961. static bool bulkfree_pcp_prepare(struct page *page)
  962. {
  963. return free_pages_check(page);
  964. }
  965. #endif /* CONFIG_DEBUG_VM */
  966. /*
  967. * Frees a number of pages from the PCP lists
  968. * Assumes all pages on list are in same zone, and of same order.
  969. * count is the number of pages to free.
  970. *
  971. * If the zone was previously in an "all pages pinned" state then look to
  972. * see if this freeing clears that state.
  973. *
  974. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  975. * pinned" detection logic.
  976. */
  977. static void free_pcppages_bulk(struct zone *zone, int count,
  978. struct per_cpu_pages *pcp)
  979. {
  980. int migratetype = 0;
  981. int batch_free = 0;
  982. bool isolated_pageblocks;
  983. spin_lock(&zone->lock);
  984. isolated_pageblocks = has_isolate_pageblock(zone);
  985. while (count) {
  986. struct page *page;
  987. struct list_head *list;
  988. /*
  989. * Remove pages from lists in a round-robin fashion. A
  990. * batch_free count is maintained that is incremented when an
  991. * empty list is encountered. This is so more pages are freed
  992. * off fuller lists instead of spinning excessively around empty
  993. * lists
  994. */
  995. do {
  996. batch_free++;
  997. if (++migratetype == MIGRATE_PCPTYPES)
  998. migratetype = 0;
  999. list = &pcp->lists[migratetype];
  1000. } while (list_empty(list));
  1001. /* This is the only non-empty list. Free them all. */
  1002. if (batch_free == MIGRATE_PCPTYPES)
  1003. batch_free = count;
  1004. do {
  1005. int mt; /* migratetype of the to-be-freed page */
  1006. page = list_last_entry(list, struct page, lru);
  1007. /* must delete as __free_one_page list manipulates */
  1008. list_del(&page->lru);
  1009. mt = get_pcppage_migratetype(page);
  1010. /* MIGRATE_ISOLATE page should not go to pcplists */
  1011. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  1012. /* Pageblock could have been isolated meanwhile */
  1013. if (unlikely(isolated_pageblocks))
  1014. mt = get_pageblock_migratetype(page);
  1015. if (bulkfree_pcp_prepare(page))
  1016. continue;
  1017. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  1018. trace_mm_page_pcpu_drain(page, 0, mt);
  1019. } while (--count && --batch_free && !list_empty(list));
  1020. }
  1021. spin_unlock(&zone->lock);
  1022. }
  1023. static void free_one_page(struct zone *zone,
  1024. struct page *page, unsigned long pfn,
  1025. unsigned int order,
  1026. int migratetype)
  1027. {
  1028. spin_lock(&zone->lock);
  1029. if (unlikely(has_isolate_pageblock(zone) ||
  1030. is_migrate_isolate(migratetype))) {
  1031. migratetype = get_pfnblock_migratetype(page, pfn);
  1032. }
  1033. __free_one_page(page, pfn, zone, order, migratetype);
  1034. spin_unlock(&zone->lock);
  1035. }
  1036. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1037. unsigned long zone, int nid)
  1038. {
  1039. set_page_links(page, zone, nid, pfn);
  1040. init_page_count(page);
  1041. page_mapcount_reset(page);
  1042. page_cpupid_reset_last(page);
  1043. INIT_LIST_HEAD(&page->lru);
  1044. #ifdef WANT_PAGE_VIRTUAL
  1045. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1046. if (!is_highmem_idx(zone))
  1047. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1048. #endif
  1049. }
  1050. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1051. int nid)
  1052. {
  1053. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1054. }
  1055. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1056. static void init_reserved_page(unsigned long pfn)
  1057. {
  1058. pg_data_t *pgdat;
  1059. int nid, zid;
  1060. if (!early_page_uninitialised(pfn))
  1061. return;
  1062. nid = early_pfn_to_nid(pfn);
  1063. pgdat = NODE_DATA(nid);
  1064. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1065. struct zone *zone = &pgdat->node_zones[zid];
  1066. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1067. break;
  1068. }
  1069. __init_single_pfn(pfn, zid, nid);
  1070. }
  1071. #else
  1072. static inline void init_reserved_page(unsigned long pfn)
  1073. {
  1074. }
  1075. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1076. /*
  1077. * Initialised pages do not have PageReserved set. This function is
  1078. * called for each range allocated by the bootmem allocator and
  1079. * marks the pages PageReserved. The remaining valid pages are later
  1080. * sent to the buddy page allocator.
  1081. */
  1082. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1083. {
  1084. unsigned long start_pfn = PFN_DOWN(start);
  1085. unsigned long end_pfn = PFN_UP(end);
  1086. for (; start_pfn < end_pfn; start_pfn++) {
  1087. if (pfn_valid(start_pfn)) {
  1088. struct page *page = pfn_to_page(start_pfn);
  1089. init_reserved_page(start_pfn);
  1090. /* Avoid false-positive PageTail() */
  1091. INIT_LIST_HEAD(&page->lru);
  1092. SetPageReserved(page);
  1093. }
  1094. }
  1095. }
  1096. static void __free_pages_ok(struct page *page, unsigned int order)
  1097. {
  1098. unsigned long flags;
  1099. int migratetype;
  1100. unsigned long pfn = page_to_pfn(page);
  1101. if (!free_pages_prepare(page, order, true))
  1102. return;
  1103. migratetype = get_pfnblock_migratetype(page, pfn);
  1104. local_irq_save(flags);
  1105. __count_vm_events(PGFREE, 1 << order);
  1106. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1107. local_irq_restore(flags);
  1108. }
  1109. static void __free_pages_boot_core(struct page *page, unsigned int order)
  1110. {
  1111. unsigned int nr_pages = 1 << order;
  1112. struct page *p = page;
  1113. unsigned int loop;
  1114. prefetchw(p);
  1115. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1116. prefetchw(p + 1);
  1117. __ClearPageReserved(p);
  1118. set_page_count(p, 0);
  1119. }
  1120. __ClearPageReserved(p);
  1121. set_page_count(p, 0);
  1122. page_zone(page)->managed_pages += nr_pages;
  1123. set_page_refcounted(page);
  1124. __free_pages(page, order);
  1125. }
  1126. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1127. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1128. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1129. int __meminit early_pfn_to_nid(unsigned long pfn)
  1130. {
  1131. static DEFINE_SPINLOCK(early_pfn_lock);
  1132. int nid;
  1133. spin_lock(&early_pfn_lock);
  1134. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1135. if (nid < 0)
  1136. nid = first_online_node;
  1137. spin_unlock(&early_pfn_lock);
  1138. return nid;
  1139. }
  1140. #endif
  1141. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1142. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1143. struct mminit_pfnnid_cache *state)
  1144. {
  1145. int nid;
  1146. nid = __early_pfn_to_nid(pfn, state);
  1147. if (nid >= 0 && nid != node)
  1148. return false;
  1149. return true;
  1150. }
  1151. /* Only safe to use early in boot when initialisation is single-threaded */
  1152. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1153. {
  1154. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1155. }
  1156. #else
  1157. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1158. {
  1159. return true;
  1160. }
  1161. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1162. struct mminit_pfnnid_cache *state)
  1163. {
  1164. return true;
  1165. }
  1166. #endif
  1167. void __free_pages_bootmem(struct page *page, unsigned long pfn,
  1168. unsigned int order)
  1169. {
  1170. if (early_page_uninitialised(pfn))
  1171. return;
  1172. return __free_pages_boot_core(page, order);
  1173. }
  1174. /*
  1175. * Check that the whole (or subset of) a pageblock given by the interval of
  1176. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1177. * with the migration of free compaction scanner. The scanners then need to
  1178. * use only pfn_valid_within() check for arches that allow holes within
  1179. * pageblocks.
  1180. *
  1181. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1182. *
  1183. * It's possible on some configurations to have a setup like node0 node1 node0
  1184. * i.e. it's possible that all pages within a zones range of pages do not
  1185. * belong to a single zone. We assume that a border between node0 and node1
  1186. * can occur within a single pageblock, but not a node0 node1 node0
  1187. * interleaving within a single pageblock. It is therefore sufficient to check
  1188. * the first and last page of a pageblock and avoid checking each individual
  1189. * page in a pageblock.
  1190. */
  1191. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1192. unsigned long end_pfn, struct zone *zone)
  1193. {
  1194. struct page *start_page;
  1195. struct page *end_page;
  1196. /* end_pfn is one past the range we are checking */
  1197. end_pfn--;
  1198. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1199. return NULL;
  1200. start_page = pfn_to_page(start_pfn);
  1201. if (page_zone(start_page) != zone)
  1202. return NULL;
  1203. end_page = pfn_to_page(end_pfn);
  1204. /* This gives a shorter code than deriving page_zone(end_page) */
  1205. if (page_zone_id(start_page) != page_zone_id(end_page))
  1206. return NULL;
  1207. return start_page;
  1208. }
  1209. void set_zone_contiguous(struct zone *zone)
  1210. {
  1211. unsigned long block_start_pfn = zone->zone_start_pfn;
  1212. unsigned long block_end_pfn;
  1213. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1214. for (; block_start_pfn < zone_end_pfn(zone);
  1215. block_start_pfn = block_end_pfn,
  1216. block_end_pfn += pageblock_nr_pages) {
  1217. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1218. if (!__pageblock_pfn_to_page(block_start_pfn,
  1219. block_end_pfn, zone))
  1220. return;
  1221. }
  1222. /* We confirm that there is no hole */
  1223. zone->contiguous = true;
  1224. }
  1225. void clear_zone_contiguous(struct zone *zone)
  1226. {
  1227. zone->contiguous = false;
  1228. }
  1229. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1230. static void __init deferred_free_range(struct page *page,
  1231. unsigned long pfn, int nr_pages)
  1232. {
  1233. int i;
  1234. if (!page)
  1235. return;
  1236. /* Free a large naturally-aligned chunk if possible */
  1237. if (nr_pages == pageblock_nr_pages &&
  1238. (pfn & (pageblock_nr_pages - 1)) == 0) {
  1239. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1240. __free_pages_boot_core(page, pageblock_order);
  1241. return;
  1242. }
  1243. for (i = 0; i < nr_pages; i++, page++, pfn++) {
  1244. if ((pfn & (pageblock_nr_pages - 1)) == 0)
  1245. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1246. __free_pages_boot_core(page, 0);
  1247. }
  1248. }
  1249. /* Completion tracking for deferred_init_memmap() threads */
  1250. static atomic_t pgdat_init_n_undone __initdata;
  1251. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1252. static inline void __init pgdat_init_report_one_done(void)
  1253. {
  1254. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1255. complete(&pgdat_init_all_done_comp);
  1256. }
  1257. /* Initialise remaining memory on a node */
  1258. static int __init deferred_init_memmap(void *data)
  1259. {
  1260. pg_data_t *pgdat = data;
  1261. int nid = pgdat->node_id;
  1262. struct mminit_pfnnid_cache nid_init_state = { };
  1263. unsigned long start = jiffies;
  1264. unsigned long nr_pages = 0;
  1265. unsigned long walk_start, walk_end;
  1266. int i, zid;
  1267. struct zone *zone;
  1268. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1269. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1270. if (first_init_pfn == ULONG_MAX) {
  1271. pgdat_init_report_one_done();
  1272. return 0;
  1273. }
  1274. /* Bind memory initialisation thread to a local node if possible */
  1275. if (!cpumask_empty(cpumask))
  1276. set_cpus_allowed_ptr(current, cpumask);
  1277. /* Sanity check boundaries */
  1278. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1279. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1280. pgdat->first_deferred_pfn = ULONG_MAX;
  1281. /* Only the highest zone is deferred so find it */
  1282. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1283. zone = pgdat->node_zones + zid;
  1284. if (first_init_pfn < zone_end_pfn(zone))
  1285. break;
  1286. }
  1287. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1288. unsigned long pfn, end_pfn;
  1289. struct page *page = NULL;
  1290. struct page *free_base_page = NULL;
  1291. unsigned long free_base_pfn = 0;
  1292. int nr_to_free = 0;
  1293. end_pfn = min(walk_end, zone_end_pfn(zone));
  1294. pfn = first_init_pfn;
  1295. if (pfn < walk_start)
  1296. pfn = walk_start;
  1297. if (pfn < zone->zone_start_pfn)
  1298. pfn = zone->zone_start_pfn;
  1299. for (; pfn < end_pfn; pfn++) {
  1300. if (!pfn_valid_within(pfn))
  1301. goto free_range;
  1302. /*
  1303. * Ensure pfn_valid is checked every
  1304. * pageblock_nr_pages for memory holes
  1305. */
  1306. if ((pfn & (pageblock_nr_pages - 1)) == 0) {
  1307. if (!pfn_valid(pfn)) {
  1308. page = NULL;
  1309. goto free_range;
  1310. }
  1311. }
  1312. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1313. page = NULL;
  1314. goto free_range;
  1315. }
  1316. /* Minimise pfn page lookups and scheduler checks */
  1317. if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
  1318. page++;
  1319. } else {
  1320. nr_pages += nr_to_free;
  1321. deferred_free_range(free_base_page,
  1322. free_base_pfn, nr_to_free);
  1323. free_base_page = NULL;
  1324. free_base_pfn = nr_to_free = 0;
  1325. page = pfn_to_page(pfn);
  1326. cond_resched();
  1327. }
  1328. if (page->flags) {
  1329. VM_BUG_ON(page_zone(page) != zone);
  1330. goto free_range;
  1331. }
  1332. __init_single_page(page, pfn, zid, nid);
  1333. if (!free_base_page) {
  1334. free_base_page = page;
  1335. free_base_pfn = pfn;
  1336. nr_to_free = 0;
  1337. }
  1338. nr_to_free++;
  1339. /* Where possible, batch up pages for a single free */
  1340. continue;
  1341. free_range:
  1342. /* Free the current block of pages to allocator */
  1343. nr_pages += nr_to_free;
  1344. deferred_free_range(free_base_page, free_base_pfn,
  1345. nr_to_free);
  1346. free_base_page = NULL;
  1347. free_base_pfn = nr_to_free = 0;
  1348. }
  1349. /* Free the last block of pages to allocator */
  1350. nr_pages += nr_to_free;
  1351. deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
  1352. first_init_pfn = max(end_pfn, first_init_pfn);
  1353. }
  1354. /* Sanity check that the next zone really is unpopulated */
  1355. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1356. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1357. jiffies_to_msecs(jiffies - start));
  1358. pgdat_init_report_one_done();
  1359. return 0;
  1360. }
  1361. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1362. void __init page_alloc_init_late(void)
  1363. {
  1364. struct zone *zone;
  1365. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1366. int nid;
  1367. /* There will be num_node_state(N_MEMORY) threads */
  1368. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1369. for_each_node_state(nid, N_MEMORY) {
  1370. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1371. }
  1372. /* Block until all are initialised */
  1373. wait_for_completion(&pgdat_init_all_done_comp);
  1374. /* Reinit limits that are based on free pages after the kernel is up */
  1375. files_maxfiles_init();
  1376. #endif
  1377. #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
  1378. /* Discard memblock private memory */
  1379. memblock_discard();
  1380. #endif
  1381. for_each_populated_zone(zone)
  1382. set_zone_contiguous(zone);
  1383. }
  1384. #ifdef CONFIG_CMA
  1385. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1386. void __init init_cma_reserved_pageblock(struct page *page)
  1387. {
  1388. unsigned i = pageblock_nr_pages;
  1389. struct page *p = page;
  1390. do {
  1391. __ClearPageReserved(p);
  1392. set_page_count(p, 0);
  1393. } while (++p, --i);
  1394. set_pageblock_migratetype(page, MIGRATE_CMA);
  1395. if (pageblock_order >= MAX_ORDER) {
  1396. i = pageblock_nr_pages;
  1397. p = page;
  1398. do {
  1399. set_page_refcounted(p);
  1400. __free_pages(p, MAX_ORDER - 1);
  1401. p += MAX_ORDER_NR_PAGES;
  1402. } while (i -= MAX_ORDER_NR_PAGES);
  1403. } else {
  1404. set_page_refcounted(page);
  1405. __free_pages(page, pageblock_order);
  1406. }
  1407. adjust_managed_page_count(page, pageblock_nr_pages);
  1408. }
  1409. #endif
  1410. /*
  1411. * The order of subdivision here is critical for the IO subsystem.
  1412. * Please do not alter this order without good reasons and regression
  1413. * testing. Specifically, as large blocks of memory are subdivided,
  1414. * the order in which smaller blocks are delivered depends on the order
  1415. * they're subdivided in this function. This is the primary factor
  1416. * influencing the order in which pages are delivered to the IO
  1417. * subsystem according to empirical testing, and this is also justified
  1418. * by considering the behavior of a buddy system containing a single
  1419. * large block of memory acted on by a series of small allocations.
  1420. * This behavior is a critical factor in sglist merging's success.
  1421. *
  1422. * -- nyc
  1423. */
  1424. static inline void expand(struct zone *zone, struct page *page,
  1425. int low, int high, struct free_area *area,
  1426. int migratetype)
  1427. {
  1428. unsigned long size = 1 << high;
  1429. while (high > low) {
  1430. area--;
  1431. high--;
  1432. size >>= 1;
  1433. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1434. /*
  1435. * Mark as guard pages (or page), that will allow to
  1436. * merge back to allocator when buddy will be freed.
  1437. * Corresponding page table entries will not be touched,
  1438. * pages will stay not present in virtual address space
  1439. */
  1440. if (set_page_guard(zone, &page[size], high, migratetype))
  1441. continue;
  1442. list_add(&page[size].lru, &area->free_list[migratetype]);
  1443. area->nr_free++;
  1444. set_page_order(&page[size], high);
  1445. }
  1446. }
  1447. static void check_new_page_bad(struct page *page)
  1448. {
  1449. const char *bad_reason = NULL;
  1450. unsigned long bad_flags = 0;
  1451. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1452. bad_reason = "nonzero mapcount";
  1453. if (unlikely(page->mapping != NULL))
  1454. bad_reason = "non-NULL mapping";
  1455. if (unlikely(page_ref_count(page) != 0))
  1456. bad_reason = "nonzero _count";
  1457. if (unlikely(page->flags & __PG_HWPOISON)) {
  1458. bad_reason = "HWPoisoned (hardware-corrupted)";
  1459. bad_flags = __PG_HWPOISON;
  1460. /* Don't complain about hwpoisoned pages */
  1461. page_mapcount_reset(page); /* remove PageBuddy */
  1462. return;
  1463. }
  1464. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1465. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1466. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1467. }
  1468. #ifdef CONFIG_MEMCG
  1469. if (unlikely(page->mem_cgroup))
  1470. bad_reason = "page still charged to cgroup";
  1471. #endif
  1472. bad_page(page, bad_reason, bad_flags);
  1473. }
  1474. /*
  1475. * This page is about to be returned from the page allocator
  1476. */
  1477. static inline int check_new_page(struct page *page)
  1478. {
  1479. if (likely(page_expected_state(page,
  1480. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1481. return 0;
  1482. check_new_page_bad(page);
  1483. return 1;
  1484. }
  1485. static inline bool free_pages_prezeroed(void)
  1486. {
  1487. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1488. page_poisoning_enabled();
  1489. }
  1490. #ifdef CONFIG_DEBUG_VM
  1491. static bool check_pcp_refill(struct page *page)
  1492. {
  1493. return false;
  1494. }
  1495. static bool check_new_pcp(struct page *page)
  1496. {
  1497. return check_new_page(page);
  1498. }
  1499. #else
  1500. static bool check_pcp_refill(struct page *page)
  1501. {
  1502. return check_new_page(page);
  1503. }
  1504. static bool check_new_pcp(struct page *page)
  1505. {
  1506. return false;
  1507. }
  1508. #endif /* CONFIG_DEBUG_VM */
  1509. static bool check_new_pages(struct page *page, unsigned int order)
  1510. {
  1511. int i;
  1512. for (i = 0; i < (1 << order); i++) {
  1513. struct page *p = page + i;
  1514. if (unlikely(check_new_page(p)))
  1515. return true;
  1516. }
  1517. return false;
  1518. }
  1519. inline void post_alloc_hook(struct page *page, unsigned int order,
  1520. gfp_t gfp_flags)
  1521. {
  1522. set_page_private(page, 0);
  1523. set_page_refcounted(page);
  1524. arch_alloc_page(page, order);
  1525. kasan_alloc_pages(page, order);
  1526. kernel_map_pages(page, 1 << order, 1);
  1527. kernel_poison_pages(page, 1 << order, 1);
  1528. set_page_owner(page, order, gfp_flags);
  1529. }
  1530. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1531. unsigned int alloc_flags)
  1532. {
  1533. int i;
  1534. post_alloc_hook(page, order, gfp_flags);
  1535. if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
  1536. for (i = 0; i < (1 << order); i++)
  1537. clear_highpage(page + i);
  1538. if (order && (gfp_flags & __GFP_COMP))
  1539. prep_compound_page(page, order);
  1540. /*
  1541. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1542. * allocate the page. The expectation is that the caller is taking
  1543. * steps that will free more memory. The caller should avoid the page
  1544. * being used for !PFMEMALLOC purposes.
  1545. */
  1546. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1547. set_page_pfmemalloc(page);
  1548. else
  1549. clear_page_pfmemalloc(page);
  1550. }
  1551. /*
  1552. * Go through the free lists for the given migratetype and remove
  1553. * the smallest available page from the freelists
  1554. */
  1555. static inline
  1556. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1557. int migratetype)
  1558. {
  1559. unsigned int current_order;
  1560. struct free_area *area;
  1561. struct page *page;
  1562. /* Find a page of the appropriate size in the preferred list */
  1563. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1564. area = &(zone->free_area[current_order]);
  1565. page = list_first_entry_or_null(&area->free_list[migratetype],
  1566. struct page, lru);
  1567. if (!page)
  1568. continue;
  1569. list_del(&page->lru);
  1570. rmv_page_order(page);
  1571. area->nr_free--;
  1572. expand(zone, page, order, current_order, area, migratetype);
  1573. set_pcppage_migratetype(page, migratetype);
  1574. return page;
  1575. }
  1576. return NULL;
  1577. }
  1578. /*
  1579. * This array describes the order lists are fallen back to when
  1580. * the free lists for the desirable migrate type are depleted
  1581. */
  1582. static int fallbacks[MIGRATE_TYPES][4] = {
  1583. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1584. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1585. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1586. #ifdef CONFIG_CMA
  1587. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1588. #endif
  1589. #ifdef CONFIG_MEMORY_ISOLATION
  1590. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1591. #endif
  1592. };
  1593. int *get_migratetype_fallbacks(int mtype)
  1594. {
  1595. return fallbacks[mtype];
  1596. }
  1597. #ifdef CONFIG_CMA
  1598. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1599. unsigned int order)
  1600. {
  1601. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1602. }
  1603. #else
  1604. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1605. unsigned int order) { return NULL; }
  1606. #endif
  1607. /*
  1608. * Move the free pages in a range to the free lists of the requested type.
  1609. * Note that start_page and end_pages are not aligned on a pageblock
  1610. * boundary. If alignment is required, use move_freepages_block()
  1611. */
  1612. int move_freepages(struct zone *zone,
  1613. struct page *start_page, struct page *end_page,
  1614. int migratetype)
  1615. {
  1616. struct page *page;
  1617. unsigned int order;
  1618. int pages_moved = 0;
  1619. #ifndef CONFIG_HOLES_IN_ZONE
  1620. /*
  1621. * page_zone is not safe to call in this context when
  1622. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1623. * anyway as we check zone boundaries in move_freepages_block().
  1624. * Remove at a later date when no bug reports exist related to
  1625. * grouping pages by mobility
  1626. */
  1627. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1628. #endif
  1629. for (page = start_page; page <= end_page;) {
  1630. if (!pfn_valid_within(page_to_pfn(page))) {
  1631. page++;
  1632. continue;
  1633. }
  1634. /* Make sure we are not inadvertently changing nodes */
  1635. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1636. if (!PageBuddy(page)) {
  1637. page++;
  1638. continue;
  1639. }
  1640. order = page_order(page);
  1641. list_move(&page->lru,
  1642. &zone->free_area[order].free_list[migratetype]);
  1643. page += 1 << order;
  1644. pages_moved += 1 << order;
  1645. }
  1646. return pages_moved;
  1647. }
  1648. int move_freepages_block(struct zone *zone, struct page *page,
  1649. int migratetype)
  1650. {
  1651. unsigned long start_pfn, end_pfn;
  1652. struct page *start_page, *end_page;
  1653. start_pfn = page_to_pfn(page);
  1654. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1655. start_page = pfn_to_page(start_pfn);
  1656. end_page = start_page + pageblock_nr_pages - 1;
  1657. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1658. /* Do not cross zone boundaries */
  1659. if (!zone_spans_pfn(zone, start_pfn))
  1660. start_page = page;
  1661. if (!zone_spans_pfn(zone, end_pfn))
  1662. return 0;
  1663. return move_freepages(zone, start_page, end_page, migratetype);
  1664. }
  1665. static void change_pageblock_range(struct page *pageblock_page,
  1666. int start_order, int migratetype)
  1667. {
  1668. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1669. while (nr_pageblocks--) {
  1670. set_pageblock_migratetype(pageblock_page, migratetype);
  1671. pageblock_page += pageblock_nr_pages;
  1672. }
  1673. }
  1674. /*
  1675. * When we are falling back to another migratetype during allocation, try to
  1676. * steal extra free pages from the same pageblocks to satisfy further
  1677. * allocations, instead of polluting multiple pageblocks.
  1678. *
  1679. * If we are stealing a relatively large buddy page, it is likely there will
  1680. * be more free pages in the pageblock, so try to steal them all. For
  1681. * reclaimable and unmovable allocations, we steal regardless of page size,
  1682. * as fragmentation caused by those allocations polluting movable pageblocks
  1683. * is worse than movable allocations stealing from unmovable and reclaimable
  1684. * pageblocks.
  1685. */
  1686. static bool can_steal_fallback(unsigned int order, int start_mt)
  1687. {
  1688. /*
  1689. * Leaving this order check is intended, although there is
  1690. * relaxed order check in next check. The reason is that
  1691. * we can actually steal whole pageblock if this condition met,
  1692. * but, below check doesn't guarantee it and that is just heuristic
  1693. * so could be changed anytime.
  1694. */
  1695. if (order >= pageblock_order)
  1696. return true;
  1697. if (order >= pageblock_order / 2 ||
  1698. start_mt == MIGRATE_RECLAIMABLE ||
  1699. start_mt == MIGRATE_UNMOVABLE ||
  1700. page_group_by_mobility_disabled)
  1701. return true;
  1702. return false;
  1703. }
  1704. /*
  1705. * This function implements actual steal behaviour. If order is large enough,
  1706. * we can steal whole pageblock. If not, we first move freepages in this
  1707. * pageblock and check whether half of pages are moved or not. If half of
  1708. * pages are moved, we can change migratetype of pageblock and permanently
  1709. * use it's pages as requested migratetype in the future.
  1710. */
  1711. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1712. int start_type)
  1713. {
  1714. unsigned int current_order = page_order(page);
  1715. int pages;
  1716. /* Take ownership for orders >= pageblock_order */
  1717. if (current_order >= pageblock_order) {
  1718. change_pageblock_range(page, current_order, start_type);
  1719. return;
  1720. }
  1721. pages = move_freepages_block(zone, page, start_type);
  1722. /* Claim the whole block if over half of it is free */
  1723. if (pages >= (1 << (pageblock_order-1)) ||
  1724. page_group_by_mobility_disabled)
  1725. set_pageblock_migratetype(page, start_type);
  1726. }
  1727. /*
  1728. * Check whether there is a suitable fallback freepage with requested order.
  1729. * If only_stealable is true, this function returns fallback_mt only if
  1730. * we can steal other freepages all together. This would help to reduce
  1731. * fragmentation due to mixed migratetype pages in one pageblock.
  1732. */
  1733. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1734. int migratetype, bool only_stealable, bool *can_steal)
  1735. {
  1736. int i;
  1737. int fallback_mt;
  1738. if (area->nr_free == 0)
  1739. return -1;
  1740. *can_steal = false;
  1741. for (i = 0;; i++) {
  1742. fallback_mt = fallbacks[migratetype][i];
  1743. if (fallback_mt == MIGRATE_TYPES)
  1744. break;
  1745. if (list_empty(&area->free_list[fallback_mt]))
  1746. continue;
  1747. if (can_steal_fallback(order, migratetype))
  1748. *can_steal = true;
  1749. if (!only_stealable)
  1750. return fallback_mt;
  1751. if (*can_steal)
  1752. return fallback_mt;
  1753. }
  1754. return -1;
  1755. }
  1756. /*
  1757. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1758. * there are no empty page blocks that contain a page with a suitable order
  1759. */
  1760. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1761. unsigned int alloc_order)
  1762. {
  1763. int mt;
  1764. unsigned long max_managed, flags;
  1765. /*
  1766. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1767. * Check is race-prone but harmless.
  1768. */
  1769. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1770. if (zone->nr_reserved_highatomic >= max_managed)
  1771. return;
  1772. spin_lock_irqsave(&zone->lock, flags);
  1773. /* Recheck the nr_reserved_highatomic limit under the lock */
  1774. if (zone->nr_reserved_highatomic >= max_managed)
  1775. goto out_unlock;
  1776. /* Yoink! */
  1777. mt = get_pageblock_migratetype(page);
  1778. if (mt != MIGRATE_HIGHATOMIC &&
  1779. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1780. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1781. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1782. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1783. }
  1784. out_unlock:
  1785. spin_unlock_irqrestore(&zone->lock, flags);
  1786. }
  1787. /*
  1788. * Used when an allocation is about to fail under memory pressure. This
  1789. * potentially hurts the reliability of high-order allocations when under
  1790. * intense memory pressure but failed atomic allocations should be easier
  1791. * to recover from than an OOM.
  1792. *
  1793. * If @force is true, try to unreserve a pageblock even though highatomic
  1794. * pageblock is exhausted.
  1795. */
  1796. static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
  1797. bool force)
  1798. {
  1799. struct zonelist *zonelist = ac->zonelist;
  1800. unsigned long flags;
  1801. struct zoneref *z;
  1802. struct zone *zone;
  1803. struct page *page;
  1804. int order;
  1805. bool ret;
  1806. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1807. ac->nodemask) {
  1808. /*
  1809. * Preserve at least one pageblock unless memory pressure
  1810. * is really high.
  1811. */
  1812. if (!force && zone->nr_reserved_highatomic <=
  1813. pageblock_nr_pages)
  1814. continue;
  1815. spin_lock_irqsave(&zone->lock, flags);
  1816. for (order = 0; order < MAX_ORDER; order++) {
  1817. struct free_area *area = &(zone->free_area[order]);
  1818. page = list_first_entry_or_null(
  1819. &area->free_list[MIGRATE_HIGHATOMIC],
  1820. struct page, lru);
  1821. if (!page)
  1822. continue;
  1823. /*
  1824. * In page freeing path, migratetype change is racy so
  1825. * we can counter several free pages in a pageblock
  1826. * in this loop althoug we changed the pageblock type
  1827. * from highatomic to ac->migratetype. So we should
  1828. * adjust the count once.
  1829. */
  1830. if (get_pageblock_migratetype(page) ==
  1831. MIGRATE_HIGHATOMIC) {
  1832. /*
  1833. * It should never happen but changes to
  1834. * locking could inadvertently allow a per-cpu
  1835. * drain to add pages to MIGRATE_HIGHATOMIC
  1836. * while unreserving so be safe and watch for
  1837. * underflows.
  1838. */
  1839. zone->nr_reserved_highatomic -= min(
  1840. pageblock_nr_pages,
  1841. zone->nr_reserved_highatomic);
  1842. }
  1843. /*
  1844. * Convert to ac->migratetype and avoid the normal
  1845. * pageblock stealing heuristics. Minimally, the caller
  1846. * is doing the work and needs the pages. More
  1847. * importantly, if the block was always converted to
  1848. * MIGRATE_UNMOVABLE or another type then the number
  1849. * of pageblocks that cannot be completely freed
  1850. * may increase.
  1851. */
  1852. set_pageblock_migratetype(page, ac->migratetype);
  1853. ret = move_freepages_block(zone, page, ac->migratetype);
  1854. if (ret) {
  1855. spin_unlock_irqrestore(&zone->lock, flags);
  1856. return ret;
  1857. }
  1858. }
  1859. spin_unlock_irqrestore(&zone->lock, flags);
  1860. }
  1861. return false;
  1862. }
  1863. /* Remove an element from the buddy allocator from the fallback list */
  1864. static inline struct page *
  1865. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1866. {
  1867. struct free_area *area;
  1868. unsigned int current_order;
  1869. struct page *page;
  1870. int fallback_mt;
  1871. bool can_steal;
  1872. /* Find the largest possible block of pages in the other list */
  1873. for (current_order = MAX_ORDER-1;
  1874. current_order >= order && current_order <= MAX_ORDER-1;
  1875. --current_order) {
  1876. area = &(zone->free_area[current_order]);
  1877. fallback_mt = find_suitable_fallback(area, current_order,
  1878. start_migratetype, false, &can_steal);
  1879. if (fallback_mt == -1)
  1880. continue;
  1881. page = list_first_entry(&area->free_list[fallback_mt],
  1882. struct page, lru);
  1883. if (can_steal &&
  1884. get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
  1885. steal_suitable_fallback(zone, page, start_migratetype);
  1886. /* Remove the page from the freelists */
  1887. area->nr_free--;
  1888. list_del(&page->lru);
  1889. rmv_page_order(page);
  1890. expand(zone, page, order, current_order, area,
  1891. start_migratetype);
  1892. /*
  1893. * The pcppage_migratetype may differ from pageblock's
  1894. * migratetype depending on the decisions in
  1895. * find_suitable_fallback(). This is OK as long as it does not
  1896. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1897. * fallback only via special __rmqueue_cma_fallback() function
  1898. */
  1899. set_pcppage_migratetype(page, start_migratetype);
  1900. trace_mm_page_alloc_extfrag(page, order, current_order,
  1901. start_migratetype, fallback_mt);
  1902. return page;
  1903. }
  1904. return NULL;
  1905. }
  1906. /*
  1907. * Do the hard work of removing an element from the buddy allocator.
  1908. * Call me with the zone->lock already held.
  1909. */
  1910. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1911. int migratetype)
  1912. {
  1913. struct page *page;
  1914. page = __rmqueue_smallest(zone, order, migratetype);
  1915. if (unlikely(!page)) {
  1916. page = __rmqueue_fallback(zone, order, migratetype);
  1917. }
  1918. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1919. return page;
  1920. }
  1921. #ifdef CONFIG_CMA
  1922. static struct page *__rmqueue_cma(struct zone *zone, unsigned int order)
  1923. {
  1924. struct page *page = 0;
  1925. if (IS_ENABLED(CONFIG_CMA))
  1926. if (!zone->cma_alloc)
  1927. page = __rmqueue_cma_fallback(zone, order);
  1928. trace_mm_page_alloc_zone_locked(page, order, MIGRATE_CMA);
  1929. return page;
  1930. }
  1931. #else
  1932. static inline struct page *__rmqueue_cma(struct zone *zone, unsigned int order)
  1933. {
  1934. return NULL;
  1935. }
  1936. #endif
  1937. /*
  1938. * Obtain a specified number of elements from the buddy allocator, all under
  1939. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1940. * Returns the number of new pages which were placed at *list.
  1941. */
  1942. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1943. unsigned long count, struct list_head *list,
  1944. int migratetype, bool cold)
  1945. {
  1946. int i, alloced = 0;
  1947. spin_lock(&zone->lock);
  1948. for (i = 0; i < count; ++i) {
  1949. struct page *page;
  1950. /*
  1951. * If migrate type CMA is being requested only try to
  1952. * satisfy the request with CMA pages to try and increase
  1953. * CMA utlization.
  1954. */
  1955. if (is_migrate_cma(migratetype))
  1956. page = __rmqueue_cma(zone, order);
  1957. else
  1958. page = __rmqueue(zone, order, migratetype);
  1959. if (unlikely(page == NULL))
  1960. break;
  1961. if (unlikely(check_pcp_refill(page)))
  1962. continue;
  1963. /*
  1964. * Split buddy pages returned by expand() are received here
  1965. * in physical page order. The page is added to the callers and
  1966. * list and the list head then moves forward. From the callers
  1967. * perspective, the linked list is ordered by page number in
  1968. * some conditions. This is useful for IO devices that can
  1969. * merge IO requests if the physical pages are ordered
  1970. * properly.
  1971. */
  1972. if (likely(!cold))
  1973. list_add(&page->lru, list);
  1974. else
  1975. list_add_tail(&page->lru, list);
  1976. list = &page->lru;
  1977. alloced++;
  1978. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1979. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1980. -(1 << order));
  1981. }
  1982. /*
  1983. * i pages were removed from the buddy list even if some leak due
  1984. * to check_pcp_refill failing so adjust NR_FREE_PAGES based
  1985. * on i. Do not confuse with 'alloced' which is the number of
  1986. * pages added to the pcp list.
  1987. */
  1988. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1989. spin_unlock(&zone->lock);
  1990. return alloced;
  1991. }
  1992. /*
  1993. * Return the pcp list that corresponds to the migrate type if that list isn't
  1994. * empty.
  1995. * If the list is empty return NULL.
  1996. */
  1997. static struct list_head *get_populated_pcp_list(struct zone *zone,
  1998. unsigned int order, struct per_cpu_pages *pcp,
  1999. int migratetype, int cold)
  2000. {
  2001. struct list_head *list = &pcp->lists[migratetype];
  2002. if (list_empty(list)) {
  2003. pcp->count += rmqueue_bulk(zone, order,
  2004. pcp->batch, list,
  2005. migratetype, cold);
  2006. if (list_empty(list))
  2007. list = NULL;
  2008. }
  2009. return list;
  2010. }
  2011. #ifdef CONFIG_NUMA
  2012. /*
  2013. * Called from the vmstat counter updater to drain pagesets of this
  2014. * currently executing processor on remote nodes after they have
  2015. * expired.
  2016. *
  2017. * Note that this function must be called with the thread pinned to
  2018. * a single processor.
  2019. */
  2020. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  2021. {
  2022. unsigned long flags;
  2023. int to_drain, batch;
  2024. local_irq_save(flags);
  2025. batch = READ_ONCE(pcp->batch);
  2026. to_drain = min(pcp->count, batch);
  2027. if (to_drain > 0) {
  2028. free_pcppages_bulk(zone, to_drain, pcp);
  2029. pcp->count -= to_drain;
  2030. }
  2031. local_irq_restore(flags);
  2032. }
  2033. #endif
  2034. /*
  2035. * Drain pcplists of the indicated processor and zone.
  2036. *
  2037. * The processor must either be the current processor and the
  2038. * thread pinned to the current processor or a processor that
  2039. * is not online.
  2040. */
  2041. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  2042. {
  2043. unsigned long flags;
  2044. struct per_cpu_pageset *pset;
  2045. struct per_cpu_pages *pcp;
  2046. local_irq_save(flags);
  2047. pset = per_cpu_ptr(zone->pageset, cpu);
  2048. pcp = &pset->pcp;
  2049. if (pcp->count) {
  2050. free_pcppages_bulk(zone, pcp->count, pcp);
  2051. pcp->count = 0;
  2052. }
  2053. local_irq_restore(flags);
  2054. }
  2055. /*
  2056. * Drain pcplists of all zones on the indicated processor.
  2057. *
  2058. * The processor must either be the current processor and the
  2059. * thread pinned to the current processor or a processor that
  2060. * is not online.
  2061. */
  2062. static void drain_pages(unsigned int cpu)
  2063. {
  2064. struct zone *zone;
  2065. for_each_populated_zone(zone) {
  2066. drain_pages_zone(cpu, zone);
  2067. }
  2068. }
  2069. /*
  2070. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  2071. *
  2072. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  2073. * the single zone's pages.
  2074. */
  2075. void drain_local_pages(void *z)
  2076. {
  2077. struct zone *zone = (struct zone *)z;
  2078. int cpu = smp_processor_id();
  2079. if (zone)
  2080. drain_pages_zone(cpu, zone);
  2081. else
  2082. drain_pages(cpu);
  2083. }
  2084. /*
  2085. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  2086. *
  2087. * When zone parameter is non-NULL, spill just the single zone's pages.
  2088. *
  2089. * Note that this code is protected against sending an IPI to an offline
  2090. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  2091. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  2092. * nothing keeps CPUs from showing up after we populated the cpumask and
  2093. * before the call to on_each_cpu_mask().
  2094. */
  2095. void drain_all_pages(struct zone *zone)
  2096. {
  2097. int cpu;
  2098. /*
  2099. * Allocate in the BSS so we wont require allocation in
  2100. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  2101. */
  2102. static cpumask_t cpus_with_pcps;
  2103. /*
  2104. * We don't care about racing with CPU hotplug event
  2105. * as offline notification will cause the notified
  2106. * cpu to drain that CPU pcps and on_each_cpu_mask
  2107. * disables preemption as part of its processing
  2108. */
  2109. for_each_online_cpu(cpu) {
  2110. struct per_cpu_pageset *pcp;
  2111. struct zone *z;
  2112. bool has_pcps = false;
  2113. if (zone) {
  2114. pcp = per_cpu_ptr(zone->pageset, cpu);
  2115. if (pcp->pcp.count)
  2116. has_pcps = true;
  2117. } else {
  2118. for_each_populated_zone(z) {
  2119. pcp = per_cpu_ptr(z->pageset, cpu);
  2120. if (pcp->pcp.count) {
  2121. has_pcps = true;
  2122. break;
  2123. }
  2124. }
  2125. }
  2126. if (has_pcps)
  2127. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2128. else
  2129. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2130. }
  2131. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, zone, 1);
  2132. }
  2133. #ifdef CONFIG_HIBERNATION
  2134. void mark_free_pages(struct zone *zone)
  2135. {
  2136. unsigned long pfn, max_zone_pfn;
  2137. unsigned long flags;
  2138. unsigned int order, t;
  2139. struct page *page;
  2140. if (zone_is_empty(zone))
  2141. return;
  2142. spin_lock_irqsave(&zone->lock, flags);
  2143. max_zone_pfn = zone_end_pfn(zone);
  2144. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2145. if (pfn_valid(pfn)) {
  2146. page = pfn_to_page(pfn);
  2147. if (page_zone(page) != zone)
  2148. continue;
  2149. if (!swsusp_page_is_forbidden(page))
  2150. swsusp_unset_page_free(page);
  2151. }
  2152. for_each_migratetype_order(order, t) {
  2153. list_for_each_entry(page,
  2154. &zone->free_area[order].free_list[t], lru) {
  2155. unsigned long i;
  2156. pfn = page_to_pfn(page);
  2157. for (i = 0; i < (1UL << order); i++)
  2158. swsusp_set_page_free(pfn_to_page(pfn + i));
  2159. }
  2160. }
  2161. spin_unlock_irqrestore(&zone->lock, flags);
  2162. }
  2163. #endif /* CONFIG_PM */
  2164. /*
  2165. * Free a 0-order page
  2166. * cold == true ? free a cold page : free a hot page
  2167. */
  2168. void free_hot_cold_page(struct page *page, bool cold)
  2169. {
  2170. struct zone *zone = page_zone(page);
  2171. struct per_cpu_pages *pcp;
  2172. unsigned long flags;
  2173. unsigned long pfn = page_to_pfn(page);
  2174. int migratetype;
  2175. if (!free_pcp_prepare(page))
  2176. return;
  2177. migratetype = get_pfnblock_migratetype(page, pfn);
  2178. set_pcppage_migratetype(page, migratetype);
  2179. local_irq_save(flags);
  2180. __count_vm_event(PGFREE);
  2181. /*
  2182. * We only track unmovable, reclaimable and movable on pcp lists.
  2183. * Free ISOLATE pages back to the allocator because they are being
  2184. * offlined but treat RESERVE as movable pages so we can get those
  2185. * areas back if necessary. Otherwise, we may have to free
  2186. * excessively into the page allocator
  2187. */
  2188. if (migratetype >= MIGRATE_PCPTYPES) {
  2189. if (unlikely(is_migrate_isolate(migratetype))) {
  2190. free_one_page(zone, page, pfn, 0, migratetype);
  2191. goto out;
  2192. }
  2193. migratetype = MIGRATE_MOVABLE;
  2194. }
  2195. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2196. if (!cold)
  2197. list_add(&page->lru, &pcp->lists[migratetype]);
  2198. else
  2199. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  2200. pcp->count++;
  2201. if (pcp->count >= pcp->high) {
  2202. unsigned long batch = READ_ONCE(pcp->batch);
  2203. free_pcppages_bulk(zone, batch, pcp);
  2204. pcp->count -= batch;
  2205. }
  2206. out:
  2207. local_irq_restore(flags);
  2208. }
  2209. /*
  2210. * Free a list of 0-order pages
  2211. */
  2212. void free_hot_cold_page_list(struct list_head *list, bool cold)
  2213. {
  2214. struct page *page, *next;
  2215. list_for_each_entry_safe(page, next, list, lru) {
  2216. trace_mm_page_free_batched(page, cold);
  2217. free_hot_cold_page(page, cold);
  2218. }
  2219. }
  2220. /*
  2221. * split_page takes a non-compound higher-order page, and splits it into
  2222. * n (1<<order) sub-pages: page[0..n]
  2223. * Each sub-page must be freed individually.
  2224. *
  2225. * Note: this is probably too low level an operation for use in drivers.
  2226. * Please consult with lkml before using this in your driver.
  2227. */
  2228. void split_page(struct page *page, unsigned int order)
  2229. {
  2230. int i;
  2231. VM_BUG_ON_PAGE(PageCompound(page), page);
  2232. VM_BUG_ON_PAGE(!page_count(page), page);
  2233. #ifdef CONFIG_KMEMCHECK
  2234. /*
  2235. * Split shadow pages too, because free(page[0]) would
  2236. * otherwise free the whole shadow.
  2237. */
  2238. if (kmemcheck_page_is_tracked(page))
  2239. split_page(virt_to_page(page[0].shadow), order);
  2240. #endif
  2241. for (i = 1; i < (1 << order); i++)
  2242. set_page_refcounted(page + i);
  2243. split_page_owner(page, order);
  2244. }
  2245. EXPORT_SYMBOL_GPL(split_page);
  2246. int __isolate_free_page(struct page *page, unsigned int order)
  2247. {
  2248. unsigned long watermark;
  2249. struct zone *zone;
  2250. int mt;
  2251. BUG_ON(!PageBuddy(page));
  2252. zone = page_zone(page);
  2253. mt = get_pageblock_migratetype(page);
  2254. if (!is_migrate_isolate(mt)) {
  2255. /*
  2256. * Obey watermarks as if the page was being allocated. We can
  2257. * emulate a high-order watermark check with a raised order-0
  2258. * watermark, because we already know our high-order page
  2259. * exists.
  2260. */
  2261. watermark = min_wmark_pages(zone) + (1UL << order);
  2262. if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
  2263. return 0;
  2264. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2265. }
  2266. /* Remove page from free list */
  2267. list_del(&page->lru);
  2268. zone->free_area[order].nr_free--;
  2269. rmv_page_order(page);
  2270. /*
  2271. * Set the pageblock if the isolated page is at least half of a
  2272. * pageblock
  2273. */
  2274. if (order >= pageblock_order - 1) {
  2275. struct page *endpage = page + (1 << order) - 1;
  2276. for (; page < endpage; page += pageblock_nr_pages) {
  2277. int mt = get_pageblock_migratetype(page);
  2278. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
  2279. && mt != MIGRATE_HIGHATOMIC)
  2280. set_pageblock_migratetype(page,
  2281. MIGRATE_MOVABLE);
  2282. }
  2283. }
  2284. return 1UL << order;
  2285. }
  2286. /*
  2287. * Update NUMA hit/miss statistics
  2288. *
  2289. * Must be called with interrupts disabled.
  2290. */
  2291. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
  2292. gfp_t flags)
  2293. {
  2294. #ifdef CONFIG_NUMA
  2295. enum zone_stat_item local_stat = NUMA_LOCAL;
  2296. if (z->node != numa_node_id())
  2297. local_stat = NUMA_OTHER;
  2298. if (z->node == preferred_zone->node)
  2299. __inc_zone_state(z, NUMA_HIT);
  2300. else {
  2301. __inc_zone_state(z, NUMA_MISS);
  2302. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  2303. }
  2304. __inc_zone_state(z, local_stat);
  2305. #endif
  2306. }
  2307. /*
  2308. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2309. */
  2310. static inline
  2311. struct page *buffered_rmqueue(struct zone *preferred_zone,
  2312. struct zone *zone, unsigned int order,
  2313. gfp_t gfp_flags, unsigned int alloc_flags,
  2314. int migratetype)
  2315. {
  2316. unsigned long flags;
  2317. struct page *page = NULL;
  2318. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2319. if (likely(order == 0)) {
  2320. struct per_cpu_pages *pcp;
  2321. struct list_head *list = NULL;
  2322. local_irq_save(flags);
  2323. do {
  2324. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2325. /* First try to get CMA pages */
  2326. if (migratetype == MIGRATE_MOVABLE)
  2327. list = get_populated_pcp_list(zone, 0, pcp,
  2328. get_cma_migrate_type(), cold);
  2329. if (list == NULL) {
  2330. /*
  2331. * Either CMA is not suitable or there are no
  2332. * free CMA pages.
  2333. */
  2334. list = get_populated_pcp_list(zone, 0, pcp,
  2335. migratetype, cold);
  2336. if (unlikely(list == NULL) ||
  2337. unlikely(list_empty(list)))
  2338. goto failed;
  2339. }
  2340. if (cold)
  2341. page = list_last_entry(list, struct page, lru);
  2342. else
  2343. page = list_first_entry(list, struct page, lru);
  2344. list_del(&page->lru);
  2345. pcp->count--;
  2346. } while (check_new_pcp(page));
  2347. } else {
  2348. /*
  2349. * We most definitely don't want callers attempting to
  2350. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2351. */
  2352. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2353. spin_lock_irqsave(&zone->lock, flags);
  2354. do {
  2355. page = NULL;
  2356. if (alloc_flags & ALLOC_HARDER) {
  2357. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2358. if (page)
  2359. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2360. }
  2361. if (!page && migratetype == MIGRATE_MOVABLE &&
  2362. gfp_flags & __GFP_CMA)
  2363. page = __rmqueue_cma(zone, order);
  2364. if (!page)
  2365. page = __rmqueue(zone, order, migratetype);
  2366. } while (page && check_new_pages(page, order));
  2367. spin_unlock(&zone->lock);
  2368. if (!page)
  2369. goto failed;
  2370. __mod_zone_freepage_state(zone, -(1 << order),
  2371. get_pcppage_migratetype(page));
  2372. }
  2373. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2374. zone_statistics(preferred_zone, zone, gfp_flags);
  2375. local_irq_restore(flags);
  2376. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  2377. return page;
  2378. failed:
  2379. local_irq_restore(flags);
  2380. return NULL;
  2381. }
  2382. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2383. static struct {
  2384. struct fault_attr attr;
  2385. bool ignore_gfp_highmem;
  2386. bool ignore_gfp_reclaim;
  2387. u32 min_order;
  2388. } fail_page_alloc = {
  2389. .attr = FAULT_ATTR_INITIALIZER,
  2390. .ignore_gfp_reclaim = true,
  2391. .ignore_gfp_highmem = true,
  2392. .min_order = 1,
  2393. };
  2394. static int __init setup_fail_page_alloc(char *str)
  2395. {
  2396. return setup_fault_attr(&fail_page_alloc.attr, str);
  2397. }
  2398. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2399. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2400. {
  2401. if (order < fail_page_alloc.min_order)
  2402. return false;
  2403. if (gfp_mask & __GFP_NOFAIL)
  2404. return false;
  2405. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2406. return false;
  2407. if (fail_page_alloc.ignore_gfp_reclaim &&
  2408. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2409. return false;
  2410. return should_fail(&fail_page_alloc.attr, 1 << order);
  2411. }
  2412. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2413. static int __init fail_page_alloc_debugfs(void)
  2414. {
  2415. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2416. struct dentry *dir;
  2417. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2418. &fail_page_alloc.attr);
  2419. if (IS_ERR(dir))
  2420. return PTR_ERR(dir);
  2421. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2422. &fail_page_alloc.ignore_gfp_reclaim))
  2423. goto fail;
  2424. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2425. &fail_page_alloc.ignore_gfp_highmem))
  2426. goto fail;
  2427. if (!debugfs_create_u32("min-order", mode, dir,
  2428. &fail_page_alloc.min_order))
  2429. goto fail;
  2430. return 0;
  2431. fail:
  2432. debugfs_remove_recursive(dir);
  2433. return -ENOMEM;
  2434. }
  2435. late_initcall(fail_page_alloc_debugfs);
  2436. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2437. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2438. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2439. {
  2440. return false;
  2441. }
  2442. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2443. /*
  2444. * Return true if free base pages are above 'mark'. For high-order checks it
  2445. * will return true of the order-0 watermark is reached and there is at least
  2446. * one free page of a suitable size. Checking now avoids taking the zone lock
  2447. * to check in the allocation paths if no pages are free.
  2448. */
  2449. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2450. int classzone_idx, unsigned int alloc_flags,
  2451. long free_pages)
  2452. {
  2453. long min = mark;
  2454. int o;
  2455. const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
  2456. /* free_pages may go negative - that's OK */
  2457. free_pages -= (1 << order) - 1;
  2458. if (alloc_flags & ALLOC_HIGH)
  2459. min -= min / 2;
  2460. /*
  2461. * If the caller does not have rights to ALLOC_HARDER then subtract
  2462. * the high-atomic reserves. This will over-estimate the size of the
  2463. * atomic reserve but it avoids a search.
  2464. */
  2465. if (likely(!alloc_harder))
  2466. free_pages -= z->nr_reserved_highatomic;
  2467. else
  2468. min -= min / 4;
  2469. #ifdef CONFIG_CMA
  2470. /* If allocation can't use CMA areas don't use free CMA pages */
  2471. if (!(alloc_flags & ALLOC_CMA))
  2472. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2473. #endif
  2474. /*
  2475. * Check watermarks for an order-0 allocation request. If these
  2476. * are not met, then a high-order request also cannot go ahead
  2477. * even if a suitable page happened to be free.
  2478. */
  2479. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2480. return false;
  2481. /* If this is an order-0 request then the watermark is fine */
  2482. if (!order)
  2483. return true;
  2484. /* For a high-order request, check at least one suitable page is free */
  2485. for (o = order; o < MAX_ORDER; o++) {
  2486. struct free_area *area = &z->free_area[o];
  2487. int mt;
  2488. if (!area->nr_free)
  2489. continue;
  2490. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2491. #ifdef CONFIG_CMA
  2492. /*
  2493. * Note that this check is needed only
  2494. * when MIGRATE_CMA < MIGRATE_PCPTYPES.
  2495. */
  2496. if (mt == MIGRATE_CMA)
  2497. continue;
  2498. #endif
  2499. if (!list_empty(&area->free_list[mt]))
  2500. return true;
  2501. }
  2502. #ifdef CONFIG_CMA
  2503. if ((alloc_flags & ALLOC_CMA) &&
  2504. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2505. return true;
  2506. }
  2507. #endif
  2508. if (alloc_harder &&
  2509. !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
  2510. return true;
  2511. }
  2512. return false;
  2513. }
  2514. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2515. int classzone_idx, unsigned int alloc_flags)
  2516. {
  2517. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2518. zone_page_state(z, NR_FREE_PAGES));
  2519. }
  2520. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2521. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2522. {
  2523. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2524. long cma_pages = 0;
  2525. #ifdef CONFIG_CMA
  2526. /* If allocation can't use CMA areas don't use free CMA pages */
  2527. if (!(alloc_flags & ALLOC_CMA))
  2528. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2529. #endif
  2530. /*
  2531. * Fast check for order-0 only. If this fails then the reserves
  2532. * need to be calculated. There is a corner case where the check
  2533. * passes but only the high-order atomic reserve are free. If
  2534. * the caller is !atomic then it'll uselessly search the free
  2535. * list. That corner case is then slower but it is harmless.
  2536. */
  2537. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2538. return true;
  2539. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2540. free_pages);
  2541. }
  2542. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2543. unsigned long mark, int classzone_idx)
  2544. {
  2545. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2546. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2547. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2548. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2549. free_pages);
  2550. }
  2551. #ifdef CONFIG_NUMA
  2552. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2553. {
  2554. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
  2555. RECLAIM_DISTANCE;
  2556. }
  2557. #else /* CONFIG_NUMA */
  2558. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2559. {
  2560. return true;
  2561. }
  2562. #endif /* CONFIG_NUMA */
  2563. /*
  2564. * get_page_from_freelist goes through the zonelist trying to allocate
  2565. * a page.
  2566. */
  2567. static struct page *
  2568. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2569. const struct alloc_context *ac)
  2570. {
  2571. struct zoneref *z = ac->preferred_zoneref;
  2572. struct zone *zone;
  2573. struct pglist_data *last_pgdat_dirty_limit = NULL;
  2574. /*
  2575. * Scan zonelist, looking for a zone with enough free.
  2576. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2577. */
  2578. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2579. ac->nodemask) {
  2580. struct page *page;
  2581. unsigned long mark;
  2582. if (cpusets_enabled() &&
  2583. (alloc_flags & ALLOC_CPUSET) &&
  2584. !__cpuset_zone_allowed(zone, gfp_mask))
  2585. continue;
  2586. /*
  2587. * When allocating a page cache page for writing, we
  2588. * want to get it from a node that is within its dirty
  2589. * limit, such that no single node holds more than its
  2590. * proportional share of globally allowed dirty pages.
  2591. * The dirty limits take into account the node's
  2592. * lowmem reserves and high watermark so that kswapd
  2593. * should be able to balance it without having to
  2594. * write pages from its LRU list.
  2595. *
  2596. * XXX: For now, allow allocations to potentially
  2597. * exceed the per-node dirty limit in the slowpath
  2598. * (spread_dirty_pages unset) before going into reclaim,
  2599. * which is important when on a NUMA setup the allowed
  2600. * nodes are together not big enough to reach the
  2601. * global limit. The proper fix for these situations
  2602. * will require awareness of nodes in the
  2603. * dirty-throttling and the flusher threads.
  2604. */
  2605. if (ac->spread_dirty_pages) {
  2606. if (last_pgdat_dirty_limit == zone->zone_pgdat)
  2607. continue;
  2608. if (!node_dirty_ok(zone->zone_pgdat)) {
  2609. last_pgdat_dirty_limit = zone->zone_pgdat;
  2610. continue;
  2611. }
  2612. }
  2613. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2614. if (!zone_watermark_fast(zone, order, mark,
  2615. ac_classzone_idx(ac), alloc_flags)) {
  2616. int ret;
  2617. /* Checked here to keep the fast path fast */
  2618. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2619. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2620. goto try_this_zone;
  2621. if (node_reclaim_mode == 0 ||
  2622. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2623. continue;
  2624. ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
  2625. switch (ret) {
  2626. case NODE_RECLAIM_NOSCAN:
  2627. /* did not scan */
  2628. continue;
  2629. case NODE_RECLAIM_FULL:
  2630. /* scanned but unreclaimable */
  2631. continue;
  2632. default:
  2633. /* did we reclaim enough */
  2634. if (zone_watermark_ok(zone, order, mark,
  2635. ac_classzone_idx(ac), alloc_flags))
  2636. goto try_this_zone;
  2637. continue;
  2638. }
  2639. }
  2640. try_this_zone:
  2641. page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
  2642. gfp_mask, alloc_flags, ac->migratetype);
  2643. if (page) {
  2644. prep_new_page(page, order, gfp_mask, alloc_flags);
  2645. /*
  2646. * If this is a high-order atomic allocation then check
  2647. * if the pageblock should be reserved for the future
  2648. */
  2649. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2650. reserve_highatomic_pageblock(page, zone, order);
  2651. return page;
  2652. }
  2653. }
  2654. return NULL;
  2655. }
  2656. /*
  2657. * Large machines with many possible nodes should not always dump per-node
  2658. * meminfo in irq context.
  2659. */
  2660. static inline bool should_suppress_show_mem(void)
  2661. {
  2662. bool ret = false;
  2663. #if NODES_SHIFT > 8
  2664. ret = in_interrupt();
  2665. #endif
  2666. return ret;
  2667. }
  2668. static void warn_alloc_show_mem(gfp_t gfp_mask)
  2669. {
  2670. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2671. static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
  2672. if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
  2673. return;
  2674. /*
  2675. * This documents exceptions given to allocations in certain
  2676. * contexts that are allowed to allocate outside current's set
  2677. * of allowed nodes.
  2678. */
  2679. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2680. if (test_thread_flag(TIF_MEMDIE) ||
  2681. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2682. filter &= ~SHOW_MEM_FILTER_NODES;
  2683. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2684. filter &= ~SHOW_MEM_FILTER_NODES;
  2685. show_mem(filter);
  2686. }
  2687. void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
  2688. {
  2689. struct va_format vaf;
  2690. va_list args;
  2691. static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
  2692. DEFAULT_RATELIMIT_BURST);
  2693. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2694. debug_guardpage_minorder() > 0)
  2695. return;
  2696. pr_warn("%s: ", current->comm);
  2697. va_start(args, fmt);
  2698. vaf.fmt = fmt;
  2699. vaf.va = &args;
  2700. pr_cont("%pV", &vaf);
  2701. va_end(args);
  2702. pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
  2703. dump_stack();
  2704. warn_alloc_show_mem(gfp_mask);
  2705. }
  2706. static inline struct page *
  2707. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2708. const struct alloc_context *ac, unsigned long *did_some_progress)
  2709. {
  2710. struct oom_control oc = {
  2711. .zonelist = ac->zonelist,
  2712. .nodemask = ac->nodemask,
  2713. .memcg = NULL,
  2714. .gfp_mask = gfp_mask,
  2715. .order = order,
  2716. };
  2717. struct page *page;
  2718. *did_some_progress = 0;
  2719. /*
  2720. * Acquire the oom lock. If that fails, somebody else is
  2721. * making progress for us.
  2722. */
  2723. if (!mutex_trylock(&oom_lock)) {
  2724. *did_some_progress = 1;
  2725. schedule_timeout_uninterruptible(1);
  2726. return NULL;
  2727. }
  2728. /*
  2729. * Go through the zonelist yet one more time, keep very high watermark
  2730. * here, this is only to catch a parallel oom killing, we must fail if
  2731. * we're still under heavy pressure.
  2732. */
  2733. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2734. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2735. if (page)
  2736. goto out;
  2737. if (!(gfp_mask & __GFP_NOFAIL)) {
  2738. /* Coredumps can quickly deplete all memory reserves */
  2739. if (current->flags & PF_DUMPCORE)
  2740. goto out;
  2741. /* The OOM killer will not help higher order allocs */
  2742. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2743. goto out;
  2744. /* The OOM killer does not needlessly kill tasks for lowmem */
  2745. if (ac->high_zoneidx < ZONE_NORMAL)
  2746. goto out;
  2747. if (pm_suspended_storage())
  2748. goto out;
  2749. /*
  2750. * XXX: GFP_NOFS allocations should rather fail than rely on
  2751. * other request to make a forward progress.
  2752. * We are in an unfortunate situation where out_of_memory cannot
  2753. * do much for this context but let's try it to at least get
  2754. * access to memory reserved if the current task is killed (see
  2755. * out_of_memory). Once filesystems are ready to handle allocation
  2756. * failures more gracefully we should just bail out here.
  2757. */
  2758. /* The OOM killer may not free memory on a specific node */
  2759. if (gfp_mask & __GFP_THISNODE)
  2760. goto out;
  2761. }
  2762. /* Exhausted what can be done so it's blamo time */
  2763. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2764. *did_some_progress = 1;
  2765. if (gfp_mask & __GFP_NOFAIL) {
  2766. page = get_page_from_freelist(gfp_mask, order,
  2767. ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
  2768. /*
  2769. * fallback to ignore cpuset restriction if our nodes
  2770. * are depleted
  2771. */
  2772. if (!page)
  2773. page = get_page_from_freelist(gfp_mask, order,
  2774. ALLOC_NO_WATERMARKS, ac);
  2775. }
  2776. }
  2777. out:
  2778. mutex_unlock(&oom_lock);
  2779. return page;
  2780. }
  2781. /*
  2782. * Maximum number of compaction retries wit a progress before OOM
  2783. * killer is consider as the only way to move forward.
  2784. */
  2785. #define MAX_COMPACT_RETRIES 16
  2786. #ifdef CONFIG_COMPACTION
  2787. /* Try memory compaction for high-order allocations before reclaim */
  2788. static struct page *
  2789. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2790. unsigned int alloc_flags, const struct alloc_context *ac,
  2791. enum compact_priority prio, enum compact_result *compact_result)
  2792. {
  2793. struct page *page;
  2794. unsigned long pflags;
  2795. unsigned int noreclaim_flag = current->flags & PF_MEMALLOC;
  2796. if (!order)
  2797. return NULL;
  2798. psi_memstall_enter(&pflags);
  2799. current->flags |= PF_MEMALLOC;
  2800. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2801. prio);
  2802. current->flags = (current->flags & ~PF_MEMALLOC) | noreclaim_flag;
  2803. psi_memstall_leave(&pflags);
  2804. if (*compact_result <= COMPACT_INACTIVE)
  2805. return NULL;
  2806. /*
  2807. * At least in one zone compaction wasn't deferred or skipped, so let's
  2808. * count a compaction stall
  2809. */
  2810. count_vm_event(COMPACTSTALL);
  2811. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2812. if (page) {
  2813. struct zone *zone = page_zone(page);
  2814. zone->compact_blockskip_flush = false;
  2815. compaction_defer_reset(zone, order, true);
  2816. count_vm_event(COMPACTSUCCESS);
  2817. return page;
  2818. }
  2819. /*
  2820. * It's bad if compaction run occurs and fails. The most likely reason
  2821. * is that pages exist, but not enough to satisfy watermarks.
  2822. */
  2823. count_vm_event(COMPACTFAIL);
  2824. cond_resched();
  2825. return NULL;
  2826. }
  2827. #ifdef CONFIG_ANDROID_LOW_MEMORY_KILLER
  2828. static inline bool
  2829. should_compact_lmk_retry(struct alloc_context *ac, int order, int alloc_flags)
  2830. {
  2831. struct zone *zone;
  2832. struct zoneref *z;
  2833. /* Let costly order requests check for compaction progress */
  2834. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2835. return false;
  2836. /*
  2837. * For (0 < order < PAGE_ALLOC_COSTLY_ORDER) allow the shrinkers
  2838. * to run and free up memory. Do not let these allocations fail
  2839. * if shrinkers can free up memory. This is similar to
  2840. * should_compact_retry implementation for !CONFIG_COMPACTION.
  2841. */
  2842. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2843. ac->high_zoneidx, ac->nodemask) {
  2844. unsigned long available;
  2845. available = zone_reclaimable_pages(zone);
  2846. available +=
  2847. zone_page_state_snapshot(zone, NR_FREE_PAGES);
  2848. if (__zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  2849. ac_classzone_idx(ac), alloc_flags, available))
  2850. return true;
  2851. }
  2852. return false;
  2853. }
  2854. #else
  2855. static inline bool
  2856. should_compact_lmk_retry(struct alloc_context *ac, int order, int alloc_flags)
  2857. {
  2858. return false;
  2859. }
  2860. #endif
  2861. static inline bool
  2862. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2863. enum compact_result compact_result,
  2864. enum compact_priority *compact_priority,
  2865. int *compaction_retries)
  2866. {
  2867. int max_retries = MAX_COMPACT_RETRIES;
  2868. int min_priority;
  2869. if (!order)
  2870. return false;
  2871. if (should_compact_lmk_retry(ac, order, alloc_flags))
  2872. return true;
  2873. if (compaction_made_progress(compact_result))
  2874. (*compaction_retries)++;
  2875. /*
  2876. * compaction considers all the zone as desperately out of memory
  2877. * so it doesn't really make much sense to retry except when the
  2878. * failure could be caused by insufficient priority
  2879. */
  2880. if (compaction_failed(compact_result))
  2881. goto check_priority;
  2882. /*
  2883. * make sure the compaction wasn't deferred or didn't bail out early
  2884. * due to locks contention before we declare that we should give up.
  2885. * But do not retry if the given zonelist is not suitable for
  2886. * compaction.
  2887. */
  2888. if (compaction_withdrawn(compact_result))
  2889. return compaction_zonelist_suitable(ac, order, alloc_flags);
  2890. /*
  2891. * !costly requests are much more important than __GFP_REPEAT
  2892. * costly ones because they are de facto nofail and invoke OOM
  2893. * killer to move on while costly can fail and users are ready
  2894. * to cope with that. 1/4 retries is rather arbitrary but we
  2895. * would need much more detailed feedback from compaction to
  2896. * make a better decision.
  2897. */
  2898. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2899. max_retries /= 4;
  2900. if (*compaction_retries <= max_retries)
  2901. return true;
  2902. /*
  2903. * Make sure there are attempts at the highest priority if we exhausted
  2904. * all retries or failed at the lower priorities.
  2905. */
  2906. check_priority:
  2907. min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
  2908. MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
  2909. if (*compact_priority > min_priority) {
  2910. (*compact_priority)--;
  2911. *compaction_retries = 0;
  2912. return true;
  2913. }
  2914. return false;
  2915. }
  2916. #else
  2917. static inline struct page *
  2918. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2919. unsigned int alloc_flags, const struct alloc_context *ac,
  2920. enum compact_priority prio, enum compact_result *compact_result)
  2921. {
  2922. *compact_result = COMPACT_SKIPPED;
  2923. return NULL;
  2924. }
  2925. static inline bool
  2926. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  2927. enum compact_result compact_result,
  2928. enum compact_priority *compact_priority,
  2929. int *compaction_retries)
  2930. {
  2931. struct zone *zone;
  2932. struct zoneref *z;
  2933. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  2934. return false;
  2935. /*
  2936. * There are setups with compaction disabled which would prefer to loop
  2937. * inside the allocator rather than hit the oom killer prematurely.
  2938. * Let's give them a good hope and keep retrying while the order-0
  2939. * watermarks are OK.
  2940. */
  2941. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2942. ac->nodemask) {
  2943. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  2944. ac_classzone_idx(ac), alloc_flags))
  2945. return true;
  2946. }
  2947. return false;
  2948. }
  2949. #endif /* CONFIG_COMPACTION */
  2950. /* Perform direct synchronous page reclaim */
  2951. static int
  2952. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2953. const struct alloc_context *ac)
  2954. {
  2955. struct reclaim_state reclaim_state;
  2956. int progress;
  2957. unsigned long pflags;
  2958. cond_resched();
  2959. /* We now go into synchronous reclaim */
  2960. cpuset_memory_pressure_bump();
  2961. psi_memstall_enter(&pflags);
  2962. current->flags |= PF_MEMALLOC;
  2963. lockdep_set_current_reclaim_state(gfp_mask);
  2964. reclaim_state.reclaimed_slab = 0;
  2965. current->reclaim_state = &reclaim_state;
  2966. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2967. ac->nodemask);
  2968. current->reclaim_state = NULL;
  2969. lockdep_clear_current_reclaim_state();
  2970. current->flags &= ~PF_MEMALLOC;
  2971. psi_memstall_leave(&pflags);
  2972. cond_resched();
  2973. return progress;
  2974. }
  2975. /* The really slow allocator path where we enter direct reclaim */
  2976. static inline struct page *
  2977. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2978. unsigned int alloc_flags, const struct alloc_context *ac,
  2979. unsigned long *did_some_progress)
  2980. {
  2981. struct page *page = NULL;
  2982. bool drained = false;
  2983. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2984. if (unlikely(!(*did_some_progress)))
  2985. return NULL;
  2986. retry:
  2987. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2988. /*
  2989. * If an allocation failed after direct reclaim, it could be because
  2990. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2991. * Shrink them them and try again
  2992. */
  2993. if (!page && !drained) {
  2994. unreserve_highatomic_pageblock(ac, false);
  2995. drain_all_pages(NULL);
  2996. drained = true;
  2997. goto retry;
  2998. }
  2999. return page;
  3000. }
  3001. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  3002. {
  3003. struct zoneref *z;
  3004. struct zone *zone;
  3005. pg_data_t *last_pgdat = NULL;
  3006. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  3007. ac->high_zoneidx, ac->nodemask) {
  3008. if (last_pgdat != zone->zone_pgdat)
  3009. wakeup_kswapd(zone, order, ac->high_zoneidx);
  3010. last_pgdat = zone->zone_pgdat;
  3011. }
  3012. }
  3013. static inline unsigned int
  3014. gfp_to_alloc_flags(gfp_t gfp_mask)
  3015. {
  3016. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  3017. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  3018. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  3019. /*
  3020. * The caller may dip into page reserves a bit more if the caller
  3021. * cannot run direct reclaim, or if the caller has realtime scheduling
  3022. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  3023. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  3024. */
  3025. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  3026. if (gfp_mask & __GFP_ATOMIC) {
  3027. /*
  3028. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  3029. * if it can't schedule.
  3030. */
  3031. if (!(gfp_mask & __GFP_NOMEMALLOC))
  3032. alloc_flags |= ALLOC_HARDER;
  3033. /*
  3034. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  3035. * comment for __cpuset_node_allowed().
  3036. */
  3037. alloc_flags &= ~ALLOC_CPUSET;
  3038. } else if (unlikely(rt_task(current)) && !in_interrupt())
  3039. alloc_flags |= ALLOC_HARDER;
  3040. #ifdef CONFIG_CMA
  3041. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  3042. alloc_flags |= ALLOC_CMA;
  3043. #endif
  3044. return alloc_flags;
  3045. }
  3046. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  3047. {
  3048. if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
  3049. return false;
  3050. if (gfp_mask & __GFP_MEMALLOC)
  3051. return true;
  3052. if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  3053. return true;
  3054. if (!in_interrupt() &&
  3055. ((current->flags & PF_MEMALLOC) ||
  3056. unlikely(test_thread_flag(TIF_MEMDIE))))
  3057. return true;
  3058. return false;
  3059. }
  3060. /*
  3061. * Checks whether it makes sense to retry the reclaim to make a forward progress
  3062. * for the given allocation request.
  3063. *
  3064. * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
  3065. * without success, or when we couldn't even meet the watermark if we
  3066. * reclaimed all remaining pages on the LRU lists.
  3067. *
  3068. * Returns true if a retry is viable or false to enter the oom path.
  3069. */
  3070. static inline bool
  3071. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  3072. struct alloc_context *ac, int alloc_flags,
  3073. bool did_some_progress, int *no_progress_loops)
  3074. {
  3075. struct zone *zone;
  3076. struct zoneref *z;
  3077. /*
  3078. * Costly allocations might have made a progress but this doesn't mean
  3079. * their order will become available due to high fragmentation so
  3080. * always increment the no progress counter for them
  3081. */
  3082. if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
  3083. IS_ENABLED(CONFIG_ANDROID_LOW_MEMORY_KILLER))
  3084. *no_progress_loops = 0;
  3085. else
  3086. (*no_progress_loops)++;
  3087. /*
  3088. * Make sure we converge to OOM if we cannot make any progress
  3089. * several times in the row.
  3090. */
  3091. if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
  3092. /* Before OOM, exhaust highatomic_reserve */
  3093. return unreserve_highatomic_pageblock(ac, true);
  3094. }
  3095. /*
  3096. * Keep reclaiming pages while there is a chance this will lead
  3097. * somewhere. If none of the target zones can satisfy our allocation
  3098. * request even if all reclaimable pages are considered then we are
  3099. * screwed and have to go OOM.
  3100. */
  3101. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3102. ac->nodemask) {
  3103. unsigned long available;
  3104. unsigned long reclaimable;
  3105. available = reclaimable = zone_reclaimable_pages(zone);
  3106. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  3107. /*
  3108. * Would the allocation succeed if we reclaimed all
  3109. * reclaimable pages?
  3110. */
  3111. if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
  3112. ac_classzone_idx(ac), alloc_flags, available)) {
  3113. /*
  3114. * If we didn't make any progress and have a lot of
  3115. * dirty + writeback pages then we should wait for
  3116. * an IO to complete to slow down the reclaim and
  3117. * prevent from pre mature OOM
  3118. */
  3119. if (!did_some_progress) {
  3120. unsigned long write_pending;
  3121. write_pending = zone_page_state_snapshot(zone,
  3122. NR_ZONE_WRITE_PENDING);
  3123. if (2 * write_pending > reclaimable) {
  3124. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3125. return true;
  3126. }
  3127. }
  3128. /*
  3129. * Memory allocation/reclaim might be called from a WQ
  3130. * context and the current implementation of the WQ
  3131. * concurrency control doesn't recognize that
  3132. * a particular WQ is congested if the worker thread is
  3133. * looping without ever sleeping. Therefore we have to
  3134. * do a short sleep here rather than calling
  3135. * cond_resched().
  3136. */
  3137. if (current->flags & PF_WQ_WORKER)
  3138. schedule_timeout_uninterruptible(1);
  3139. else
  3140. cond_resched();
  3141. return true;
  3142. }
  3143. }
  3144. return false;
  3145. }
  3146. static inline struct page *
  3147. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3148. struct alloc_context *ac)
  3149. {
  3150. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3151. struct page *page = NULL;
  3152. unsigned int alloc_flags;
  3153. unsigned long did_some_progress;
  3154. enum compact_priority compact_priority;
  3155. enum compact_result compact_result;
  3156. int compaction_retries;
  3157. int no_progress_loops;
  3158. unsigned int cpuset_mems_cookie;
  3159. /*
  3160. * In the slowpath, we sanity check order to avoid ever trying to
  3161. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3162. * be using allocators in order of preference for an area that is
  3163. * too large.
  3164. */
  3165. if (order >= MAX_ORDER) {
  3166. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3167. return NULL;
  3168. }
  3169. /*
  3170. * We also sanity check to catch abuse of atomic reserves being used by
  3171. * callers that are not in atomic context.
  3172. */
  3173. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3174. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3175. gfp_mask &= ~__GFP_ATOMIC;
  3176. retry_cpuset:
  3177. compaction_retries = 0;
  3178. no_progress_loops = 0;
  3179. compact_priority = DEF_COMPACT_PRIORITY;
  3180. cpuset_mems_cookie = read_mems_allowed_begin();
  3181. /*
  3182. * We need to recalculate the starting point for the zonelist iterator
  3183. * because we might have used different nodemask in the fast path, or
  3184. * there was a cpuset modification and we are retrying - otherwise we
  3185. * could end up iterating over non-eligible zones endlessly.
  3186. */
  3187. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3188. ac->high_zoneidx, ac->nodemask);
  3189. if (!ac->preferred_zoneref->zone)
  3190. goto nopage;
  3191. /*
  3192. * The fast path uses conservative alloc_flags to succeed only until
  3193. * kswapd needs to be woken up, and to avoid the cost of setting up
  3194. * alloc_flags precisely. So we do that now.
  3195. */
  3196. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3197. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3198. wake_all_kswapds(order, ac);
  3199. /*
  3200. * The adjusted alloc_flags might result in immediate success, so try
  3201. * that first
  3202. */
  3203. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3204. if (page)
  3205. goto got_pg;
  3206. /*
  3207. * For costly allocations, try direct compaction first, as it's likely
  3208. * that we have enough base pages and don't need to reclaim. Don't try
  3209. * that for allocations that are allowed to ignore watermarks, as the
  3210. * ALLOC_NO_WATERMARKS attempt didn't yet happen.
  3211. */
  3212. if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
  3213. !gfp_pfmemalloc_allowed(gfp_mask)) {
  3214. page = __alloc_pages_direct_compact(gfp_mask, order,
  3215. alloc_flags, ac,
  3216. INIT_COMPACT_PRIORITY,
  3217. &compact_result);
  3218. if (page)
  3219. goto got_pg;
  3220. /*
  3221. * Checks for costly allocations with __GFP_NORETRY, which
  3222. * includes THP page fault allocations
  3223. */
  3224. if (gfp_mask & __GFP_NORETRY) {
  3225. /*
  3226. * If compaction is deferred for high-order allocations,
  3227. * it is because sync compaction recently failed. If
  3228. * this is the case and the caller requested a THP
  3229. * allocation, we do not want to heavily disrupt the
  3230. * system, so we fail the allocation instead of entering
  3231. * direct reclaim.
  3232. */
  3233. if (compact_result == COMPACT_DEFERRED)
  3234. goto nopage;
  3235. /*
  3236. * Looks like reclaim/compaction is worth trying, but
  3237. * sync compaction could be very expensive, so keep
  3238. * using async compaction.
  3239. */
  3240. compact_priority = INIT_COMPACT_PRIORITY;
  3241. }
  3242. }
  3243. retry:
  3244. /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
  3245. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3246. wake_all_kswapds(order, ac);
  3247. if (gfp_pfmemalloc_allowed(gfp_mask))
  3248. alloc_flags = ALLOC_NO_WATERMARKS;
  3249. /*
  3250. * Reset the zonelist iterators if memory policies can be ignored.
  3251. * These allocations are high priority and system rather than user
  3252. * orientated.
  3253. */
  3254. if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
  3255. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3256. ac->high_zoneidx, ac->nodemask);
  3257. }
  3258. /* Attempt with potentially adjusted zonelist and alloc_flags */
  3259. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3260. if (page)
  3261. goto got_pg;
  3262. /* Caller is not willing to reclaim, we can't balance anything */
  3263. if (!can_direct_reclaim) {
  3264. /*
  3265. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3266. * of any new users that actually allow this type of allocation
  3267. * to fail.
  3268. */
  3269. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  3270. goto nopage;
  3271. }
  3272. /* Avoid recursion of direct reclaim */
  3273. if (current->flags & PF_MEMALLOC) {
  3274. /*
  3275. * __GFP_NOFAIL request from this context is rather bizarre
  3276. * because we cannot reclaim anything and only can loop waiting
  3277. * for somebody to do a work for us.
  3278. */
  3279. if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  3280. cond_resched();
  3281. goto retry;
  3282. }
  3283. goto nopage;
  3284. }
  3285. /* Avoid allocations with no watermarks from looping endlessly */
  3286. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  3287. goto nopage;
  3288. /* Try direct reclaim and then allocating */
  3289. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3290. &did_some_progress);
  3291. if (page)
  3292. goto got_pg;
  3293. /* Try direct compaction and then allocating */
  3294. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3295. compact_priority, &compact_result);
  3296. if (page)
  3297. goto got_pg;
  3298. /* Do not loop if specifically requested */
  3299. if (gfp_mask & __GFP_NORETRY)
  3300. goto nopage;
  3301. /*
  3302. * Do not retry costly high order allocations unless they are
  3303. * __GFP_REPEAT
  3304. */
  3305. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
  3306. goto nopage;
  3307. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3308. did_some_progress > 0, &no_progress_loops))
  3309. goto retry;
  3310. /*
  3311. * It doesn't make any sense to retry for the compaction if the order-0
  3312. * reclaim is not able to make any progress because the current
  3313. * implementation of the compaction depends on the sufficient amount
  3314. * of free memory (see __compaction_suitable)
  3315. */
  3316. if ((did_some_progress > 0 ||
  3317. IS_ENABLED(CONFIG_ANDROID_LOW_MEMORY_KILLER)) &&
  3318. should_compact_retry(ac, order, alloc_flags,
  3319. compact_result, &compact_priority,
  3320. &compaction_retries))
  3321. goto retry;
  3322. /*
  3323. * It's possible we raced with cpuset update so the OOM would be
  3324. * premature (see below the nopage: label for full explanation).
  3325. */
  3326. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3327. goto retry_cpuset;
  3328. /* Reclaim has failed us, start killing things */
  3329. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3330. if (page)
  3331. goto got_pg;
  3332. /* Retry as long as the OOM killer is making progress */
  3333. if (did_some_progress) {
  3334. no_progress_loops = 0;
  3335. goto retry;
  3336. }
  3337. nopage:
  3338. /*
  3339. * When updating a task's mems_allowed or mempolicy nodemask, it is
  3340. * possible to race with parallel threads in such a way that our
  3341. * allocation can fail while the mask is being updated. If we are about
  3342. * to fail, check if the cpuset changed during allocation and if so,
  3343. * retry.
  3344. */
  3345. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3346. goto retry_cpuset;
  3347. warn_alloc(gfp_mask,
  3348. "page allocation failure: order:%u", order);
  3349. got_pg:
  3350. return page;
  3351. }
  3352. /*
  3353. * This is the 'heart' of the zoned buddy allocator.
  3354. */
  3355. struct page *
  3356. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  3357. struct zonelist *zonelist, nodemask_t *nodemask)
  3358. {
  3359. struct page *page;
  3360. unsigned int alloc_flags = ALLOC_WMARK_LOW;
  3361. gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
  3362. struct alloc_context ac = {
  3363. .high_zoneidx = gfp_zone(gfp_mask),
  3364. .zonelist = zonelist,
  3365. .nodemask = nodemask,
  3366. .migratetype = gfpflags_to_migratetype(gfp_mask),
  3367. };
  3368. if (cpusets_enabled()) {
  3369. alloc_mask |= __GFP_HARDWALL;
  3370. alloc_flags |= ALLOC_CPUSET;
  3371. if (!ac.nodemask)
  3372. ac.nodemask = &cpuset_current_mems_allowed;
  3373. }
  3374. gfp_mask &= gfp_allowed_mask;
  3375. lockdep_trace_alloc(gfp_mask);
  3376. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3377. if (should_fail_alloc_page(gfp_mask, order))
  3378. return NULL;
  3379. /*
  3380. * Check the zones suitable for the gfp_mask contain at least one
  3381. * valid zone. It's possible to have an empty zonelist as a result
  3382. * of __GFP_THISNODE and a memoryless node
  3383. */
  3384. if (unlikely(!zonelist->_zonerefs->zone))
  3385. return NULL;
  3386. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  3387. alloc_flags |= ALLOC_CMA;
  3388. /* Dirty zone balancing only done in the fast path */
  3389. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3390. /*
  3391. * The preferred zone is used for statistics but crucially it is
  3392. * also used as the starting point for the zonelist iterator. It
  3393. * may get reset for allocations that ignore memory policies.
  3394. */
  3395. ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
  3396. ac.high_zoneidx, ac.nodemask);
  3397. if (!ac.preferred_zoneref->zone) {
  3398. page = NULL;
  3399. /*
  3400. * This might be due to race with cpuset_current_mems_allowed
  3401. * update, so make sure we retry with original nodemask in the
  3402. * slow path.
  3403. */
  3404. goto no_zone;
  3405. }
  3406. /* First allocation attempt */
  3407. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3408. if (likely(page))
  3409. goto out;
  3410. no_zone:
  3411. /*
  3412. * Runtime PM, block IO and its error handling path can deadlock
  3413. * because I/O on the device might not complete.
  3414. */
  3415. alloc_mask = memalloc_noio_flags(gfp_mask);
  3416. ac.spread_dirty_pages = false;
  3417. /*
  3418. * Restore the original nodemask if it was potentially replaced with
  3419. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3420. */
  3421. if (unlikely(ac.nodemask != nodemask))
  3422. ac.nodemask = nodemask;
  3423. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3424. out:
  3425. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
  3426. unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
  3427. __free_pages(page, order);
  3428. page = NULL;
  3429. }
  3430. if (kmemcheck_enabled && page)
  3431. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  3432. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3433. return page;
  3434. }
  3435. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3436. /*
  3437. * Common helper functions.
  3438. */
  3439. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3440. {
  3441. struct page *page;
  3442. /*
  3443. * __get_free_pages() returns a 32-bit address, which cannot represent
  3444. * a highmem page
  3445. */
  3446. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3447. page = alloc_pages(gfp_mask, order);
  3448. if (!page)
  3449. return 0;
  3450. return (unsigned long) page_address(page);
  3451. }
  3452. EXPORT_SYMBOL(__get_free_pages);
  3453. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3454. {
  3455. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3456. }
  3457. EXPORT_SYMBOL(get_zeroed_page);
  3458. void __free_pages(struct page *page, unsigned int order)
  3459. {
  3460. if (put_page_testzero(page)) {
  3461. if (order == 0)
  3462. free_hot_cold_page(page, false);
  3463. else
  3464. __free_pages_ok(page, order);
  3465. }
  3466. }
  3467. EXPORT_SYMBOL(__free_pages);
  3468. void free_pages(unsigned long addr, unsigned int order)
  3469. {
  3470. if (addr != 0) {
  3471. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3472. __free_pages(virt_to_page((void *)addr), order);
  3473. }
  3474. }
  3475. EXPORT_SYMBOL(free_pages);
  3476. /*
  3477. * Page Fragment:
  3478. * An arbitrary-length arbitrary-offset area of memory which resides
  3479. * within a 0 or higher order page. Multiple fragments within that page
  3480. * are individually refcounted, in the page's reference counter.
  3481. *
  3482. * The page_frag functions below provide a simple allocation framework for
  3483. * page fragments. This is used by the network stack and network device
  3484. * drivers to provide a backing region of memory for use as either an
  3485. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3486. */
  3487. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  3488. gfp_t gfp_mask)
  3489. {
  3490. struct page *page = NULL;
  3491. gfp_t gfp = gfp_mask;
  3492. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3493. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3494. __GFP_NOMEMALLOC;
  3495. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3496. PAGE_FRAG_CACHE_MAX_ORDER);
  3497. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3498. #endif
  3499. if (unlikely(!page)) {
  3500. gfp |= __GFP_KSWAPD_RECLAIM;
  3501. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3502. }
  3503. nc->va = page ? page_address(page) : NULL;
  3504. return page;
  3505. }
  3506. void *__alloc_page_frag(struct page_frag_cache *nc,
  3507. unsigned int fragsz, gfp_t gfp_mask)
  3508. {
  3509. unsigned int size = PAGE_SIZE;
  3510. struct page *page;
  3511. int offset;
  3512. if (unlikely(!nc->va)) {
  3513. refill:
  3514. page = __page_frag_refill(nc, gfp_mask);
  3515. if (!page)
  3516. return NULL;
  3517. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3518. /* if size can vary use size else just use PAGE_SIZE */
  3519. size = nc->size;
  3520. #endif
  3521. /* Even if we own the page, we do not use atomic_set().
  3522. * This would break get_page_unless_zero() users.
  3523. */
  3524. page_ref_add(page, size);
  3525. /* reset page count bias and offset to start of new frag */
  3526. nc->pfmemalloc = page_is_pfmemalloc(page);
  3527. nc->pagecnt_bias = size + 1;
  3528. nc->offset = size;
  3529. }
  3530. offset = nc->offset - fragsz;
  3531. if (unlikely(offset < 0)) {
  3532. page = virt_to_page(nc->va);
  3533. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3534. goto refill;
  3535. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3536. /* if size can vary use size else just use PAGE_SIZE */
  3537. size = nc->size;
  3538. #endif
  3539. /* OK, page count is 0, we can safely set it */
  3540. set_page_count(page, size + 1);
  3541. /* reset page count bias and offset to start of new frag */
  3542. nc->pagecnt_bias = size + 1;
  3543. offset = size - fragsz;
  3544. }
  3545. nc->pagecnt_bias--;
  3546. nc->offset = offset;
  3547. return nc->va + offset;
  3548. }
  3549. EXPORT_SYMBOL(__alloc_page_frag);
  3550. /*
  3551. * Frees a page fragment allocated out of either a compound or order 0 page.
  3552. */
  3553. void __free_page_frag(void *addr)
  3554. {
  3555. struct page *page = virt_to_head_page(addr);
  3556. if (unlikely(put_page_testzero(page)))
  3557. __free_pages_ok(page, compound_order(page));
  3558. }
  3559. EXPORT_SYMBOL(__free_page_frag);
  3560. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3561. size_t size)
  3562. {
  3563. if (addr) {
  3564. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3565. unsigned long used = addr + PAGE_ALIGN(size);
  3566. split_page(virt_to_page((void *)addr), order);
  3567. while (used < alloc_end) {
  3568. free_page(used);
  3569. used += PAGE_SIZE;
  3570. }
  3571. }
  3572. return (void *)addr;
  3573. }
  3574. /**
  3575. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3576. * @size: the number of bytes to allocate
  3577. * @gfp_mask: GFP flags for the allocation
  3578. *
  3579. * This function is similar to alloc_pages(), except that it allocates the
  3580. * minimum number of pages to satisfy the request. alloc_pages() can only
  3581. * allocate memory in power-of-two pages.
  3582. *
  3583. * This function is also limited by MAX_ORDER.
  3584. *
  3585. * Memory allocated by this function must be released by free_pages_exact().
  3586. */
  3587. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3588. {
  3589. unsigned int order = get_order(size);
  3590. unsigned long addr;
  3591. addr = __get_free_pages(gfp_mask, order);
  3592. return make_alloc_exact(addr, order, size);
  3593. }
  3594. EXPORT_SYMBOL(alloc_pages_exact);
  3595. /**
  3596. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3597. * pages on a node.
  3598. * @nid: the preferred node ID where memory should be allocated
  3599. * @size: the number of bytes to allocate
  3600. * @gfp_mask: GFP flags for the allocation
  3601. *
  3602. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3603. * back.
  3604. */
  3605. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3606. {
  3607. unsigned int order = get_order(size);
  3608. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3609. if (!p)
  3610. return NULL;
  3611. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3612. }
  3613. /**
  3614. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3615. * @virt: the value returned by alloc_pages_exact.
  3616. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3617. *
  3618. * Release the memory allocated by a previous call to alloc_pages_exact.
  3619. */
  3620. void free_pages_exact(void *virt, size_t size)
  3621. {
  3622. unsigned long addr = (unsigned long)virt;
  3623. unsigned long end = addr + PAGE_ALIGN(size);
  3624. while (addr < end) {
  3625. free_page(addr);
  3626. addr += PAGE_SIZE;
  3627. }
  3628. }
  3629. EXPORT_SYMBOL(free_pages_exact);
  3630. /**
  3631. * nr_free_zone_pages - count number of pages beyond high watermark
  3632. * @offset: The zone index of the highest zone
  3633. *
  3634. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3635. * high watermark within all zones at or below a given zone index. For each
  3636. * zone, the number of pages is calculated as:
  3637. * managed_pages - high_pages
  3638. */
  3639. static unsigned long nr_free_zone_pages(int offset)
  3640. {
  3641. struct zoneref *z;
  3642. struct zone *zone;
  3643. /* Just pick one node, since fallback list is circular */
  3644. unsigned long sum = 0;
  3645. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3646. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3647. unsigned long size = zone->managed_pages;
  3648. unsigned long high = high_wmark_pages(zone);
  3649. if (size > high)
  3650. sum += size - high;
  3651. }
  3652. return sum;
  3653. }
  3654. /**
  3655. * nr_free_buffer_pages - count number of pages beyond high watermark
  3656. *
  3657. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3658. * watermark within ZONE_DMA and ZONE_NORMAL.
  3659. */
  3660. unsigned long nr_free_buffer_pages(void)
  3661. {
  3662. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3663. }
  3664. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3665. /**
  3666. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3667. *
  3668. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3669. * high watermark within all zones.
  3670. */
  3671. unsigned long nr_free_pagecache_pages(void)
  3672. {
  3673. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3674. }
  3675. static inline void show_node(struct zone *zone)
  3676. {
  3677. if (IS_ENABLED(CONFIG_NUMA))
  3678. printk("Node %d ", zone_to_nid(zone));
  3679. }
  3680. long si_mem_available(void)
  3681. {
  3682. long available;
  3683. unsigned long pagecache;
  3684. unsigned long wmark_low = 0;
  3685. unsigned long pages[NR_LRU_LISTS];
  3686. struct zone *zone;
  3687. int lru;
  3688. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3689. pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
  3690. for_each_zone(zone)
  3691. wmark_low += zone->watermark[WMARK_LOW];
  3692. /*
  3693. * Estimate the amount of memory available for userspace allocations,
  3694. * without causing swapping.
  3695. */
  3696. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3697. /*
  3698. * Not all the page cache can be freed, otherwise the system will
  3699. * start swapping. Assume at least half of the page cache, or the
  3700. * low watermark worth of cache, needs to stay.
  3701. */
  3702. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3703. pagecache -= min(pagecache / 2, wmark_low);
  3704. available += pagecache;
  3705. /*
  3706. * Part of the reclaimable slab consists of items that are in use,
  3707. * and cannot be freed. Cap this estimate at the low watermark.
  3708. */
  3709. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3710. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3711. /*
  3712. * Part of the kernel memory, which can be released under memory
  3713. * pressure.
  3714. */
  3715. available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
  3716. PAGE_SHIFT;
  3717. if (available < 0)
  3718. available = 0;
  3719. return available;
  3720. }
  3721. EXPORT_SYMBOL_GPL(si_mem_available);
  3722. void si_meminfo(struct sysinfo *val)
  3723. {
  3724. val->totalram = totalram_pages;
  3725. val->sharedram = global_node_page_state(NR_SHMEM);
  3726. val->freeram = global_page_state(NR_FREE_PAGES);
  3727. val->bufferram = nr_blockdev_pages();
  3728. val->totalhigh = totalhigh_pages;
  3729. val->freehigh = nr_free_highpages();
  3730. val->mem_unit = PAGE_SIZE;
  3731. }
  3732. EXPORT_SYMBOL(si_meminfo);
  3733. #ifdef CONFIG_NUMA
  3734. void si_meminfo_node(struct sysinfo *val, int nid)
  3735. {
  3736. int zone_type; /* needs to be signed */
  3737. unsigned long managed_pages = 0;
  3738. unsigned long managed_highpages = 0;
  3739. unsigned long free_highpages = 0;
  3740. pg_data_t *pgdat = NODE_DATA(nid);
  3741. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3742. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3743. val->totalram = managed_pages;
  3744. val->sharedram = node_page_state(pgdat, NR_SHMEM);
  3745. val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
  3746. #ifdef CONFIG_HIGHMEM
  3747. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3748. struct zone *zone = &pgdat->node_zones[zone_type];
  3749. if (is_highmem(zone)) {
  3750. managed_highpages += zone->managed_pages;
  3751. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3752. }
  3753. }
  3754. val->totalhigh = managed_highpages;
  3755. val->freehigh = free_highpages;
  3756. #else
  3757. val->totalhigh = managed_highpages;
  3758. val->freehigh = free_highpages;
  3759. #endif
  3760. val->mem_unit = PAGE_SIZE;
  3761. }
  3762. #endif
  3763. /*
  3764. * Determine whether the node should be displayed or not, depending on whether
  3765. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3766. */
  3767. bool skip_free_areas_node(unsigned int flags, int nid)
  3768. {
  3769. bool ret = false;
  3770. unsigned int cpuset_mems_cookie;
  3771. if (!(flags & SHOW_MEM_FILTER_NODES))
  3772. goto out;
  3773. do {
  3774. cpuset_mems_cookie = read_mems_allowed_begin();
  3775. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3776. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3777. out:
  3778. return ret;
  3779. }
  3780. #define K(x) ((x) << (PAGE_SHIFT-10))
  3781. static void show_migration_types(unsigned char type)
  3782. {
  3783. static const char types[MIGRATE_TYPES] = {
  3784. [MIGRATE_UNMOVABLE] = 'U',
  3785. [MIGRATE_MOVABLE] = 'M',
  3786. [MIGRATE_RECLAIMABLE] = 'E',
  3787. [MIGRATE_HIGHATOMIC] = 'H',
  3788. #ifdef CONFIG_CMA
  3789. [MIGRATE_CMA] = 'C',
  3790. #endif
  3791. #ifdef CONFIG_MEMORY_ISOLATION
  3792. [MIGRATE_ISOLATE] = 'I',
  3793. #endif
  3794. };
  3795. char tmp[MIGRATE_TYPES + 1];
  3796. char *p = tmp;
  3797. int i;
  3798. for (i = 0; i < MIGRATE_TYPES; i++) {
  3799. if (type & (1 << i))
  3800. *p++ = types[i];
  3801. }
  3802. *p = '\0';
  3803. printk(KERN_CONT "(%s) ", tmp);
  3804. }
  3805. /*
  3806. * Show free area list (used inside shift_scroll-lock stuff)
  3807. * We also calculate the percentage fragmentation. We do this by counting the
  3808. * memory on each free list with the exception of the first item on the list.
  3809. *
  3810. * Bits in @filter:
  3811. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3812. * cpuset.
  3813. */
  3814. void show_free_areas(unsigned int filter)
  3815. {
  3816. unsigned long free_pcp = 0;
  3817. int cpu;
  3818. struct zone *zone;
  3819. pg_data_t *pgdat;
  3820. for_each_populated_zone(zone) {
  3821. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3822. continue;
  3823. for_each_online_cpu(cpu)
  3824. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3825. }
  3826. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3827. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3828. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3829. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3830. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3831. " free:%lu free_pcp:%lu free_cma:%lu zspages: %lu\n"
  3832. " ion_heap:%lu ion_heap_pool:%lu\n",
  3833. global_node_page_state(NR_ACTIVE_ANON),
  3834. global_node_page_state(NR_INACTIVE_ANON),
  3835. global_node_page_state(NR_ISOLATED_ANON),
  3836. global_node_page_state(NR_ACTIVE_FILE),
  3837. global_node_page_state(NR_INACTIVE_FILE),
  3838. global_node_page_state(NR_ISOLATED_FILE),
  3839. global_node_page_state(NR_UNEVICTABLE),
  3840. global_node_page_state(NR_FILE_DIRTY),
  3841. global_node_page_state(NR_WRITEBACK),
  3842. global_node_page_state(NR_UNSTABLE_NFS),
  3843. global_page_state(NR_SLAB_RECLAIMABLE),
  3844. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3845. global_node_page_state(NR_FILE_MAPPED),
  3846. global_node_page_state(NR_SHMEM),
  3847. global_page_state(NR_PAGETABLE),
  3848. global_page_state(NR_BOUNCE),
  3849. global_page_state(NR_FREE_PAGES),
  3850. free_pcp,
  3851. global_page_state(NR_FREE_CMA_PAGES),
  3852. #if IS_ENABLED(CONFIG_ZSMALLOC)
  3853. global_page_state(NR_ZSPAGES),
  3854. #else
  3855. 0UL,
  3856. #endif
  3857. global_node_page_state(NR_ION_HEAP),
  3858. global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES)
  3859. >> PAGE_SHIFT);
  3860. for_each_online_pgdat(pgdat) {
  3861. printk("Node %d"
  3862. " active_anon:%lukB"
  3863. " inactive_anon:%lukB"
  3864. " active_file:%lukB"
  3865. " inactive_file:%lukB"
  3866. " unevictable:%lukB"
  3867. " isolated(anon):%lukB"
  3868. " isolated(file):%lukB"
  3869. " mapped:%lukB"
  3870. " dirty:%lukB"
  3871. " writeback:%lukB"
  3872. " shmem:%lukB"
  3873. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3874. " shmem_thp: %lukB"
  3875. " shmem_pmdmapped: %lukB"
  3876. " anon_thp: %lukB"
  3877. #endif
  3878. " writeback_tmp:%lukB"
  3879. " unstable:%lukB"
  3880. " all_unreclaimable? %s"
  3881. "\n",
  3882. pgdat->node_id,
  3883. K(node_page_state(pgdat, NR_ACTIVE_ANON)),
  3884. K(node_page_state(pgdat, NR_INACTIVE_ANON)),
  3885. K(node_page_state(pgdat, NR_ACTIVE_FILE)),
  3886. K(node_page_state(pgdat, NR_INACTIVE_FILE)),
  3887. K(node_page_state(pgdat, NR_UNEVICTABLE)),
  3888. K(node_page_state(pgdat, NR_ISOLATED_ANON)),
  3889. K(node_page_state(pgdat, NR_ISOLATED_FILE)),
  3890. K(node_page_state(pgdat, NR_FILE_MAPPED)),
  3891. K(node_page_state(pgdat, NR_FILE_DIRTY)),
  3892. K(node_page_state(pgdat, NR_WRITEBACK)),
  3893. K(node_page_state(pgdat, NR_SHMEM)),
  3894. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3895. K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
  3896. K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
  3897. * HPAGE_PMD_NR),
  3898. K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
  3899. #endif
  3900. K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
  3901. K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
  3902. pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
  3903. "yes" : "no");
  3904. }
  3905. for_each_populated_zone(zone) {
  3906. int i;
  3907. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3908. continue;
  3909. free_pcp = 0;
  3910. for_each_online_cpu(cpu)
  3911. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3912. show_node(zone);
  3913. printk(KERN_CONT
  3914. "%s"
  3915. " free:%lukB"
  3916. " min:%lukB"
  3917. " low:%lukB"
  3918. " high:%lukB"
  3919. " active_anon:%lukB"
  3920. " inactive_anon:%lukB"
  3921. " active_file:%lukB"
  3922. " inactive_file:%lukB"
  3923. " unevictable:%lukB"
  3924. " writepending:%lukB"
  3925. " present:%lukB"
  3926. " managed:%lukB"
  3927. " mlocked:%lukB"
  3928. " slab_reclaimable:%lukB"
  3929. " slab_unreclaimable:%lukB"
  3930. " kernel_stack:%lukB"
  3931. #ifdef CONFIG_SHADOW_CALL_STACK
  3932. " shadow_call_stack:%lukB"
  3933. #endif
  3934. " pagetables:%lukB"
  3935. " bounce:%lukB"
  3936. " free_pcp:%lukB"
  3937. " local_pcp:%ukB"
  3938. " free_cma:%lukB"
  3939. "\n",
  3940. zone->name,
  3941. K(zone_page_state(zone, NR_FREE_PAGES)),
  3942. K(min_wmark_pages(zone)),
  3943. K(low_wmark_pages(zone)),
  3944. K(high_wmark_pages(zone)),
  3945. K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
  3946. K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
  3947. K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
  3948. K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
  3949. K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
  3950. K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
  3951. K(zone->present_pages),
  3952. K(zone->managed_pages),
  3953. K(zone_page_state(zone, NR_MLOCK)),
  3954. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3955. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3956. zone_page_state(zone, NR_KERNEL_STACK_KB),
  3957. #ifdef CONFIG_SHADOW_CALL_STACK
  3958. zone_page_state(zone, NR_KERNEL_SCS_BYTES) / 1024,
  3959. #endif
  3960. K(zone_page_state(zone, NR_PAGETABLE)),
  3961. K(zone_page_state(zone, NR_BOUNCE)),
  3962. K(free_pcp),
  3963. K(this_cpu_read(zone->pageset->pcp.count)),
  3964. K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
  3965. printk("lowmem_reserve[]:");
  3966. for (i = 0; i < MAX_NR_ZONES; i++)
  3967. printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
  3968. printk(KERN_CONT "\n");
  3969. }
  3970. for_each_populated_zone(zone) {
  3971. unsigned int order;
  3972. unsigned long nr[MAX_ORDER], flags, total = 0;
  3973. unsigned char types[MAX_ORDER];
  3974. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3975. continue;
  3976. show_node(zone);
  3977. printk(KERN_CONT "%s: ", zone->name);
  3978. spin_lock_irqsave(&zone->lock, flags);
  3979. for (order = 0; order < MAX_ORDER; order++) {
  3980. struct free_area *area = &zone->free_area[order];
  3981. int type;
  3982. nr[order] = area->nr_free;
  3983. total += nr[order] << order;
  3984. types[order] = 0;
  3985. for (type = 0; type < MIGRATE_TYPES; type++) {
  3986. if (!list_empty(&area->free_list[type]))
  3987. types[order] |= 1 << type;
  3988. }
  3989. }
  3990. spin_unlock_irqrestore(&zone->lock, flags);
  3991. for (order = 0; order < MAX_ORDER; order++) {
  3992. printk(KERN_CONT "%lu*%lukB ",
  3993. nr[order], K(1UL) << order);
  3994. if (nr[order])
  3995. show_migration_types(types[order]);
  3996. }
  3997. printk(KERN_CONT "= %lukB\n", K(total));
  3998. }
  3999. hugetlb_show_meminfo();
  4000. printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
  4001. show_swap_cache_info();
  4002. }
  4003. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  4004. {
  4005. zoneref->zone = zone;
  4006. zoneref->zone_idx = zone_idx(zone);
  4007. }
  4008. /*
  4009. * Builds allocation fallback zone lists.
  4010. *
  4011. * Add all populated zones of a node to the zonelist.
  4012. */
  4013. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  4014. int nr_zones)
  4015. {
  4016. struct zone *zone;
  4017. enum zone_type zone_type = MAX_NR_ZONES;
  4018. do {
  4019. zone_type--;
  4020. zone = pgdat->node_zones + zone_type;
  4021. if (managed_zone(zone)) {
  4022. zoneref_set_zone(zone,
  4023. &zonelist->_zonerefs[nr_zones++]);
  4024. check_highest_zone(zone_type);
  4025. }
  4026. } while (zone_type);
  4027. return nr_zones;
  4028. }
  4029. /*
  4030. * zonelist_order:
  4031. * 0 = automatic detection of better ordering.
  4032. * 1 = order by ([node] distance, -zonetype)
  4033. * 2 = order by (-zonetype, [node] distance)
  4034. *
  4035. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  4036. * the same zonelist. So only NUMA can configure this param.
  4037. */
  4038. #define ZONELIST_ORDER_DEFAULT 0
  4039. #define ZONELIST_ORDER_NODE 1
  4040. #define ZONELIST_ORDER_ZONE 2
  4041. /* zonelist order in the kernel.
  4042. * set_zonelist_order() will set this to NODE or ZONE.
  4043. */
  4044. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  4045. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  4046. #ifdef CONFIG_NUMA
  4047. /* The value user specified ....changed by config */
  4048. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  4049. /* string for sysctl */
  4050. #define NUMA_ZONELIST_ORDER_LEN 16
  4051. char numa_zonelist_order[16] = "default";
  4052. /*
  4053. * interface for configure zonelist ordering.
  4054. * command line option "numa_zonelist_order"
  4055. * = "[dD]efault - default, automatic configuration.
  4056. * = "[nN]ode - order by node locality, then by zone within node
  4057. * = "[zZ]one - order by zone, then by locality within zone
  4058. */
  4059. static int __parse_numa_zonelist_order(char *s)
  4060. {
  4061. if (*s == 'd' || *s == 'D') {
  4062. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  4063. } else if (*s == 'n' || *s == 'N') {
  4064. user_zonelist_order = ZONELIST_ORDER_NODE;
  4065. } else if (*s == 'z' || *s == 'Z') {
  4066. user_zonelist_order = ZONELIST_ORDER_ZONE;
  4067. } else {
  4068. pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
  4069. return -EINVAL;
  4070. }
  4071. return 0;
  4072. }
  4073. static __init int setup_numa_zonelist_order(char *s)
  4074. {
  4075. int ret;
  4076. if (!s)
  4077. return 0;
  4078. ret = __parse_numa_zonelist_order(s);
  4079. if (ret == 0)
  4080. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  4081. return ret;
  4082. }
  4083. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  4084. /*
  4085. * sysctl handler for numa_zonelist_order
  4086. */
  4087. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  4088. void __user *buffer, size_t *length,
  4089. loff_t *ppos)
  4090. {
  4091. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  4092. int ret;
  4093. static DEFINE_MUTEX(zl_order_mutex);
  4094. mutex_lock(&zl_order_mutex);
  4095. if (write) {
  4096. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  4097. ret = -EINVAL;
  4098. goto out;
  4099. }
  4100. strcpy(saved_string, (char *)table->data);
  4101. }
  4102. ret = proc_dostring(table, write, buffer, length, ppos);
  4103. if (ret)
  4104. goto out;
  4105. if (write) {
  4106. int oldval = user_zonelist_order;
  4107. ret = __parse_numa_zonelist_order((char *)table->data);
  4108. if (ret) {
  4109. /*
  4110. * bogus value. restore saved string
  4111. */
  4112. strncpy((char *)table->data, saved_string,
  4113. NUMA_ZONELIST_ORDER_LEN);
  4114. user_zonelist_order = oldval;
  4115. } else if (oldval != user_zonelist_order) {
  4116. mutex_lock(&zonelists_mutex);
  4117. build_all_zonelists(NULL, NULL);
  4118. mutex_unlock(&zonelists_mutex);
  4119. }
  4120. }
  4121. out:
  4122. mutex_unlock(&zl_order_mutex);
  4123. return ret;
  4124. }
  4125. #define MAX_NODE_LOAD (nr_online_nodes)
  4126. static int node_load[MAX_NUMNODES];
  4127. /**
  4128. * find_next_best_node - find the next node that should appear in a given node's fallback list
  4129. * @node: node whose fallback list we're appending
  4130. * @used_node_mask: nodemask_t of already used nodes
  4131. *
  4132. * We use a number of factors to determine which is the next node that should
  4133. * appear on a given node's fallback list. The node should not have appeared
  4134. * already in @node's fallback list, and it should be the next closest node
  4135. * according to the distance array (which contains arbitrary distance values
  4136. * from each node to each node in the system), and should also prefer nodes
  4137. * with no CPUs, since presumably they'll have very little allocation pressure
  4138. * on them otherwise.
  4139. * It returns -1 if no node is found.
  4140. */
  4141. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4142. {
  4143. int n, val;
  4144. int min_val = INT_MAX;
  4145. int best_node = NUMA_NO_NODE;
  4146. const struct cpumask *tmp = cpumask_of_node(0);
  4147. /* Use the local node if we haven't already */
  4148. if (!node_isset(node, *used_node_mask)) {
  4149. node_set(node, *used_node_mask);
  4150. return node;
  4151. }
  4152. for_each_node_state(n, N_MEMORY) {
  4153. /* Don't want a node to appear more than once */
  4154. if (node_isset(n, *used_node_mask))
  4155. continue;
  4156. /* Use the distance array to find the distance */
  4157. val = node_distance(node, n);
  4158. /* Penalize nodes under us ("prefer the next node") */
  4159. val += (n < node);
  4160. /* Give preference to headless and unused nodes */
  4161. tmp = cpumask_of_node(n);
  4162. if (!cpumask_empty(tmp))
  4163. val += PENALTY_FOR_NODE_WITH_CPUS;
  4164. /* Slight preference for less loaded node */
  4165. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4166. val += node_load[n];
  4167. if (val < min_val) {
  4168. min_val = val;
  4169. best_node = n;
  4170. }
  4171. }
  4172. if (best_node >= 0)
  4173. node_set(best_node, *used_node_mask);
  4174. return best_node;
  4175. }
  4176. /*
  4177. * Build zonelists ordered by node and zones within node.
  4178. * This results in maximum locality--normal zone overflows into local
  4179. * DMA zone, if any--but risks exhausting DMA zone.
  4180. */
  4181. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  4182. {
  4183. int j;
  4184. struct zonelist *zonelist;
  4185. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4186. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  4187. ;
  4188. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4189. zonelist->_zonerefs[j].zone = NULL;
  4190. zonelist->_zonerefs[j].zone_idx = 0;
  4191. }
  4192. /*
  4193. * Build gfp_thisnode zonelists
  4194. */
  4195. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4196. {
  4197. int j;
  4198. struct zonelist *zonelist;
  4199. zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
  4200. j = build_zonelists_node(pgdat, zonelist, 0);
  4201. zonelist->_zonerefs[j].zone = NULL;
  4202. zonelist->_zonerefs[j].zone_idx = 0;
  4203. }
  4204. /*
  4205. * Build zonelists ordered by zone and nodes within zones.
  4206. * This results in conserving DMA zone[s] until all Normal memory is
  4207. * exhausted, but results in overflowing to remote node while memory
  4208. * may still exist in local DMA zone.
  4209. */
  4210. static int node_order[MAX_NUMNODES];
  4211. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  4212. {
  4213. int pos, j, node;
  4214. int zone_type; /* needs to be signed */
  4215. struct zone *z;
  4216. struct zonelist *zonelist;
  4217. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4218. pos = 0;
  4219. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  4220. for (j = 0; j < nr_nodes; j++) {
  4221. node = node_order[j];
  4222. z = &NODE_DATA(node)->node_zones[zone_type];
  4223. if (managed_zone(z)) {
  4224. zoneref_set_zone(z,
  4225. &zonelist->_zonerefs[pos++]);
  4226. check_highest_zone(zone_type);
  4227. }
  4228. }
  4229. }
  4230. zonelist->_zonerefs[pos].zone = NULL;
  4231. zonelist->_zonerefs[pos].zone_idx = 0;
  4232. }
  4233. #if defined(CONFIG_64BIT)
  4234. /*
  4235. * Devices that require DMA32/DMA are relatively rare and do not justify a
  4236. * penalty to every machine in case the specialised case applies. Default
  4237. * to Node-ordering on 64-bit NUMA machines
  4238. */
  4239. static int default_zonelist_order(void)
  4240. {
  4241. return ZONELIST_ORDER_NODE;
  4242. }
  4243. #else
  4244. /*
  4245. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  4246. * by the kernel. If processes running on node 0 deplete the low memory zone
  4247. * then reclaim will occur more frequency increasing stalls and potentially
  4248. * be easier to OOM if a large percentage of the zone is under writeback or
  4249. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  4250. * Hence, default to zone ordering on 32-bit.
  4251. */
  4252. static int default_zonelist_order(void)
  4253. {
  4254. return ZONELIST_ORDER_ZONE;
  4255. }
  4256. #endif /* CONFIG_64BIT */
  4257. static void set_zonelist_order(void)
  4258. {
  4259. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  4260. current_zonelist_order = default_zonelist_order();
  4261. else
  4262. current_zonelist_order = user_zonelist_order;
  4263. }
  4264. static void build_zonelists(pg_data_t *pgdat)
  4265. {
  4266. int i, node, load;
  4267. nodemask_t used_mask;
  4268. int local_node, prev_node;
  4269. struct zonelist *zonelist;
  4270. unsigned int order = current_zonelist_order;
  4271. /* initialize zonelists */
  4272. for (i = 0; i < MAX_ZONELISTS; i++) {
  4273. zonelist = pgdat->node_zonelists + i;
  4274. zonelist->_zonerefs[0].zone = NULL;
  4275. zonelist->_zonerefs[0].zone_idx = 0;
  4276. }
  4277. /* NUMA-aware ordering of nodes */
  4278. local_node = pgdat->node_id;
  4279. load = nr_online_nodes;
  4280. prev_node = local_node;
  4281. nodes_clear(used_mask);
  4282. memset(node_order, 0, sizeof(node_order));
  4283. i = 0;
  4284. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4285. /*
  4286. * We don't want to pressure a particular node.
  4287. * So adding penalty to the first node in same
  4288. * distance group to make it round-robin.
  4289. */
  4290. if (node_distance(local_node, node) !=
  4291. node_distance(local_node, prev_node))
  4292. node_load[node] = load;
  4293. prev_node = node;
  4294. load--;
  4295. if (order == ZONELIST_ORDER_NODE)
  4296. build_zonelists_in_node_order(pgdat, node);
  4297. else
  4298. node_order[i++] = node; /* remember order */
  4299. }
  4300. if (order == ZONELIST_ORDER_ZONE) {
  4301. /* calculate node order -- i.e., DMA last! */
  4302. build_zonelists_in_zone_order(pgdat, i);
  4303. }
  4304. build_thisnode_zonelists(pgdat);
  4305. }
  4306. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4307. /*
  4308. * Return node id of node used for "local" allocations.
  4309. * I.e., first node id of first zone in arg node's generic zonelist.
  4310. * Used for initializing percpu 'numa_mem', which is used primarily
  4311. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4312. */
  4313. int local_memory_node(int node)
  4314. {
  4315. struct zoneref *z;
  4316. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4317. gfp_zone(GFP_KERNEL),
  4318. NULL);
  4319. return z->zone->node;
  4320. }
  4321. #endif
  4322. static void setup_min_unmapped_ratio(void);
  4323. static void setup_min_slab_ratio(void);
  4324. #else /* CONFIG_NUMA */
  4325. static void set_zonelist_order(void)
  4326. {
  4327. current_zonelist_order = ZONELIST_ORDER_ZONE;
  4328. }
  4329. static void build_zonelists(pg_data_t *pgdat)
  4330. {
  4331. int node, local_node;
  4332. enum zone_type j;
  4333. struct zonelist *zonelist;
  4334. local_node = pgdat->node_id;
  4335. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4336. j = build_zonelists_node(pgdat, zonelist, 0);
  4337. /*
  4338. * Now we build the zonelist so that it contains the zones
  4339. * of all the other nodes.
  4340. * We don't want to pressure a particular node, so when
  4341. * building the zones for node N, we make sure that the
  4342. * zones coming right after the local ones are those from
  4343. * node N+1 (modulo N)
  4344. */
  4345. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4346. if (!node_online(node))
  4347. continue;
  4348. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4349. }
  4350. for (node = 0; node < local_node; node++) {
  4351. if (!node_online(node))
  4352. continue;
  4353. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4354. }
  4355. zonelist->_zonerefs[j].zone = NULL;
  4356. zonelist->_zonerefs[j].zone_idx = 0;
  4357. }
  4358. #endif /* CONFIG_NUMA */
  4359. /*
  4360. * Boot pageset table. One per cpu which is going to be used for all
  4361. * zones and all nodes. The parameters will be set in such a way
  4362. * that an item put on a list will immediately be handed over to
  4363. * the buddy list. This is safe since pageset manipulation is done
  4364. * with interrupts disabled.
  4365. *
  4366. * The boot_pagesets must be kept even after bootup is complete for
  4367. * unused processors and/or zones. They do play a role for bootstrapping
  4368. * hotplugged processors.
  4369. *
  4370. * zoneinfo_show() and maybe other functions do
  4371. * not check if the processor is online before following the pageset pointer.
  4372. * Other parts of the kernel may not check if the zone is available.
  4373. */
  4374. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4375. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4376. static void setup_zone_pageset(struct zone *zone);
  4377. /*
  4378. * Global mutex to protect against size modification of zonelists
  4379. * as well as to serialize pageset setup for the new populated zone.
  4380. */
  4381. DEFINE_MUTEX(zonelists_mutex);
  4382. /* return values int ....just for stop_machine() */
  4383. static int __build_all_zonelists(void *data)
  4384. {
  4385. int nid;
  4386. int cpu;
  4387. pg_data_t *self = data;
  4388. #ifdef CONFIG_NUMA
  4389. memset(node_load, 0, sizeof(node_load));
  4390. #endif
  4391. if (self && !node_online(self->node_id)) {
  4392. build_zonelists(self);
  4393. }
  4394. for_each_online_node(nid) {
  4395. pg_data_t *pgdat = NODE_DATA(nid);
  4396. build_zonelists(pgdat);
  4397. }
  4398. /*
  4399. * Initialize the boot_pagesets that are going to be used
  4400. * for bootstrapping processors. The real pagesets for
  4401. * each zone will be allocated later when the per cpu
  4402. * allocator is available.
  4403. *
  4404. * boot_pagesets are used also for bootstrapping offline
  4405. * cpus if the system is already booted because the pagesets
  4406. * are needed to initialize allocators on a specific cpu too.
  4407. * F.e. the percpu allocator needs the page allocator which
  4408. * needs the percpu allocator in order to allocate its pagesets
  4409. * (a chicken-egg dilemma).
  4410. */
  4411. for_each_possible_cpu(cpu) {
  4412. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4413. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4414. /*
  4415. * We now know the "local memory node" for each node--
  4416. * i.e., the node of the first zone in the generic zonelist.
  4417. * Set up numa_mem percpu variable for on-line cpus. During
  4418. * boot, only the boot cpu should be on-line; we'll init the
  4419. * secondary cpus' numa_mem as they come on-line. During
  4420. * node/memory hotplug, we'll fixup all on-line cpus.
  4421. */
  4422. if (cpu_online(cpu))
  4423. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4424. #endif
  4425. }
  4426. return 0;
  4427. }
  4428. static noinline void __init
  4429. build_all_zonelists_init(void)
  4430. {
  4431. __build_all_zonelists(NULL);
  4432. mminit_verify_zonelist();
  4433. cpuset_init_current_mems_allowed();
  4434. }
  4435. /*
  4436. * Called with zonelists_mutex held always
  4437. * unless system_state == SYSTEM_BOOTING.
  4438. *
  4439. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  4440. * [we're only called with non-NULL zone through __meminit paths] and
  4441. * (2) call of __init annotated helper build_all_zonelists_init
  4442. * [protected by SYSTEM_BOOTING].
  4443. */
  4444. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  4445. {
  4446. set_zonelist_order();
  4447. if (system_state == SYSTEM_BOOTING) {
  4448. build_all_zonelists_init();
  4449. } else {
  4450. #ifdef CONFIG_MEMORY_HOTPLUG
  4451. if (zone)
  4452. setup_zone_pageset(zone);
  4453. #endif
  4454. /* we have to stop all cpus to guarantee there is no user
  4455. of zonelist */
  4456. stop_machine(__build_all_zonelists, pgdat, NULL);
  4457. /* cpuset refresh routine should be here */
  4458. }
  4459. vm_total_pages = nr_free_pagecache_pages();
  4460. /*
  4461. * Disable grouping by mobility if the number of pages in the
  4462. * system is too low to allow the mechanism to work. It would be
  4463. * more accurate, but expensive to check per-zone. This check is
  4464. * made on memory-hotadd so a system can start with mobility
  4465. * disabled and enable it later
  4466. */
  4467. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4468. page_group_by_mobility_disabled = 1;
  4469. else
  4470. page_group_by_mobility_disabled = 0;
  4471. pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
  4472. nr_online_nodes,
  4473. zonelist_order_name[current_zonelist_order],
  4474. page_group_by_mobility_disabled ? "off" : "on",
  4475. vm_total_pages);
  4476. #ifdef CONFIG_NUMA
  4477. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4478. #endif
  4479. }
  4480. /*
  4481. * Initially all pages are reserved - free ones are freed
  4482. * up by free_all_bootmem() once the early boot process is
  4483. * done. Non-atomic initialization, single-pass.
  4484. */
  4485. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4486. unsigned long start_pfn, enum memmap_context context)
  4487. {
  4488. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4489. unsigned long end_pfn = start_pfn + size;
  4490. pg_data_t *pgdat = NODE_DATA(nid);
  4491. unsigned long pfn;
  4492. unsigned long nr_initialised = 0;
  4493. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4494. struct memblock_region *r = NULL, *tmp;
  4495. #endif
  4496. if (highest_memmap_pfn < end_pfn - 1)
  4497. highest_memmap_pfn = end_pfn - 1;
  4498. /*
  4499. * Honor reservation requested by the driver for this ZONE_DEVICE
  4500. * memory
  4501. */
  4502. if (altmap && start_pfn == altmap->base_pfn)
  4503. start_pfn += altmap->reserve;
  4504. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4505. /*
  4506. * There can be holes in boot-time mem_map[]s handed to this
  4507. * function. They do not exist on hotplugged memory.
  4508. */
  4509. if (context != MEMMAP_EARLY)
  4510. goto not_early;
  4511. if (!early_pfn_valid(pfn))
  4512. continue;
  4513. if (!early_pfn_in_nid(pfn, nid))
  4514. continue;
  4515. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4516. break;
  4517. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4518. /*
  4519. * Check given memblock attribute by firmware which can affect
  4520. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4521. * mirrored, it's an overlapped memmap init. skip it.
  4522. */
  4523. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4524. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4525. for_each_memblock(memory, tmp)
  4526. if (pfn < memblock_region_memory_end_pfn(tmp))
  4527. break;
  4528. r = tmp;
  4529. }
  4530. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4531. memblock_is_mirror(r)) {
  4532. /* already initialized as NORMAL */
  4533. pfn = memblock_region_memory_end_pfn(r);
  4534. continue;
  4535. }
  4536. }
  4537. #endif
  4538. not_early:
  4539. /*
  4540. * Mark the block movable so that blocks are reserved for
  4541. * movable at startup. This will force kernel allocations
  4542. * to reserve their blocks rather than leaking throughout
  4543. * the address space during boot when many long-lived
  4544. * kernel allocations are made.
  4545. *
  4546. * bitmap is created for zone's valid pfn range. but memmap
  4547. * can be created for invalid pages (for alignment)
  4548. * check here not to call set_pageblock_migratetype() against
  4549. * pfn out of zone.
  4550. */
  4551. if (!(pfn & (pageblock_nr_pages - 1))) {
  4552. struct page *page = pfn_to_page(pfn);
  4553. __init_single_page(page, pfn, zone, nid);
  4554. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4555. } else {
  4556. __init_single_pfn(pfn, zone, nid);
  4557. }
  4558. }
  4559. }
  4560. static void __meminit zone_init_free_lists(struct zone *zone)
  4561. {
  4562. unsigned int order, t;
  4563. for_each_migratetype_order(order, t) {
  4564. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4565. zone->free_area[order].nr_free = 0;
  4566. }
  4567. }
  4568. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4569. #define memmap_init(size, nid, zone, start_pfn) \
  4570. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4571. #endif
  4572. static int zone_batchsize(struct zone *zone)
  4573. {
  4574. #ifdef CONFIG_MMU
  4575. int batch;
  4576. /*
  4577. * The per-cpu-pages pools are set to around 1000th of the
  4578. * size of the zone. But no more than 1/2 of a meg.
  4579. *
  4580. * OK, so we don't know how big the cache is. So guess.
  4581. */
  4582. batch = zone->managed_pages / 1024;
  4583. if (batch * PAGE_SIZE > 512 * 1024)
  4584. batch = (512 * 1024) / PAGE_SIZE;
  4585. batch /= 4; /* We effectively *= 4 below */
  4586. if (batch < 1)
  4587. batch = 1;
  4588. /*
  4589. * Clamp the batch to a 2^n - 1 value. Having a power
  4590. * of 2 value was found to be more likely to have
  4591. * suboptimal cache aliasing properties in some cases.
  4592. *
  4593. * For example if 2 tasks are alternately allocating
  4594. * batches of pages, one task can end up with a lot
  4595. * of pages of one half of the possible page colors
  4596. * and the other with pages of the other colors.
  4597. */
  4598. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4599. return batch;
  4600. #else
  4601. /* The deferral and batching of frees should be suppressed under NOMMU
  4602. * conditions.
  4603. *
  4604. * The problem is that NOMMU needs to be able to allocate large chunks
  4605. * of contiguous memory as there's no hardware page translation to
  4606. * assemble apparent contiguous memory from discontiguous pages.
  4607. *
  4608. * Queueing large contiguous runs of pages for batching, however,
  4609. * causes the pages to actually be freed in smaller chunks. As there
  4610. * can be a significant delay between the individual batches being
  4611. * recycled, this leads to the once large chunks of space being
  4612. * fragmented and becoming unavailable for high-order allocations.
  4613. */
  4614. return 0;
  4615. #endif
  4616. }
  4617. /*
  4618. * pcp->high and pcp->batch values are related and dependent on one another:
  4619. * ->batch must never be higher then ->high.
  4620. * The following function updates them in a safe manner without read side
  4621. * locking.
  4622. *
  4623. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4624. * those fields changing asynchronously (acording the the above rule).
  4625. *
  4626. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4627. * outside of boot time (or some other assurance that no concurrent updaters
  4628. * exist).
  4629. */
  4630. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4631. unsigned long batch)
  4632. {
  4633. /* start with a fail safe value for batch */
  4634. pcp->batch = 1;
  4635. smp_wmb();
  4636. /* Update high, then batch, in order */
  4637. pcp->high = high;
  4638. smp_wmb();
  4639. pcp->batch = batch;
  4640. }
  4641. /* a companion to pageset_set_high() */
  4642. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4643. {
  4644. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4645. }
  4646. static void pageset_init(struct per_cpu_pageset *p)
  4647. {
  4648. struct per_cpu_pages *pcp;
  4649. int migratetype;
  4650. memset(p, 0, sizeof(*p));
  4651. pcp = &p->pcp;
  4652. pcp->count = 0;
  4653. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4654. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4655. }
  4656. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4657. {
  4658. pageset_init(p);
  4659. pageset_set_batch(p, batch);
  4660. }
  4661. /*
  4662. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4663. * to the value high for the pageset p.
  4664. */
  4665. static void pageset_set_high(struct per_cpu_pageset *p,
  4666. unsigned long high)
  4667. {
  4668. unsigned long batch = max(1UL, high / 4);
  4669. if ((high / 4) > (PAGE_SHIFT * 8))
  4670. batch = PAGE_SHIFT * 8;
  4671. pageset_update(&p->pcp, high, batch);
  4672. }
  4673. static void pageset_set_high_and_batch(struct zone *zone,
  4674. struct per_cpu_pageset *pcp)
  4675. {
  4676. if (percpu_pagelist_fraction)
  4677. pageset_set_high(pcp,
  4678. (zone->managed_pages /
  4679. percpu_pagelist_fraction));
  4680. else
  4681. pageset_set_batch(pcp, zone_batchsize(zone));
  4682. }
  4683. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4684. {
  4685. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4686. pageset_init(pcp);
  4687. pageset_set_high_and_batch(zone, pcp);
  4688. }
  4689. static void __meminit setup_zone_pageset(struct zone *zone)
  4690. {
  4691. int cpu;
  4692. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4693. for_each_possible_cpu(cpu)
  4694. zone_pageset_init(zone, cpu);
  4695. }
  4696. /*
  4697. * Allocate per cpu pagesets and initialize them.
  4698. * Before this call only boot pagesets were available.
  4699. */
  4700. void __init setup_per_cpu_pageset(void)
  4701. {
  4702. struct pglist_data *pgdat;
  4703. struct zone *zone;
  4704. for_each_populated_zone(zone)
  4705. setup_zone_pageset(zone);
  4706. for_each_online_pgdat(pgdat)
  4707. pgdat->per_cpu_nodestats =
  4708. alloc_percpu(struct per_cpu_nodestat);
  4709. }
  4710. static __meminit void zone_pcp_init(struct zone *zone)
  4711. {
  4712. /*
  4713. * per cpu subsystem is not up at this point. The following code
  4714. * relies on the ability of the linker to provide the
  4715. * offset of a (static) per cpu variable into the per cpu area.
  4716. */
  4717. zone->pageset = &boot_pageset;
  4718. if (populated_zone(zone))
  4719. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4720. zone->name, zone->present_pages,
  4721. zone_batchsize(zone));
  4722. }
  4723. int __meminit init_currently_empty_zone(struct zone *zone,
  4724. unsigned long zone_start_pfn,
  4725. unsigned long size)
  4726. {
  4727. struct pglist_data *pgdat = zone->zone_pgdat;
  4728. pgdat->nr_zones = zone_idx(zone) + 1;
  4729. zone->zone_start_pfn = zone_start_pfn;
  4730. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4731. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4732. pgdat->node_id,
  4733. (unsigned long)zone_idx(zone),
  4734. zone_start_pfn, (zone_start_pfn + size));
  4735. zone_init_free_lists(zone);
  4736. zone->initialized = 1;
  4737. return 0;
  4738. }
  4739. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4740. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4741. /*
  4742. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4743. */
  4744. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4745. struct mminit_pfnnid_cache *state)
  4746. {
  4747. unsigned long start_pfn, end_pfn;
  4748. int nid;
  4749. if (state->last_start <= pfn && pfn < state->last_end)
  4750. return state->last_nid;
  4751. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4752. if (nid != -1) {
  4753. state->last_start = start_pfn;
  4754. state->last_end = end_pfn;
  4755. state->last_nid = nid;
  4756. }
  4757. return nid;
  4758. }
  4759. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4760. /**
  4761. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4762. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4763. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4764. *
  4765. * If an architecture guarantees that all ranges registered contain no holes
  4766. * and may be freed, this this function may be used instead of calling
  4767. * memblock_free_early_nid() manually.
  4768. */
  4769. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4770. {
  4771. unsigned long start_pfn, end_pfn;
  4772. int i, this_nid;
  4773. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4774. start_pfn = min(start_pfn, max_low_pfn);
  4775. end_pfn = min(end_pfn, max_low_pfn);
  4776. if (start_pfn < end_pfn)
  4777. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4778. (end_pfn - start_pfn) << PAGE_SHIFT,
  4779. this_nid);
  4780. }
  4781. }
  4782. /**
  4783. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4784. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4785. *
  4786. * If an architecture guarantees that all ranges registered contain no holes and may
  4787. * be freed, this function may be used instead of calling memory_present() manually.
  4788. */
  4789. void __init sparse_memory_present_with_active_regions(int nid)
  4790. {
  4791. unsigned long start_pfn, end_pfn;
  4792. int i, this_nid;
  4793. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4794. memory_present(this_nid, start_pfn, end_pfn);
  4795. }
  4796. /**
  4797. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4798. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4799. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4800. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4801. *
  4802. * It returns the start and end page frame of a node based on information
  4803. * provided by memblock_set_node(). If called for a node
  4804. * with no available memory, a warning is printed and the start and end
  4805. * PFNs will be 0.
  4806. */
  4807. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4808. unsigned long *start_pfn, unsigned long *end_pfn)
  4809. {
  4810. unsigned long this_start_pfn, this_end_pfn;
  4811. int i;
  4812. *start_pfn = -1UL;
  4813. *end_pfn = 0;
  4814. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4815. *start_pfn = min(*start_pfn, this_start_pfn);
  4816. *end_pfn = max(*end_pfn, this_end_pfn);
  4817. }
  4818. if (*start_pfn == -1UL)
  4819. *start_pfn = 0;
  4820. }
  4821. /*
  4822. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4823. * assumption is made that zones within a node are ordered in monotonic
  4824. * increasing memory addresses so that the "highest" populated zone is used
  4825. */
  4826. static void __init find_usable_zone_for_movable(void)
  4827. {
  4828. int zone_index;
  4829. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4830. if (zone_index == ZONE_MOVABLE)
  4831. continue;
  4832. if (arch_zone_highest_possible_pfn[zone_index] >
  4833. arch_zone_lowest_possible_pfn[zone_index])
  4834. break;
  4835. }
  4836. VM_BUG_ON(zone_index == -1);
  4837. movable_zone = zone_index;
  4838. }
  4839. /*
  4840. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4841. * because it is sized independent of architecture. Unlike the other zones,
  4842. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4843. * in each node depending on the size of each node and how evenly kernelcore
  4844. * is distributed. This helper function adjusts the zone ranges
  4845. * provided by the architecture for a given node by using the end of the
  4846. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4847. * zones within a node are in order of monotonic increases memory addresses
  4848. */
  4849. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4850. unsigned long zone_type,
  4851. unsigned long node_start_pfn,
  4852. unsigned long node_end_pfn,
  4853. unsigned long *zone_start_pfn,
  4854. unsigned long *zone_end_pfn)
  4855. {
  4856. /* Only adjust if ZONE_MOVABLE is on this node */
  4857. if (zone_movable_pfn[nid]) {
  4858. /* Size ZONE_MOVABLE */
  4859. if (zone_type == ZONE_MOVABLE) {
  4860. *zone_start_pfn = zone_movable_pfn[nid];
  4861. *zone_end_pfn = min(node_end_pfn,
  4862. arch_zone_highest_possible_pfn[movable_zone]);
  4863. /* Adjust for ZONE_MOVABLE starting within this range */
  4864. } else if (!mirrored_kernelcore &&
  4865. *zone_start_pfn < zone_movable_pfn[nid] &&
  4866. *zone_end_pfn > zone_movable_pfn[nid]) {
  4867. *zone_end_pfn = zone_movable_pfn[nid];
  4868. /* Check if this whole range is within ZONE_MOVABLE */
  4869. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4870. *zone_start_pfn = *zone_end_pfn;
  4871. }
  4872. }
  4873. /*
  4874. * Return the number of pages a zone spans in a node, including holes
  4875. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4876. */
  4877. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4878. unsigned long zone_type,
  4879. unsigned long node_start_pfn,
  4880. unsigned long node_end_pfn,
  4881. unsigned long *zone_start_pfn,
  4882. unsigned long *zone_end_pfn,
  4883. unsigned long *ignored)
  4884. {
  4885. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4886. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4887. /* When hotadd a new node from cpu_up(), the node should be empty */
  4888. if (!node_start_pfn && !node_end_pfn)
  4889. return 0;
  4890. /* Get the start and end of the zone */
  4891. *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4892. *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4893. adjust_zone_range_for_zone_movable(nid, zone_type,
  4894. node_start_pfn, node_end_pfn,
  4895. zone_start_pfn, zone_end_pfn);
  4896. /* Check that this node has pages within the zone's required range */
  4897. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4898. return 0;
  4899. /* Move the zone boundaries inside the node if necessary */
  4900. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4901. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4902. /* Return the spanned pages */
  4903. return *zone_end_pfn - *zone_start_pfn;
  4904. }
  4905. /*
  4906. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4907. * then all holes in the requested range will be accounted for.
  4908. */
  4909. unsigned long __meminit __absent_pages_in_range(int nid,
  4910. unsigned long range_start_pfn,
  4911. unsigned long range_end_pfn)
  4912. {
  4913. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4914. unsigned long start_pfn, end_pfn;
  4915. int i;
  4916. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4917. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4918. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4919. nr_absent -= end_pfn - start_pfn;
  4920. }
  4921. return nr_absent;
  4922. }
  4923. /**
  4924. * absent_pages_in_range - Return number of page frames in holes within a range
  4925. * @start_pfn: The start PFN to start searching for holes
  4926. * @end_pfn: The end PFN to stop searching for holes
  4927. *
  4928. * It returns the number of pages frames in memory holes within a range.
  4929. */
  4930. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4931. unsigned long end_pfn)
  4932. {
  4933. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4934. }
  4935. /* Return the number of page frames in holes in a zone on a node */
  4936. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4937. unsigned long zone_type,
  4938. unsigned long node_start_pfn,
  4939. unsigned long node_end_pfn,
  4940. unsigned long *ignored)
  4941. {
  4942. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4943. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4944. unsigned long zone_start_pfn, zone_end_pfn;
  4945. unsigned long nr_absent;
  4946. /* When hotadd a new node from cpu_up(), the node should be empty */
  4947. if (!node_start_pfn && !node_end_pfn)
  4948. return 0;
  4949. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4950. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4951. adjust_zone_range_for_zone_movable(nid, zone_type,
  4952. node_start_pfn, node_end_pfn,
  4953. &zone_start_pfn, &zone_end_pfn);
  4954. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4955. /*
  4956. * ZONE_MOVABLE handling.
  4957. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4958. * and vice versa.
  4959. */
  4960. if (mirrored_kernelcore && zone_movable_pfn[nid]) {
  4961. unsigned long start_pfn, end_pfn;
  4962. struct memblock_region *r;
  4963. for_each_memblock(memory, r) {
  4964. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4965. zone_start_pfn, zone_end_pfn);
  4966. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4967. zone_start_pfn, zone_end_pfn);
  4968. if (zone_type == ZONE_MOVABLE &&
  4969. memblock_is_mirror(r))
  4970. nr_absent += end_pfn - start_pfn;
  4971. if (zone_type == ZONE_NORMAL &&
  4972. !memblock_is_mirror(r))
  4973. nr_absent += end_pfn - start_pfn;
  4974. }
  4975. }
  4976. return nr_absent;
  4977. }
  4978. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4979. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4980. unsigned long zone_type,
  4981. unsigned long node_start_pfn,
  4982. unsigned long node_end_pfn,
  4983. unsigned long *zone_start_pfn,
  4984. unsigned long *zone_end_pfn,
  4985. unsigned long *zones_size)
  4986. {
  4987. unsigned int zone;
  4988. *zone_start_pfn = node_start_pfn;
  4989. for (zone = 0; zone < zone_type; zone++)
  4990. *zone_start_pfn += zones_size[zone];
  4991. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4992. return zones_size[zone_type];
  4993. }
  4994. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4995. unsigned long zone_type,
  4996. unsigned long node_start_pfn,
  4997. unsigned long node_end_pfn,
  4998. unsigned long *zholes_size)
  4999. {
  5000. if (!zholes_size)
  5001. return 0;
  5002. return zholes_size[zone_type];
  5003. }
  5004. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5005. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  5006. unsigned long node_start_pfn,
  5007. unsigned long node_end_pfn,
  5008. unsigned long *zones_size,
  5009. unsigned long *zholes_size)
  5010. {
  5011. unsigned long realtotalpages = 0, totalpages = 0;
  5012. enum zone_type i;
  5013. for (i = 0; i < MAX_NR_ZONES; i++) {
  5014. struct zone *zone = pgdat->node_zones + i;
  5015. unsigned long zone_start_pfn, zone_end_pfn;
  5016. unsigned long size, real_size;
  5017. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  5018. node_start_pfn,
  5019. node_end_pfn,
  5020. &zone_start_pfn,
  5021. &zone_end_pfn,
  5022. zones_size);
  5023. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  5024. node_start_pfn, node_end_pfn,
  5025. zholes_size);
  5026. if (size)
  5027. zone->zone_start_pfn = zone_start_pfn;
  5028. else
  5029. zone->zone_start_pfn = 0;
  5030. zone->spanned_pages = size;
  5031. zone->present_pages = real_size;
  5032. totalpages += size;
  5033. realtotalpages += real_size;
  5034. }
  5035. pgdat->node_spanned_pages = totalpages;
  5036. pgdat->node_present_pages = realtotalpages;
  5037. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  5038. realtotalpages);
  5039. }
  5040. #ifndef CONFIG_SPARSEMEM
  5041. /*
  5042. * Calculate the size of the zone->blockflags rounded to an unsigned long
  5043. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  5044. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  5045. * round what is now in bits to nearest long in bits, then return it in
  5046. * bytes.
  5047. */
  5048. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  5049. {
  5050. unsigned long usemapsize;
  5051. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  5052. usemapsize = roundup(zonesize, pageblock_nr_pages);
  5053. usemapsize = usemapsize >> pageblock_order;
  5054. usemapsize *= NR_PAGEBLOCK_BITS;
  5055. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  5056. return usemapsize / 8;
  5057. }
  5058. static void __init setup_usemap(struct pglist_data *pgdat,
  5059. struct zone *zone,
  5060. unsigned long zone_start_pfn,
  5061. unsigned long zonesize)
  5062. {
  5063. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5064. zone->pageblock_flags = NULL;
  5065. if (usemapsize)
  5066. zone->pageblock_flags =
  5067. memblock_virt_alloc_node_nopanic(usemapsize,
  5068. pgdat->node_id);
  5069. }
  5070. #else
  5071. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5072. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5073. #endif /* CONFIG_SPARSEMEM */
  5074. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5075. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5076. void __paginginit set_pageblock_order(void)
  5077. {
  5078. unsigned int order;
  5079. /* Check that pageblock_nr_pages has not already been setup */
  5080. if (pageblock_order)
  5081. return;
  5082. if (HPAGE_SHIFT > PAGE_SHIFT)
  5083. order = HUGETLB_PAGE_ORDER;
  5084. else
  5085. order = MAX_ORDER - 1;
  5086. /*
  5087. * Assume the largest contiguous order of interest is a huge page.
  5088. * This value may be variable depending on boot parameters on IA64 and
  5089. * powerpc.
  5090. */
  5091. pageblock_order = order;
  5092. }
  5093. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5094. /*
  5095. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5096. * is unused as pageblock_order is set at compile-time. See
  5097. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5098. * the kernel config
  5099. */
  5100. void __paginginit set_pageblock_order(void)
  5101. {
  5102. }
  5103. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5104. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  5105. unsigned long present_pages)
  5106. {
  5107. unsigned long pages = spanned_pages;
  5108. /*
  5109. * Provide a more accurate estimation if there are holes within
  5110. * the zone and SPARSEMEM is in use. If there are holes within the
  5111. * zone, each populated memory region may cost us one or two extra
  5112. * memmap pages due to alignment because memmap pages for each
  5113. * populated regions may not naturally algined on page boundary.
  5114. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5115. */
  5116. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5117. IS_ENABLED(CONFIG_SPARSEMEM))
  5118. pages = present_pages;
  5119. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5120. }
  5121. /*
  5122. * Set up the zone data structures:
  5123. * - mark all pages reserved
  5124. * - mark all memory queues empty
  5125. * - clear the memory bitmaps
  5126. *
  5127. * NOTE: pgdat should get zeroed by caller.
  5128. */
  5129. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5130. {
  5131. enum zone_type j;
  5132. int nid = pgdat->node_id;
  5133. int ret;
  5134. pgdat_resize_init(pgdat);
  5135. #ifdef CONFIG_NUMA_BALANCING
  5136. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5137. pgdat->numabalancing_migrate_nr_pages = 0;
  5138. pgdat->numabalancing_migrate_next_window = jiffies;
  5139. #endif
  5140. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5141. spin_lock_init(&pgdat->split_queue_lock);
  5142. INIT_LIST_HEAD(&pgdat->split_queue);
  5143. pgdat->split_queue_len = 0;
  5144. #endif
  5145. init_waitqueue_head(&pgdat->kswapd_wait);
  5146. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5147. #ifdef CONFIG_COMPACTION
  5148. init_waitqueue_head(&pgdat->kcompactd_wait);
  5149. #endif
  5150. pgdat_page_ext_init(pgdat);
  5151. spin_lock_init(&pgdat->lru_lock);
  5152. lruvec_init(node_lruvec(pgdat));
  5153. for (j = 0; j < MAX_NR_ZONES; j++) {
  5154. struct zone *zone = pgdat->node_zones + j;
  5155. unsigned long size, realsize, freesize, memmap_pages;
  5156. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5157. size = zone->spanned_pages;
  5158. realsize = freesize = zone->present_pages;
  5159. /*
  5160. * Adjust freesize so that it accounts for how much memory
  5161. * is used by this zone for memmap. This affects the watermark
  5162. * and per-cpu initialisations
  5163. */
  5164. memmap_pages = calc_memmap_size(size, realsize);
  5165. if (!is_highmem_idx(j)) {
  5166. if (freesize >= memmap_pages) {
  5167. freesize -= memmap_pages;
  5168. if (memmap_pages)
  5169. printk(KERN_DEBUG
  5170. " %s zone: %lu pages used for memmap\n",
  5171. zone_names[j], memmap_pages);
  5172. } else
  5173. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5174. zone_names[j], memmap_pages, freesize);
  5175. }
  5176. /* Account for reserved pages */
  5177. if (j == 0 && freesize > dma_reserve) {
  5178. freesize -= dma_reserve;
  5179. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5180. zone_names[0], dma_reserve);
  5181. }
  5182. if (!is_highmem_idx(j))
  5183. nr_kernel_pages += freesize;
  5184. /* Charge for highmem memmap if there are enough kernel pages */
  5185. else if (nr_kernel_pages > memmap_pages * 2)
  5186. nr_kernel_pages -= memmap_pages;
  5187. nr_all_pages += freesize;
  5188. /*
  5189. * Set an approximate value for lowmem here, it will be adjusted
  5190. * when the bootmem allocator frees pages into the buddy system.
  5191. * And all highmem pages will be managed by the buddy system.
  5192. */
  5193. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5194. #ifdef CONFIG_NUMA
  5195. zone->node = nid;
  5196. #endif
  5197. zone->name = zone_names[j];
  5198. zone->zone_pgdat = pgdat;
  5199. spin_lock_init(&zone->lock);
  5200. zone_seqlock_init(zone);
  5201. zone_pcp_init(zone);
  5202. if (!size)
  5203. continue;
  5204. set_pageblock_order();
  5205. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5206. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  5207. BUG_ON(ret);
  5208. memmap_init(size, nid, j, zone_start_pfn);
  5209. }
  5210. }
  5211. static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
  5212. {
  5213. unsigned long __maybe_unused start = 0;
  5214. unsigned long __maybe_unused offset = 0;
  5215. /* Skip empty nodes */
  5216. if (!pgdat->node_spanned_pages)
  5217. return;
  5218. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5219. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5220. offset = pgdat->node_start_pfn - start;
  5221. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5222. if (!pgdat->node_mem_map) {
  5223. unsigned long size, end;
  5224. struct page *map;
  5225. /*
  5226. * The zone's endpoints aren't required to be MAX_ORDER
  5227. * aligned but the node_mem_map endpoints must be in order
  5228. * for the buddy allocator to function correctly.
  5229. */
  5230. end = pgdat_end_pfn(pgdat);
  5231. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5232. size = (end - start) * sizeof(struct page);
  5233. map = alloc_remap(pgdat->node_id, size);
  5234. if (!map)
  5235. map = memblock_virt_alloc_node_nopanic(size,
  5236. pgdat->node_id);
  5237. pgdat->node_mem_map = map + offset;
  5238. }
  5239. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5240. /*
  5241. * With no DISCONTIG, the global mem_map is just set as node 0's
  5242. */
  5243. if (pgdat == NODE_DATA(0)) {
  5244. mem_map = NODE_DATA(0)->node_mem_map;
  5245. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5246. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5247. mem_map -= offset;
  5248. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5249. }
  5250. #endif
  5251. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5252. }
  5253. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5254. unsigned long node_start_pfn, unsigned long *zholes_size)
  5255. {
  5256. pg_data_t *pgdat = NODE_DATA(nid);
  5257. unsigned long start_pfn = 0;
  5258. unsigned long end_pfn = 0;
  5259. /* pg_data_t should be reset to zero when it's allocated */
  5260. WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
  5261. pgdat->node_id = nid;
  5262. pgdat->node_start_pfn = node_start_pfn;
  5263. pgdat->per_cpu_nodestats = NULL;
  5264. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5265. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5266. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5267. (u64)start_pfn << PAGE_SHIFT,
  5268. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5269. #else
  5270. start_pfn = node_start_pfn;
  5271. #endif
  5272. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5273. zones_size, zholes_size);
  5274. alloc_node_mem_map(pgdat);
  5275. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5276. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5277. nid, (unsigned long)pgdat,
  5278. (unsigned long)pgdat->node_mem_map);
  5279. #endif
  5280. reset_deferred_meminit(pgdat);
  5281. free_area_init_core(pgdat);
  5282. }
  5283. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5284. #if MAX_NUMNODES > 1
  5285. /*
  5286. * Figure out the number of possible node ids.
  5287. */
  5288. void __init setup_nr_node_ids(void)
  5289. {
  5290. unsigned int highest;
  5291. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5292. nr_node_ids = highest + 1;
  5293. }
  5294. #endif
  5295. /**
  5296. * node_map_pfn_alignment - determine the maximum internode alignment
  5297. *
  5298. * This function should be called after node map is populated and sorted.
  5299. * It calculates the maximum power of two alignment which can distinguish
  5300. * all the nodes.
  5301. *
  5302. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5303. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5304. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5305. * shifted, 1GiB is enough and this function will indicate so.
  5306. *
  5307. * This is used to test whether pfn -> nid mapping of the chosen memory
  5308. * model has fine enough granularity to avoid incorrect mapping for the
  5309. * populated node map.
  5310. *
  5311. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5312. * requirement (single node).
  5313. */
  5314. unsigned long __init node_map_pfn_alignment(void)
  5315. {
  5316. unsigned long accl_mask = 0, last_end = 0;
  5317. unsigned long start, end, mask;
  5318. int last_nid = -1;
  5319. int i, nid;
  5320. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5321. if (!start || last_nid < 0 || last_nid == nid) {
  5322. last_nid = nid;
  5323. last_end = end;
  5324. continue;
  5325. }
  5326. /*
  5327. * Start with a mask granular enough to pin-point to the
  5328. * start pfn and tick off bits one-by-one until it becomes
  5329. * too coarse to separate the current node from the last.
  5330. */
  5331. mask = ~((1 << __ffs(start)) - 1);
  5332. while (mask && last_end <= (start & (mask << 1)))
  5333. mask <<= 1;
  5334. /* accumulate all internode masks */
  5335. accl_mask |= mask;
  5336. }
  5337. /* convert mask to number of pages */
  5338. return ~accl_mask + 1;
  5339. }
  5340. /* Find the lowest pfn for a node */
  5341. static unsigned long __init find_min_pfn_for_node(int nid)
  5342. {
  5343. unsigned long min_pfn = ULONG_MAX;
  5344. unsigned long start_pfn;
  5345. int i;
  5346. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5347. min_pfn = min(min_pfn, start_pfn);
  5348. if (min_pfn == ULONG_MAX) {
  5349. pr_warn("Could not find start_pfn for node %d\n", nid);
  5350. return 0;
  5351. }
  5352. return min_pfn;
  5353. }
  5354. /**
  5355. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5356. *
  5357. * It returns the minimum PFN based on information provided via
  5358. * memblock_set_node().
  5359. */
  5360. unsigned long __init find_min_pfn_with_active_regions(void)
  5361. {
  5362. return find_min_pfn_for_node(MAX_NUMNODES);
  5363. }
  5364. /*
  5365. * early_calculate_totalpages()
  5366. * Sum pages in active regions for movable zone.
  5367. * Populate N_MEMORY for calculating usable_nodes.
  5368. */
  5369. static unsigned long __init early_calculate_totalpages(void)
  5370. {
  5371. unsigned long totalpages = 0;
  5372. unsigned long start_pfn, end_pfn;
  5373. int i, nid;
  5374. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5375. unsigned long pages = end_pfn - start_pfn;
  5376. totalpages += pages;
  5377. if (pages)
  5378. node_set_state(nid, N_MEMORY);
  5379. }
  5380. return totalpages;
  5381. }
  5382. /*
  5383. * Find the PFN the Movable zone begins in each node. Kernel memory
  5384. * is spread evenly between nodes as long as the nodes have enough
  5385. * memory. When they don't, some nodes will have more kernelcore than
  5386. * others
  5387. */
  5388. static void __init find_zone_movable_pfns_for_nodes(void)
  5389. {
  5390. int i, nid;
  5391. unsigned long usable_startpfn;
  5392. unsigned long kernelcore_node, kernelcore_remaining;
  5393. /* save the state before borrow the nodemask */
  5394. nodemask_t saved_node_state = node_states[N_MEMORY];
  5395. unsigned long totalpages = early_calculate_totalpages();
  5396. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5397. struct memblock_region *r;
  5398. /* Need to find movable_zone earlier when movable_node is specified. */
  5399. find_usable_zone_for_movable();
  5400. /*
  5401. * If movable_node is specified, ignore kernelcore and movablecore
  5402. * options.
  5403. */
  5404. if (movable_node_is_enabled()) {
  5405. for_each_memblock(memory, r) {
  5406. if (!memblock_is_hotpluggable(r))
  5407. continue;
  5408. nid = r->nid;
  5409. usable_startpfn = PFN_DOWN(r->base);
  5410. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5411. min(usable_startpfn, zone_movable_pfn[nid]) :
  5412. usable_startpfn;
  5413. }
  5414. goto out2;
  5415. }
  5416. /*
  5417. * If kernelcore=mirror is specified, ignore movablecore option
  5418. */
  5419. if (mirrored_kernelcore) {
  5420. bool mem_below_4gb_not_mirrored = false;
  5421. for_each_memblock(memory, r) {
  5422. if (memblock_is_mirror(r))
  5423. continue;
  5424. nid = r->nid;
  5425. usable_startpfn = memblock_region_memory_base_pfn(r);
  5426. if (usable_startpfn < 0x100000) {
  5427. mem_below_4gb_not_mirrored = true;
  5428. continue;
  5429. }
  5430. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5431. min(usable_startpfn, zone_movable_pfn[nid]) :
  5432. usable_startpfn;
  5433. }
  5434. if (mem_below_4gb_not_mirrored)
  5435. pr_warn("This configuration results in unmirrored kernel memory.");
  5436. goto out2;
  5437. }
  5438. /*
  5439. * If movablecore=nn[KMG] was specified, calculate what size of
  5440. * kernelcore that corresponds so that memory usable for
  5441. * any allocation type is evenly spread. If both kernelcore
  5442. * and movablecore are specified, then the value of kernelcore
  5443. * will be used for required_kernelcore if it's greater than
  5444. * what movablecore would have allowed.
  5445. */
  5446. if (required_movablecore) {
  5447. unsigned long corepages;
  5448. /*
  5449. * Round-up so that ZONE_MOVABLE is at least as large as what
  5450. * was requested by the user
  5451. */
  5452. required_movablecore =
  5453. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5454. required_movablecore = min(totalpages, required_movablecore);
  5455. corepages = totalpages - required_movablecore;
  5456. required_kernelcore = max(required_kernelcore, corepages);
  5457. }
  5458. /*
  5459. * If kernelcore was not specified or kernelcore size is larger
  5460. * than totalpages, there is no ZONE_MOVABLE.
  5461. */
  5462. if (!required_kernelcore || required_kernelcore >= totalpages)
  5463. goto out;
  5464. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5465. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5466. restart:
  5467. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5468. kernelcore_node = required_kernelcore / usable_nodes;
  5469. for_each_node_state(nid, N_MEMORY) {
  5470. unsigned long start_pfn, end_pfn;
  5471. /*
  5472. * Recalculate kernelcore_node if the division per node
  5473. * now exceeds what is necessary to satisfy the requested
  5474. * amount of memory for the kernel
  5475. */
  5476. if (required_kernelcore < kernelcore_node)
  5477. kernelcore_node = required_kernelcore / usable_nodes;
  5478. /*
  5479. * As the map is walked, we track how much memory is usable
  5480. * by the kernel using kernelcore_remaining. When it is
  5481. * 0, the rest of the node is usable by ZONE_MOVABLE
  5482. */
  5483. kernelcore_remaining = kernelcore_node;
  5484. /* Go through each range of PFNs within this node */
  5485. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5486. unsigned long size_pages;
  5487. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5488. if (start_pfn >= end_pfn)
  5489. continue;
  5490. /* Account for what is only usable for kernelcore */
  5491. if (start_pfn < usable_startpfn) {
  5492. unsigned long kernel_pages;
  5493. kernel_pages = min(end_pfn, usable_startpfn)
  5494. - start_pfn;
  5495. kernelcore_remaining -= min(kernel_pages,
  5496. kernelcore_remaining);
  5497. required_kernelcore -= min(kernel_pages,
  5498. required_kernelcore);
  5499. /* Continue if range is now fully accounted */
  5500. if (end_pfn <= usable_startpfn) {
  5501. /*
  5502. * Push zone_movable_pfn to the end so
  5503. * that if we have to rebalance
  5504. * kernelcore across nodes, we will
  5505. * not double account here
  5506. */
  5507. zone_movable_pfn[nid] = end_pfn;
  5508. continue;
  5509. }
  5510. start_pfn = usable_startpfn;
  5511. }
  5512. /*
  5513. * The usable PFN range for ZONE_MOVABLE is from
  5514. * start_pfn->end_pfn. Calculate size_pages as the
  5515. * number of pages used as kernelcore
  5516. */
  5517. size_pages = end_pfn - start_pfn;
  5518. if (size_pages > kernelcore_remaining)
  5519. size_pages = kernelcore_remaining;
  5520. zone_movable_pfn[nid] = start_pfn + size_pages;
  5521. /*
  5522. * Some kernelcore has been met, update counts and
  5523. * break if the kernelcore for this node has been
  5524. * satisfied
  5525. */
  5526. required_kernelcore -= min(required_kernelcore,
  5527. size_pages);
  5528. kernelcore_remaining -= size_pages;
  5529. if (!kernelcore_remaining)
  5530. break;
  5531. }
  5532. }
  5533. /*
  5534. * If there is still required_kernelcore, we do another pass with one
  5535. * less node in the count. This will push zone_movable_pfn[nid] further
  5536. * along on the nodes that still have memory until kernelcore is
  5537. * satisfied
  5538. */
  5539. usable_nodes--;
  5540. if (usable_nodes && required_kernelcore > usable_nodes)
  5541. goto restart;
  5542. out2:
  5543. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5544. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5545. zone_movable_pfn[nid] =
  5546. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5547. out:
  5548. /* restore the node_state */
  5549. node_states[N_MEMORY] = saved_node_state;
  5550. }
  5551. /* Any regular or high memory on that node ? */
  5552. static void check_for_memory(pg_data_t *pgdat, int nid)
  5553. {
  5554. enum zone_type zone_type;
  5555. if (N_MEMORY == N_NORMAL_MEMORY)
  5556. return;
  5557. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5558. struct zone *zone = &pgdat->node_zones[zone_type];
  5559. if (populated_zone(zone)) {
  5560. node_set_state(nid, N_HIGH_MEMORY);
  5561. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5562. zone_type <= ZONE_NORMAL)
  5563. node_set_state(nid, N_NORMAL_MEMORY);
  5564. break;
  5565. }
  5566. }
  5567. }
  5568. /**
  5569. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5570. * @max_zone_pfn: an array of max PFNs for each zone
  5571. *
  5572. * This will call free_area_init_node() for each active node in the system.
  5573. * Using the page ranges provided by memblock_set_node(), the size of each
  5574. * zone in each node and their holes is calculated. If the maximum PFN
  5575. * between two adjacent zones match, it is assumed that the zone is empty.
  5576. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5577. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5578. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5579. * at arch_max_dma_pfn.
  5580. */
  5581. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5582. {
  5583. unsigned long start_pfn, end_pfn;
  5584. int i, nid;
  5585. /* Record where the zone boundaries are */
  5586. memset(arch_zone_lowest_possible_pfn, 0,
  5587. sizeof(arch_zone_lowest_possible_pfn));
  5588. memset(arch_zone_highest_possible_pfn, 0,
  5589. sizeof(arch_zone_highest_possible_pfn));
  5590. start_pfn = find_min_pfn_with_active_regions();
  5591. for (i = 0; i < MAX_NR_ZONES; i++) {
  5592. if (i == ZONE_MOVABLE)
  5593. continue;
  5594. end_pfn = max(max_zone_pfn[i], start_pfn);
  5595. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5596. arch_zone_highest_possible_pfn[i] = end_pfn;
  5597. start_pfn = end_pfn;
  5598. }
  5599. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5600. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5601. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5602. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5603. find_zone_movable_pfns_for_nodes();
  5604. /* Print out the zone ranges */
  5605. pr_info("Zone ranges:\n");
  5606. for (i = 0; i < MAX_NR_ZONES; i++) {
  5607. if (i == ZONE_MOVABLE)
  5608. continue;
  5609. pr_info(" %-8s ", zone_names[i]);
  5610. if (arch_zone_lowest_possible_pfn[i] ==
  5611. arch_zone_highest_possible_pfn[i])
  5612. pr_cont("empty\n");
  5613. else
  5614. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5615. (u64)arch_zone_lowest_possible_pfn[i]
  5616. << PAGE_SHIFT,
  5617. ((u64)arch_zone_highest_possible_pfn[i]
  5618. << PAGE_SHIFT) - 1);
  5619. }
  5620. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5621. pr_info("Movable zone start for each node\n");
  5622. for (i = 0; i < MAX_NUMNODES; i++) {
  5623. if (zone_movable_pfn[i])
  5624. pr_info(" Node %d: %#018Lx\n", i,
  5625. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5626. }
  5627. /* Print out the early node map */
  5628. pr_info("Early memory node ranges\n");
  5629. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5630. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5631. (u64)start_pfn << PAGE_SHIFT,
  5632. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5633. /* Initialise every node */
  5634. mminit_verify_pageflags_layout();
  5635. setup_nr_node_ids();
  5636. for_each_online_node(nid) {
  5637. pg_data_t *pgdat = NODE_DATA(nid);
  5638. free_area_init_node(nid, NULL,
  5639. find_min_pfn_for_node(nid), NULL);
  5640. /* Any memory on that node */
  5641. if (pgdat->node_present_pages)
  5642. node_set_state(nid, N_MEMORY);
  5643. check_for_memory(pgdat, nid);
  5644. }
  5645. }
  5646. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5647. {
  5648. unsigned long long coremem;
  5649. if (!p)
  5650. return -EINVAL;
  5651. coremem = memparse(p, &p);
  5652. *core = coremem >> PAGE_SHIFT;
  5653. /* Paranoid check that UL is enough for the coremem value */
  5654. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5655. return 0;
  5656. }
  5657. /*
  5658. * kernelcore=size sets the amount of memory for use for allocations that
  5659. * cannot be reclaimed or migrated.
  5660. */
  5661. static int __init cmdline_parse_kernelcore(char *p)
  5662. {
  5663. /* parse kernelcore=mirror */
  5664. if (parse_option_str(p, "mirror")) {
  5665. mirrored_kernelcore = true;
  5666. return 0;
  5667. }
  5668. return cmdline_parse_core(p, &required_kernelcore);
  5669. }
  5670. /*
  5671. * movablecore=size sets the amount of memory for use for allocations that
  5672. * can be reclaimed or migrated.
  5673. */
  5674. static int __init cmdline_parse_movablecore(char *p)
  5675. {
  5676. return cmdline_parse_core(p, &required_movablecore);
  5677. }
  5678. early_param("kernelcore", cmdline_parse_kernelcore);
  5679. early_param("movablecore", cmdline_parse_movablecore);
  5680. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5681. void adjust_managed_page_count(struct page *page, long count)
  5682. {
  5683. spin_lock(&managed_page_count_lock);
  5684. page_zone(page)->managed_pages += count;
  5685. totalram_pages += count;
  5686. #ifdef CONFIG_HIGHMEM
  5687. if (PageHighMem(page))
  5688. totalhigh_pages += count;
  5689. #endif
  5690. spin_unlock(&managed_page_count_lock);
  5691. }
  5692. EXPORT_SYMBOL(adjust_managed_page_count);
  5693. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5694. {
  5695. void *pos;
  5696. unsigned long pages = 0;
  5697. start = (void *)PAGE_ALIGN((unsigned long)start);
  5698. end = (void *)((unsigned long)end & PAGE_MASK);
  5699. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5700. if ((unsigned int)poison <= 0xFF)
  5701. memset(pos, poison, PAGE_SIZE);
  5702. free_reserved_page(virt_to_page(pos));
  5703. }
  5704. if (pages && s)
  5705. pr_info("Freeing %s memory: %ldK\n",
  5706. s, pages << (PAGE_SHIFT - 10));
  5707. return pages;
  5708. }
  5709. EXPORT_SYMBOL(free_reserved_area);
  5710. #ifdef CONFIG_HIGHMEM
  5711. void free_highmem_page(struct page *page)
  5712. {
  5713. __free_reserved_page(page);
  5714. totalram_pages++;
  5715. page_zone(page)->managed_pages++;
  5716. totalhigh_pages++;
  5717. }
  5718. #endif
  5719. void __init mem_init_print_info(const char *str)
  5720. {
  5721. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5722. unsigned long init_code_size, init_data_size;
  5723. physpages = get_num_physpages();
  5724. codesize = _etext - _stext;
  5725. datasize = _edata - _sdata;
  5726. rosize = __end_rodata - __start_rodata;
  5727. bss_size = __bss_stop - __bss_start;
  5728. init_data_size = __init_end - __init_begin;
  5729. init_code_size = _einittext - _sinittext;
  5730. /*
  5731. * Detect special cases and adjust section sizes accordingly:
  5732. * 1) .init.* may be embedded into .data sections
  5733. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5734. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5735. * 3) .rodata.* may be embedded into .text or .data sections.
  5736. */
  5737. #define adj_init_size(start, end, size, pos, adj) \
  5738. do { \
  5739. if (start <= pos && pos < end && size > adj) \
  5740. size -= adj; \
  5741. } while (0)
  5742. adj_init_size(__init_begin, __init_end, init_data_size,
  5743. _sinittext, init_code_size);
  5744. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5745. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5746. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5747. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5748. #undef adj_init_size
  5749. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5750. #ifdef CONFIG_HIGHMEM
  5751. ", %luK highmem"
  5752. #endif
  5753. "%s%s)\n",
  5754. nr_free_pages() << (PAGE_SHIFT - 10),
  5755. physpages << (PAGE_SHIFT - 10),
  5756. codesize >> 10, datasize >> 10, rosize >> 10,
  5757. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5758. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5759. totalcma_pages << (PAGE_SHIFT - 10),
  5760. #ifdef CONFIG_HIGHMEM
  5761. totalhigh_pages << (PAGE_SHIFT - 10),
  5762. #endif
  5763. str ? ", " : "", str ? str : "");
  5764. }
  5765. /**
  5766. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5767. * @new_dma_reserve: The number of pages to mark reserved
  5768. *
  5769. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5770. * In the DMA zone, a significant percentage may be consumed by kernel image
  5771. * and other unfreeable allocations which can skew the watermarks badly. This
  5772. * function may optionally be used to account for unfreeable pages in the
  5773. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5774. * smaller per-cpu batchsize.
  5775. */
  5776. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5777. {
  5778. dma_reserve = new_dma_reserve;
  5779. }
  5780. void __init free_area_init(unsigned long *zones_size)
  5781. {
  5782. free_area_init_node(0, zones_size,
  5783. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5784. }
  5785. static int page_alloc_cpu_notify(struct notifier_block *self,
  5786. unsigned long action, void *hcpu)
  5787. {
  5788. int cpu = (unsigned long)hcpu;
  5789. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5790. lru_add_drain_cpu(cpu);
  5791. drain_pages(cpu);
  5792. /*
  5793. * Spill the event counters of the dead processor
  5794. * into the current processors event counters.
  5795. * This artificially elevates the count of the current
  5796. * processor.
  5797. */
  5798. vm_events_fold_cpu(cpu);
  5799. /*
  5800. * Zero the differential counters of the dead processor
  5801. * so that the vm statistics are consistent.
  5802. *
  5803. * This is only okay since the processor is dead and cannot
  5804. * race with what we are doing.
  5805. */
  5806. cpu_vm_stats_fold(cpu);
  5807. }
  5808. return NOTIFY_OK;
  5809. }
  5810. void __init page_alloc_init(void)
  5811. {
  5812. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5813. }
  5814. /*
  5815. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5816. * or min_free_kbytes changes.
  5817. */
  5818. static void calculate_totalreserve_pages(void)
  5819. {
  5820. struct pglist_data *pgdat;
  5821. unsigned long reserve_pages = 0;
  5822. enum zone_type i, j;
  5823. for_each_online_pgdat(pgdat) {
  5824. pgdat->totalreserve_pages = 0;
  5825. for (i = 0; i < MAX_NR_ZONES; i++) {
  5826. struct zone *zone = pgdat->node_zones + i;
  5827. long max = 0;
  5828. /* Find valid and maximum lowmem_reserve in the zone */
  5829. for (j = i; j < MAX_NR_ZONES; j++) {
  5830. if (zone->lowmem_reserve[j] > max)
  5831. max = zone->lowmem_reserve[j];
  5832. }
  5833. /* we treat the high watermark as reserved pages. */
  5834. max += high_wmark_pages(zone);
  5835. if (max > zone->managed_pages)
  5836. max = zone->managed_pages;
  5837. pgdat->totalreserve_pages += max;
  5838. reserve_pages += max;
  5839. }
  5840. }
  5841. totalreserve_pages = reserve_pages;
  5842. }
  5843. /*
  5844. * setup_per_zone_lowmem_reserve - called whenever
  5845. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5846. * has a correct pages reserved value, so an adequate number of
  5847. * pages are left in the zone after a successful __alloc_pages().
  5848. */
  5849. static void setup_per_zone_lowmem_reserve(void)
  5850. {
  5851. struct pglist_data *pgdat;
  5852. enum zone_type j, idx;
  5853. for_each_online_pgdat(pgdat) {
  5854. for (j = 0; j < MAX_NR_ZONES; j++) {
  5855. struct zone *zone = pgdat->node_zones + j;
  5856. unsigned long managed_pages = zone->managed_pages;
  5857. zone->lowmem_reserve[j] = 0;
  5858. idx = j;
  5859. while (idx) {
  5860. struct zone *lower_zone;
  5861. idx--;
  5862. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5863. sysctl_lowmem_reserve_ratio[idx] = 1;
  5864. lower_zone = pgdat->node_zones + idx;
  5865. lower_zone->lowmem_reserve[j] = managed_pages /
  5866. sysctl_lowmem_reserve_ratio[idx];
  5867. managed_pages += lower_zone->managed_pages;
  5868. }
  5869. }
  5870. }
  5871. /* update totalreserve_pages */
  5872. calculate_totalreserve_pages();
  5873. }
  5874. static void __setup_per_zone_wmarks(void)
  5875. {
  5876. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5877. unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
  5878. unsigned long lowmem_pages = 0;
  5879. struct zone *zone;
  5880. unsigned long flags;
  5881. /* Calculate total number of !ZONE_HIGHMEM pages */
  5882. for_each_zone(zone) {
  5883. if (!is_highmem(zone))
  5884. lowmem_pages += zone->managed_pages;
  5885. }
  5886. for_each_zone(zone) {
  5887. u64 min, low;
  5888. spin_lock_irqsave(&zone->lock, flags);
  5889. min = (u64)pages_min * zone->managed_pages;
  5890. do_div(min, lowmem_pages);
  5891. low = (u64)pages_low * zone->managed_pages;
  5892. do_div(low, vm_total_pages);
  5893. if (is_highmem(zone)) {
  5894. /*
  5895. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5896. * need highmem pages, so cap pages_min to a small
  5897. * value here.
  5898. *
  5899. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5900. * deltas control asynch page reclaim, and so should
  5901. * not be capped for highmem.
  5902. */
  5903. unsigned long min_pages;
  5904. min_pages = zone->managed_pages / 1024;
  5905. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5906. zone->watermark[WMARK_MIN] = min_pages;
  5907. } else {
  5908. /*
  5909. * If it's a lowmem zone, reserve a number of pages
  5910. * proportionate to the zone's size.
  5911. */
  5912. zone->watermark[WMARK_MIN] = min;
  5913. }
  5914. /*
  5915. * Set the kswapd watermarks distance according to the
  5916. * scale factor in proportion to available memory, but
  5917. * ensure a minimum size on small systems.
  5918. */
  5919. min = max_t(u64, min >> 2,
  5920. mult_frac(zone->managed_pages,
  5921. watermark_scale_factor, 10000));
  5922. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
  5923. low + min;
  5924. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
  5925. low + min * 2;
  5926. spin_unlock_irqrestore(&zone->lock, flags);
  5927. }
  5928. /* update totalreserve_pages */
  5929. calculate_totalreserve_pages();
  5930. }
  5931. /**
  5932. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5933. * or when memory is hot-{added|removed}
  5934. *
  5935. * Ensures that the watermark[min,low,high] values for each zone are set
  5936. * correctly with respect to min_free_kbytes.
  5937. */
  5938. void setup_per_zone_wmarks(void)
  5939. {
  5940. mutex_lock(&zonelists_mutex);
  5941. __setup_per_zone_wmarks();
  5942. mutex_unlock(&zonelists_mutex);
  5943. }
  5944. /*
  5945. * Initialise min_free_kbytes.
  5946. *
  5947. * For small machines we want it small (128k min). For large machines
  5948. * we want it large (64MB max). But it is not linear, because network
  5949. * bandwidth does not increase linearly with machine size. We use
  5950. *
  5951. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5952. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5953. *
  5954. * which yields
  5955. *
  5956. * 16MB: 512k
  5957. * 32MB: 724k
  5958. * 64MB: 1024k
  5959. * 128MB: 1448k
  5960. * 256MB: 2048k
  5961. * 512MB: 2896k
  5962. * 1024MB: 4096k
  5963. * 2048MB: 5792k
  5964. * 4096MB: 8192k
  5965. * 8192MB: 11584k
  5966. * 16384MB: 16384k
  5967. */
  5968. int __meminit init_per_zone_wmark_min(void)
  5969. {
  5970. unsigned long lowmem_kbytes;
  5971. int new_min_free_kbytes;
  5972. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5973. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5974. if (new_min_free_kbytes > user_min_free_kbytes) {
  5975. min_free_kbytes = new_min_free_kbytes;
  5976. if (min_free_kbytes < 128)
  5977. min_free_kbytes = 128;
  5978. if (min_free_kbytes > 65536)
  5979. min_free_kbytes = 65536;
  5980. } else {
  5981. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5982. new_min_free_kbytes, user_min_free_kbytes);
  5983. }
  5984. setup_per_zone_wmarks();
  5985. refresh_zone_stat_thresholds();
  5986. setup_per_zone_lowmem_reserve();
  5987. #ifdef CONFIG_NUMA
  5988. setup_min_unmapped_ratio();
  5989. setup_min_slab_ratio();
  5990. #endif
  5991. return 0;
  5992. }
  5993. core_initcall(init_per_zone_wmark_min)
  5994. /*
  5995. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5996. * that we can call two helper functions whenever min_free_kbytes
  5997. * or extra_free_kbytes changes.
  5998. */
  5999. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  6000. void __user *buffer, size_t *length, loff_t *ppos)
  6001. {
  6002. int rc;
  6003. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6004. if (rc)
  6005. return rc;
  6006. if (write) {
  6007. user_min_free_kbytes = min_free_kbytes;
  6008. setup_per_zone_wmarks();
  6009. }
  6010. return 0;
  6011. }
  6012. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  6013. void __user *buffer, size_t *length, loff_t *ppos)
  6014. {
  6015. int rc;
  6016. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6017. if (rc)
  6018. return rc;
  6019. if (write)
  6020. setup_per_zone_wmarks();
  6021. return 0;
  6022. }
  6023. #ifdef CONFIG_NUMA
  6024. static void setup_min_unmapped_ratio(void)
  6025. {
  6026. pg_data_t *pgdat;
  6027. struct zone *zone;
  6028. for_each_online_pgdat(pgdat)
  6029. pgdat->min_unmapped_pages = 0;
  6030. for_each_zone(zone)
  6031. zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
  6032. sysctl_min_unmapped_ratio) / 100;
  6033. }
  6034. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  6035. void __user *buffer, size_t *length, loff_t *ppos)
  6036. {
  6037. int rc;
  6038. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6039. if (rc)
  6040. return rc;
  6041. setup_min_unmapped_ratio();
  6042. return 0;
  6043. }
  6044. static void setup_min_slab_ratio(void)
  6045. {
  6046. pg_data_t *pgdat;
  6047. struct zone *zone;
  6048. for_each_online_pgdat(pgdat)
  6049. pgdat->min_slab_pages = 0;
  6050. for_each_zone(zone)
  6051. zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
  6052. sysctl_min_slab_ratio) / 100;
  6053. }
  6054. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  6055. void __user *buffer, size_t *length, loff_t *ppos)
  6056. {
  6057. int rc;
  6058. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6059. if (rc)
  6060. return rc;
  6061. setup_min_slab_ratio();
  6062. return 0;
  6063. }
  6064. #endif
  6065. /*
  6066. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  6067. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  6068. * whenever sysctl_lowmem_reserve_ratio changes.
  6069. *
  6070. * The reserve ratio obviously has absolutely no relation with the
  6071. * minimum watermarks. The lowmem reserve ratio can only make sense
  6072. * if in function of the boot time zone sizes.
  6073. */
  6074. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6075. void __user *buffer, size_t *length, loff_t *ppos)
  6076. {
  6077. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6078. setup_per_zone_lowmem_reserve();
  6079. return 0;
  6080. }
  6081. /*
  6082. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6083. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6084. * pagelist can have before it gets flushed back to buddy allocator.
  6085. */
  6086. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6087. void __user *buffer, size_t *length, loff_t *ppos)
  6088. {
  6089. struct zone *zone;
  6090. int old_percpu_pagelist_fraction;
  6091. int ret;
  6092. mutex_lock(&pcp_batch_high_lock);
  6093. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6094. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6095. if (!write || ret < 0)
  6096. goto out;
  6097. /* Sanity checking to avoid pcp imbalance */
  6098. if (percpu_pagelist_fraction &&
  6099. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6100. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6101. ret = -EINVAL;
  6102. goto out;
  6103. }
  6104. /* No change? */
  6105. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6106. goto out;
  6107. for_each_populated_zone(zone) {
  6108. unsigned int cpu;
  6109. for_each_possible_cpu(cpu)
  6110. pageset_set_high_and_batch(zone,
  6111. per_cpu_ptr(zone->pageset, cpu));
  6112. }
  6113. out:
  6114. mutex_unlock(&pcp_batch_high_lock);
  6115. return ret;
  6116. }
  6117. #ifdef CONFIG_NUMA
  6118. int hashdist = HASHDIST_DEFAULT;
  6119. static int __init set_hashdist(char *str)
  6120. {
  6121. if (!str)
  6122. return 0;
  6123. hashdist = simple_strtoul(str, &str, 0);
  6124. return 1;
  6125. }
  6126. __setup("hashdist=", set_hashdist);
  6127. #endif
  6128. #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  6129. /*
  6130. * Returns the number of pages that arch has reserved but
  6131. * is not known to alloc_large_system_hash().
  6132. */
  6133. static unsigned long __init arch_reserved_kernel_pages(void)
  6134. {
  6135. return 0;
  6136. }
  6137. #endif
  6138. /*
  6139. * allocate a large system hash table from bootmem
  6140. * - it is assumed that the hash table must contain an exact power-of-2
  6141. * quantity of entries
  6142. * - limit is the number of hash buckets, not the total allocation size
  6143. */
  6144. void *__init alloc_large_system_hash(const char *tablename,
  6145. unsigned long bucketsize,
  6146. unsigned long numentries,
  6147. int scale,
  6148. int flags,
  6149. unsigned int *_hash_shift,
  6150. unsigned int *_hash_mask,
  6151. unsigned long low_limit,
  6152. unsigned long high_limit)
  6153. {
  6154. unsigned long long max = high_limit;
  6155. unsigned long log2qty, size;
  6156. void *table = NULL;
  6157. /* allow the kernel cmdline to have a say */
  6158. if (!numentries) {
  6159. /* round applicable memory size up to nearest megabyte */
  6160. numentries = nr_kernel_pages;
  6161. numentries -= arch_reserved_kernel_pages();
  6162. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6163. if (PAGE_SHIFT < 20)
  6164. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6165. /* limit to 1 bucket per 2^scale bytes of low memory */
  6166. if (scale > PAGE_SHIFT)
  6167. numentries >>= (scale - PAGE_SHIFT);
  6168. else
  6169. numentries <<= (PAGE_SHIFT - scale);
  6170. /* Make sure we've got at least a 0-order allocation.. */
  6171. if (unlikely(flags & HASH_SMALL)) {
  6172. /* Makes no sense without HASH_EARLY */
  6173. WARN_ON(!(flags & HASH_EARLY));
  6174. if (!(numentries >> *_hash_shift)) {
  6175. numentries = 1UL << *_hash_shift;
  6176. BUG_ON(!numentries);
  6177. }
  6178. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6179. numentries = PAGE_SIZE / bucketsize;
  6180. }
  6181. numentries = roundup_pow_of_two(numentries);
  6182. /* limit allocation size to 1/16 total memory by default */
  6183. if (max == 0) {
  6184. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6185. do_div(max, bucketsize);
  6186. }
  6187. max = min(max, 0x80000000ULL);
  6188. if (numentries < low_limit)
  6189. numentries = low_limit;
  6190. if (numentries > max)
  6191. numentries = max;
  6192. log2qty = ilog2(numentries);
  6193. do {
  6194. size = bucketsize << log2qty;
  6195. if (flags & HASH_EARLY)
  6196. table = memblock_virt_alloc_nopanic(size, 0);
  6197. else if (hashdist)
  6198. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  6199. else {
  6200. /*
  6201. * If bucketsize is not a power-of-two, we may free
  6202. * some pages at the end of hash table which
  6203. * alloc_pages_exact() automatically does
  6204. */
  6205. if (get_order(size) < MAX_ORDER) {
  6206. table = alloc_pages_exact(size, GFP_ATOMIC);
  6207. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  6208. }
  6209. }
  6210. } while (!table && size > PAGE_SIZE && --log2qty);
  6211. if (!table)
  6212. panic("Failed to allocate %s hash table\n", tablename);
  6213. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6214. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6215. if (_hash_shift)
  6216. *_hash_shift = log2qty;
  6217. if (_hash_mask)
  6218. *_hash_mask = (1 << log2qty) - 1;
  6219. return table;
  6220. }
  6221. /*
  6222. * This function checks whether pageblock includes unmovable pages or not.
  6223. * If @count is not zero, it is okay to include less @count unmovable pages
  6224. *
  6225. * PageLRU check without isolation or lru_lock could race so that
  6226. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  6227. * expect this function should be exact.
  6228. */
  6229. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6230. bool skip_hwpoisoned_pages)
  6231. {
  6232. unsigned long pfn, iter, found;
  6233. int mt;
  6234. /*
  6235. * For avoiding noise data, lru_add_drain_all() should be called
  6236. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6237. */
  6238. if (zone_idx(zone) == ZONE_MOVABLE)
  6239. return false;
  6240. mt = get_pageblock_migratetype(page);
  6241. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  6242. return false;
  6243. pfn = page_to_pfn(page);
  6244. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6245. unsigned long check = pfn + iter;
  6246. if (!pfn_valid_within(check))
  6247. continue;
  6248. page = pfn_to_page(check);
  6249. /*
  6250. * Hugepages are not in LRU lists, but they're movable.
  6251. * We need not scan over tail pages bacause we don't
  6252. * handle each tail page individually in migration.
  6253. */
  6254. if (PageHuge(page)) {
  6255. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6256. continue;
  6257. }
  6258. /*
  6259. * We can't use page_count without pin a page
  6260. * because another CPU can free compound page.
  6261. * This check already skips compound tails of THP
  6262. * because their page->_refcount is zero at all time.
  6263. */
  6264. if (!page_ref_count(page)) {
  6265. if (PageBuddy(page))
  6266. iter += (1 << page_order(page)) - 1;
  6267. continue;
  6268. }
  6269. /*
  6270. * The HWPoisoned page may be not in buddy system, and
  6271. * page_count() is not 0.
  6272. */
  6273. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6274. continue;
  6275. if (!PageLRU(page))
  6276. found++;
  6277. /*
  6278. * If there are RECLAIMABLE pages, we need to check
  6279. * it. But now, memory offline itself doesn't call
  6280. * shrink_node_slabs() and it still to be fixed.
  6281. */
  6282. /*
  6283. * If the page is not RAM, page_count()should be 0.
  6284. * we don't need more check. This is an _used_ not-movable page.
  6285. *
  6286. * The problematic thing here is PG_reserved pages. PG_reserved
  6287. * is set to both of a memory hole page and a _used_ kernel
  6288. * page at boot.
  6289. */
  6290. if (found > count)
  6291. return true;
  6292. }
  6293. return false;
  6294. }
  6295. bool is_pageblock_removable_nolock(struct page *page)
  6296. {
  6297. struct zone *zone;
  6298. unsigned long pfn;
  6299. /*
  6300. * We have to be careful here because we are iterating over memory
  6301. * sections which are not zone aware so we might end up outside of
  6302. * the zone but still within the section.
  6303. * We have to take care about the node as well. If the node is offline
  6304. * its NODE_DATA will be NULL - see page_zone.
  6305. */
  6306. if (!node_online(page_to_nid(page)))
  6307. return false;
  6308. zone = page_zone(page);
  6309. pfn = page_to_pfn(page);
  6310. if (!zone_spans_pfn(zone, pfn))
  6311. return false;
  6312. return !has_unmovable_pages(zone, page, 0, true);
  6313. }
  6314. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6315. static unsigned long pfn_max_align_down(unsigned long pfn)
  6316. {
  6317. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6318. pageblock_nr_pages) - 1);
  6319. }
  6320. static unsigned long pfn_max_align_up(unsigned long pfn)
  6321. {
  6322. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6323. pageblock_nr_pages));
  6324. }
  6325. /* [start, end) must belong to a single zone. */
  6326. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6327. unsigned long start, unsigned long end)
  6328. {
  6329. /* This function is based on compact_zone() from compaction.c. */
  6330. unsigned long nr_reclaimed;
  6331. unsigned long pfn = start;
  6332. unsigned int tries = 0;
  6333. int ret = 0;
  6334. migrate_prep();
  6335. while (pfn < end || !list_empty(&cc->migratepages)) {
  6336. if (fatal_signal_pending(current)) {
  6337. ret = -EINTR;
  6338. break;
  6339. }
  6340. if (list_empty(&cc->migratepages)) {
  6341. cc->nr_migratepages = 0;
  6342. pfn = isolate_migratepages_range(cc, pfn, end);
  6343. if (!pfn) {
  6344. ret = -EINTR;
  6345. break;
  6346. }
  6347. tries = 0;
  6348. } else if (++tries == 5) {
  6349. ret = ret < 0 ? ret : -EBUSY;
  6350. break;
  6351. }
  6352. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6353. &cc->migratepages);
  6354. cc->nr_migratepages -= nr_reclaimed;
  6355. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6356. NULL, 0, cc->mode, MR_CMA);
  6357. }
  6358. if (ret < 0) {
  6359. putback_movable_pages(&cc->migratepages);
  6360. return ret;
  6361. }
  6362. return 0;
  6363. }
  6364. /**
  6365. * alloc_contig_range() -- tries to allocate given range of pages
  6366. * @start: start PFN to allocate
  6367. * @end: one-past-the-last PFN to allocate
  6368. * @migratetype: migratetype of the underlaying pageblocks (either
  6369. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6370. * in range must have the same migratetype and it must
  6371. * be either of the two.
  6372. *
  6373. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6374. * aligned, however it's the caller's responsibility to guarantee that
  6375. * we are the only thread that changes migrate type of pageblocks the
  6376. * pages fall in.
  6377. *
  6378. * The PFN range must belong to a single zone.
  6379. *
  6380. * Returns zero on success or negative error code. On success all
  6381. * pages which PFN is in [start, end) are allocated for the caller and
  6382. * need to be freed with free_contig_range().
  6383. */
  6384. int alloc_contig_range(unsigned long start, unsigned long end,
  6385. unsigned migratetype)
  6386. {
  6387. unsigned long outer_start, outer_end;
  6388. unsigned int order;
  6389. int ret = 0;
  6390. struct compact_control cc = {
  6391. .nr_migratepages = 0,
  6392. .order = -1,
  6393. .zone = page_zone(pfn_to_page(start)),
  6394. .mode = MIGRATE_SYNC,
  6395. .ignore_skip_hint = true,
  6396. };
  6397. INIT_LIST_HEAD(&cc.migratepages);
  6398. /*
  6399. * What we do here is we mark all pageblocks in range as
  6400. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6401. * have different sizes, and due to the way page allocator
  6402. * work, we align the range to biggest of the two pages so
  6403. * that page allocator won't try to merge buddies from
  6404. * different pageblocks and change MIGRATE_ISOLATE to some
  6405. * other migration type.
  6406. *
  6407. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6408. * migrate the pages from an unaligned range (ie. pages that
  6409. * we are interested in). This will put all the pages in
  6410. * range back to page allocator as MIGRATE_ISOLATE.
  6411. *
  6412. * When this is done, we take the pages in range from page
  6413. * allocator removing them from the buddy system. This way
  6414. * page allocator will never consider using them.
  6415. *
  6416. * This lets us mark the pageblocks back as
  6417. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6418. * aligned range but not in the unaligned, original range are
  6419. * put back to page allocator so that buddy can use them.
  6420. */
  6421. ret = start_isolate_page_range(pfn_max_align_down(start),
  6422. pfn_max_align_up(end), migratetype,
  6423. false);
  6424. if (ret)
  6425. return ret;
  6426. cc.zone->cma_alloc = 1;
  6427. /*
  6428. * In case of -EBUSY, we'd like to know which page causes problem.
  6429. * So, just fall through. test_pages_isolated() has a tracepoint
  6430. * which will report the busy page.
  6431. *
  6432. * It is possible that busy pages could become available before
  6433. * the call to test_pages_isolated, and the range will actually be
  6434. * allocated. So, if we fall through be sure to clear ret so that
  6435. * -EBUSY is not accidentally used or returned to caller.
  6436. */
  6437. ret = __alloc_contig_migrate_range(&cc, start, end);
  6438. if (ret && ret != -EBUSY)
  6439. goto done;
  6440. ret =0;
  6441. /*
  6442. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6443. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6444. * more, all pages in [start, end) are free in page allocator.
  6445. * What we are going to do is to allocate all pages from
  6446. * [start, end) (that is remove them from page allocator).
  6447. *
  6448. * The only problem is that pages at the beginning and at the
  6449. * end of interesting range may be not aligned with pages that
  6450. * page allocator holds, ie. they can be part of higher order
  6451. * pages. Because of this, we reserve the bigger range and
  6452. * once this is done free the pages we are not interested in.
  6453. *
  6454. * We don't have to hold zone->lock here because the pages are
  6455. * isolated thus they won't get removed from buddy.
  6456. */
  6457. lru_add_drain_all();
  6458. drain_all_pages(cc.zone);
  6459. order = 0;
  6460. outer_start = start;
  6461. while (!PageBuddy(pfn_to_page(outer_start))) {
  6462. if (++order >= MAX_ORDER) {
  6463. outer_start = start;
  6464. break;
  6465. }
  6466. outer_start &= ~0UL << order;
  6467. }
  6468. if (outer_start != start) {
  6469. order = page_order(pfn_to_page(outer_start));
  6470. /*
  6471. * outer_start page could be small order buddy page and
  6472. * it doesn't include start page. Adjust outer_start
  6473. * in this case to report failed page properly
  6474. * on tracepoint in test_pages_isolated()
  6475. */
  6476. if (outer_start + (1UL << order) <= start)
  6477. outer_start = start;
  6478. }
  6479. /* Make sure the range is really isolated. */
  6480. ret = test_pages_isolated(outer_start, end, false);
  6481. if (ret) {
  6482. pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
  6483. __func__, outer_start, end);
  6484. goto done;
  6485. }
  6486. /* Grab isolated pages from freelists. */
  6487. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6488. if (!outer_end) {
  6489. ret = -EBUSY;
  6490. goto done;
  6491. }
  6492. /* Free head and tail (if any) */
  6493. if (start != outer_start)
  6494. free_contig_range(outer_start, start - outer_start);
  6495. if (end != outer_end)
  6496. free_contig_range(end, outer_end - end);
  6497. done:
  6498. undo_isolate_page_range(pfn_max_align_down(start),
  6499. pfn_max_align_up(end), migratetype);
  6500. cc.zone->cma_alloc = 0;
  6501. return ret;
  6502. }
  6503. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6504. {
  6505. unsigned int count = 0;
  6506. for (; nr_pages--; pfn++) {
  6507. struct page *page = pfn_to_page(pfn);
  6508. count += page_count(page) != 1;
  6509. __free_page(page);
  6510. }
  6511. WARN(count != 0, "%d pages are still in use!\n", count);
  6512. }
  6513. #endif
  6514. #ifdef CONFIG_MEMORY_HOTPLUG
  6515. /*
  6516. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6517. * page high values need to be recalulated.
  6518. */
  6519. void __meminit zone_pcp_update(struct zone *zone)
  6520. {
  6521. unsigned cpu;
  6522. mutex_lock(&pcp_batch_high_lock);
  6523. for_each_possible_cpu(cpu)
  6524. pageset_set_high_and_batch(zone,
  6525. per_cpu_ptr(zone->pageset, cpu));
  6526. mutex_unlock(&pcp_batch_high_lock);
  6527. }
  6528. #endif
  6529. void zone_pcp_reset(struct zone *zone)
  6530. {
  6531. unsigned long flags;
  6532. int cpu;
  6533. struct per_cpu_pageset *pset;
  6534. /* avoid races with drain_pages() */
  6535. local_irq_save(flags);
  6536. if (zone->pageset != &boot_pageset) {
  6537. for_each_online_cpu(cpu) {
  6538. pset = per_cpu_ptr(zone->pageset, cpu);
  6539. drain_zonestat(zone, pset);
  6540. }
  6541. free_percpu(zone->pageset);
  6542. zone->pageset = &boot_pageset;
  6543. }
  6544. local_irq_restore(flags);
  6545. }
  6546. #ifdef CONFIG_MEMORY_HOTREMOVE
  6547. /*
  6548. * All pages in the range must be in a single zone and isolated
  6549. * before calling this.
  6550. */
  6551. void
  6552. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6553. {
  6554. struct page *page;
  6555. struct zone *zone;
  6556. unsigned int order, i;
  6557. unsigned long pfn;
  6558. unsigned long flags;
  6559. /* find the first valid pfn */
  6560. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6561. if (pfn_valid(pfn))
  6562. break;
  6563. if (pfn == end_pfn)
  6564. return;
  6565. zone = page_zone(pfn_to_page(pfn));
  6566. spin_lock_irqsave(&zone->lock, flags);
  6567. pfn = start_pfn;
  6568. while (pfn < end_pfn) {
  6569. if (!pfn_valid(pfn)) {
  6570. pfn++;
  6571. continue;
  6572. }
  6573. page = pfn_to_page(pfn);
  6574. /*
  6575. * The HWPoisoned page may be not in buddy system, and
  6576. * page_count() is not 0.
  6577. */
  6578. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6579. pfn++;
  6580. SetPageReserved(page);
  6581. continue;
  6582. }
  6583. BUG_ON(page_count(page));
  6584. BUG_ON(!PageBuddy(page));
  6585. order = page_order(page);
  6586. #ifdef CONFIG_DEBUG_VM
  6587. pr_info("remove from free list %lx %d %lx\n",
  6588. pfn, 1 << order, end_pfn);
  6589. #endif
  6590. list_del(&page->lru);
  6591. rmv_page_order(page);
  6592. zone->free_area[order].nr_free--;
  6593. for (i = 0; i < (1 << order); i++)
  6594. SetPageReserved((page+i));
  6595. pfn += (1 << order);
  6596. }
  6597. spin_unlock_irqrestore(&zone->lock, flags);
  6598. }
  6599. #endif
  6600. bool is_free_buddy_page(struct page *page)
  6601. {
  6602. struct zone *zone = page_zone(page);
  6603. unsigned long pfn = page_to_pfn(page);
  6604. unsigned long flags;
  6605. unsigned int order;
  6606. spin_lock_irqsave(&zone->lock, flags);
  6607. for (order = 0; order < MAX_ORDER; order++) {
  6608. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6609. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6610. break;
  6611. }
  6612. spin_unlock_irqrestore(&zone->lock, flags);
  6613. return order < MAX_ORDER;
  6614. }