emu8000.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171
  1. /*
  2. * Copyright (c) by Jaroslav Kysela <[email protected]>
  3. * and (c) 1999 Steve Ratcliffe <[email protected]>
  4. * Copyright (C) 1999-2000 Takashi Iwai <[email protected]>
  5. *
  6. * Routines for control of EMU8000 chip
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. */
  22. #include <linux/wait.h>
  23. #include <linux/sched.h>
  24. #include <linux/slab.h>
  25. #include <linux/ioport.h>
  26. #include <linux/export.h>
  27. #include <linux/delay.h>
  28. #include <linux/io.h>
  29. #include <sound/core.h>
  30. #include <sound/emu8000.h>
  31. #include <sound/emu8000_reg.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/init.h>
  34. #include <sound/control.h>
  35. #include <sound/initval.h>
  36. /*
  37. * emu8000 register controls
  38. */
  39. /*
  40. * The following routines read and write registers on the emu8000. They
  41. * should always be called via the EMU8000*READ/WRITE macros and never
  42. * directly. The macros handle the port number and command word.
  43. */
  44. /* Write a word */
  45. void snd_emu8000_poke(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
  46. {
  47. unsigned long flags;
  48. spin_lock_irqsave(&emu->reg_lock, flags);
  49. if (reg != emu->last_reg) {
  50. outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  51. emu->last_reg = reg;
  52. }
  53. outw((unsigned short)val, port); /* Send data */
  54. spin_unlock_irqrestore(&emu->reg_lock, flags);
  55. }
  56. /* Read a word */
  57. unsigned short snd_emu8000_peek(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
  58. {
  59. unsigned short res;
  60. unsigned long flags;
  61. spin_lock_irqsave(&emu->reg_lock, flags);
  62. if (reg != emu->last_reg) {
  63. outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  64. emu->last_reg = reg;
  65. }
  66. res = inw(port); /* Read data */
  67. spin_unlock_irqrestore(&emu->reg_lock, flags);
  68. return res;
  69. }
  70. /* Write a double word */
  71. void snd_emu8000_poke_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
  72. {
  73. unsigned long flags;
  74. spin_lock_irqsave(&emu->reg_lock, flags);
  75. if (reg != emu->last_reg) {
  76. outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  77. emu->last_reg = reg;
  78. }
  79. outw((unsigned short)val, port); /* Send low word of data */
  80. outw((unsigned short)(val>>16), port+2); /* Send high word of data */
  81. spin_unlock_irqrestore(&emu->reg_lock, flags);
  82. }
  83. /* Read a double word */
  84. unsigned int snd_emu8000_peek_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
  85. {
  86. unsigned short low;
  87. unsigned int res;
  88. unsigned long flags;
  89. spin_lock_irqsave(&emu->reg_lock, flags);
  90. if (reg != emu->last_reg) {
  91. outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  92. emu->last_reg = reg;
  93. }
  94. low = inw(port); /* Read low word of data */
  95. res = low + (inw(port+2) << 16);
  96. spin_unlock_irqrestore(&emu->reg_lock, flags);
  97. return res;
  98. }
  99. /*
  100. * Set up / close a channel to be used for DMA.
  101. */
  102. /*exported*/ void
  103. snd_emu8000_dma_chan(struct snd_emu8000 *emu, int ch, int mode)
  104. {
  105. unsigned right_bit = (mode & EMU8000_RAM_RIGHT) ? 0x01000000 : 0;
  106. mode &= EMU8000_RAM_MODE_MASK;
  107. if (mode == EMU8000_RAM_CLOSE) {
  108. EMU8000_CCCA_WRITE(emu, ch, 0);
  109. EMU8000_DCYSUSV_WRITE(emu, ch, 0x807F);
  110. return;
  111. }
  112. EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
  113. EMU8000_VTFT_WRITE(emu, ch, 0);
  114. EMU8000_CVCF_WRITE(emu, ch, 0);
  115. EMU8000_PTRX_WRITE(emu, ch, 0x40000000);
  116. EMU8000_CPF_WRITE(emu, ch, 0x40000000);
  117. EMU8000_PSST_WRITE(emu, ch, 0);
  118. EMU8000_CSL_WRITE(emu, ch, 0);
  119. if (mode == EMU8000_RAM_WRITE) /* DMA write */
  120. EMU8000_CCCA_WRITE(emu, ch, 0x06000000 | right_bit);
  121. else /* DMA read */
  122. EMU8000_CCCA_WRITE(emu, ch, 0x04000000 | right_bit);
  123. }
  124. /*
  125. */
  126. static void
  127. snd_emu8000_read_wait(struct snd_emu8000 *emu)
  128. {
  129. while ((EMU8000_SMALR_READ(emu) & 0x80000000) != 0) {
  130. schedule_timeout_interruptible(1);
  131. if (signal_pending(current))
  132. break;
  133. }
  134. }
  135. /*
  136. */
  137. static void
  138. snd_emu8000_write_wait(struct snd_emu8000 *emu)
  139. {
  140. while ((EMU8000_SMALW_READ(emu) & 0x80000000) != 0) {
  141. schedule_timeout_interruptible(1);
  142. if (signal_pending(current))
  143. break;
  144. }
  145. }
  146. /*
  147. * detect a card at the given port
  148. */
  149. static int
  150. snd_emu8000_detect(struct snd_emu8000 *emu)
  151. {
  152. /* Initialise */
  153. EMU8000_HWCF1_WRITE(emu, 0x0059);
  154. EMU8000_HWCF2_WRITE(emu, 0x0020);
  155. EMU8000_HWCF3_WRITE(emu, 0x0000);
  156. /* Check for a recognisable emu8000 */
  157. /*
  158. if ((EMU8000_U1_READ(emu) & 0x000f) != 0x000c)
  159. return -ENODEV;
  160. */
  161. if ((EMU8000_HWCF1_READ(emu) & 0x007e) != 0x0058)
  162. return -ENODEV;
  163. if ((EMU8000_HWCF2_READ(emu) & 0x0003) != 0x0003)
  164. return -ENODEV;
  165. snd_printdd("EMU8000 [0x%lx]: Synth chip found\n",
  166. emu->port1);
  167. return 0;
  168. }
  169. /*
  170. * intiailize audio channels
  171. */
  172. static void
  173. init_audio(struct snd_emu8000 *emu)
  174. {
  175. int ch;
  176. /* turn off envelope engines */
  177. for (ch = 0; ch < EMU8000_CHANNELS; ch++)
  178. EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
  179. /* reset all other parameters to zero */
  180. for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
  181. EMU8000_ENVVOL_WRITE(emu, ch, 0);
  182. EMU8000_ENVVAL_WRITE(emu, ch, 0);
  183. EMU8000_DCYSUS_WRITE(emu, ch, 0);
  184. EMU8000_ATKHLDV_WRITE(emu, ch, 0);
  185. EMU8000_LFO1VAL_WRITE(emu, ch, 0);
  186. EMU8000_ATKHLD_WRITE(emu, ch, 0);
  187. EMU8000_LFO2VAL_WRITE(emu, ch, 0);
  188. EMU8000_IP_WRITE(emu, ch, 0);
  189. EMU8000_IFATN_WRITE(emu, ch, 0);
  190. EMU8000_PEFE_WRITE(emu, ch, 0);
  191. EMU8000_FMMOD_WRITE(emu, ch, 0);
  192. EMU8000_TREMFRQ_WRITE(emu, ch, 0);
  193. EMU8000_FM2FRQ2_WRITE(emu, ch, 0);
  194. EMU8000_PTRX_WRITE(emu, ch, 0);
  195. EMU8000_VTFT_WRITE(emu, ch, 0);
  196. EMU8000_PSST_WRITE(emu, ch, 0);
  197. EMU8000_CSL_WRITE(emu, ch, 0);
  198. EMU8000_CCCA_WRITE(emu, ch, 0);
  199. }
  200. for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
  201. EMU8000_CPF_WRITE(emu, ch, 0);
  202. EMU8000_CVCF_WRITE(emu, ch, 0);
  203. }
  204. }
  205. /*
  206. * initialize DMA address
  207. */
  208. static void
  209. init_dma(struct snd_emu8000 *emu)
  210. {
  211. EMU8000_SMALR_WRITE(emu, 0);
  212. EMU8000_SMARR_WRITE(emu, 0);
  213. EMU8000_SMALW_WRITE(emu, 0);
  214. EMU8000_SMARW_WRITE(emu, 0);
  215. }
  216. /*
  217. * initialization arrays; from ADIP
  218. */
  219. static unsigned short init1[128] = {
  220. 0x03ff, 0x0030, 0x07ff, 0x0130, 0x0bff, 0x0230, 0x0fff, 0x0330,
  221. 0x13ff, 0x0430, 0x17ff, 0x0530, 0x1bff, 0x0630, 0x1fff, 0x0730,
  222. 0x23ff, 0x0830, 0x27ff, 0x0930, 0x2bff, 0x0a30, 0x2fff, 0x0b30,
  223. 0x33ff, 0x0c30, 0x37ff, 0x0d30, 0x3bff, 0x0e30, 0x3fff, 0x0f30,
  224. 0x43ff, 0x0030, 0x47ff, 0x0130, 0x4bff, 0x0230, 0x4fff, 0x0330,
  225. 0x53ff, 0x0430, 0x57ff, 0x0530, 0x5bff, 0x0630, 0x5fff, 0x0730,
  226. 0x63ff, 0x0830, 0x67ff, 0x0930, 0x6bff, 0x0a30, 0x6fff, 0x0b30,
  227. 0x73ff, 0x0c30, 0x77ff, 0x0d30, 0x7bff, 0x0e30, 0x7fff, 0x0f30,
  228. 0x83ff, 0x0030, 0x87ff, 0x0130, 0x8bff, 0x0230, 0x8fff, 0x0330,
  229. 0x93ff, 0x0430, 0x97ff, 0x0530, 0x9bff, 0x0630, 0x9fff, 0x0730,
  230. 0xa3ff, 0x0830, 0xa7ff, 0x0930, 0xabff, 0x0a30, 0xafff, 0x0b30,
  231. 0xb3ff, 0x0c30, 0xb7ff, 0x0d30, 0xbbff, 0x0e30, 0xbfff, 0x0f30,
  232. 0xc3ff, 0x0030, 0xc7ff, 0x0130, 0xcbff, 0x0230, 0xcfff, 0x0330,
  233. 0xd3ff, 0x0430, 0xd7ff, 0x0530, 0xdbff, 0x0630, 0xdfff, 0x0730,
  234. 0xe3ff, 0x0830, 0xe7ff, 0x0930, 0xebff, 0x0a30, 0xefff, 0x0b30,
  235. 0xf3ff, 0x0c30, 0xf7ff, 0x0d30, 0xfbff, 0x0e30, 0xffff, 0x0f30,
  236. };
  237. static unsigned short init2[128] = {
  238. 0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330,
  239. 0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730,
  240. 0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30,
  241. 0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30,
  242. 0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330,
  243. 0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730,
  244. 0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30,
  245. 0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30,
  246. 0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330,
  247. 0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730,
  248. 0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30,
  249. 0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30,
  250. 0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330,
  251. 0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730,
  252. 0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30,
  253. 0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30,
  254. };
  255. static unsigned short init3[128] = {
  256. 0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
  257. 0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254,
  258. 0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234,
  259. 0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224,
  260. 0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254,
  261. 0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264,
  262. 0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294,
  263. 0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3,
  264. 0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287,
  265. 0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7,
  266. 0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386,
  267. 0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55,
  268. 0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308,
  269. 0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F,
  270. 0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319,
  271. 0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570,
  272. };
  273. static unsigned short init4[128] = {
  274. 0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
  275. 0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254,
  276. 0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234,
  277. 0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224,
  278. 0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254,
  279. 0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264,
  280. 0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294,
  281. 0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3,
  282. 0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287,
  283. 0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7,
  284. 0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386,
  285. 0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55,
  286. 0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308,
  287. 0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F,
  288. 0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319,
  289. 0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570,
  290. };
  291. /* send an initialization array
  292. * Taken from the oss driver, not obvious from the doc how this
  293. * is meant to work
  294. */
  295. static void
  296. send_array(struct snd_emu8000 *emu, unsigned short *data, int size)
  297. {
  298. int i;
  299. unsigned short *p;
  300. p = data;
  301. for (i = 0; i < size; i++, p++)
  302. EMU8000_INIT1_WRITE(emu, i, *p);
  303. for (i = 0; i < size; i++, p++)
  304. EMU8000_INIT2_WRITE(emu, i, *p);
  305. for (i = 0; i < size; i++, p++)
  306. EMU8000_INIT3_WRITE(emu, i, *p);
  307. for (i = 0; i < size; i++, p++)
  308. EMU8000_INIT4_WRITE(emu, i, *p);
  309. }
  310. /*
  311. * Send initialization arrays to start up, this just follows the
  312. * initialisation sequence in the adip.
  313. */
  314. static void
  315. init_arrays(struct snd_emu8000 *emu)
  316. {
  317. send_array(emu, init1, ARRAY_SIZE(init1)/4);
  318. msleep((1024 * 1000) / 44100); /* wait for 1024 clocks */
  319. send_array(emu, init2, ARRAY_SIZE(init2)/4);
  320. send_array(emu, init3, ARRAY_SIZE(init3)/4);
  321. EMU8000_HWCF4_WRITE(emu, 0);
  322. EMU8000_HWCF5_WRITE(emu, 0x83);
  323. EMU8000_HWCF6_WRITE(emu, 0x8000);
  324. send_array(emu, init4, ARRAY_SIZE(init4)/4);
  325. }
  326. #define UNIQUE_ID1 0xa5b9
  327. #define UNIQUE_ID2 0x9d53
  328. /*
  329. * Size the onboard memory.
  330. * This is written so as not to need arbitrary delays after the write. It
  331. * seems that the only way to do this is to use the one channel and keep
  332. * reallocating between read and write.
  333. */
  334. static void
  335. size_dram(struct snd_emu8000 *emu)
  336. {
  337. int i, size;
  338. if (emu->dram_checked)
  339. return;
  340. size = 0;
  341. /* write out a magic number */
  342. snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);
  343. snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_READ);
  344. EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET);
  345. EMU8000_SMLD_WRITE(emu, UNIQUE_ID1);
  346. snd_emu8000_init_fm(emu); /* This must really be here and not 2 lines back even */
  347. snd_emu8000_write_wait(emu);
  348. /*
  349. * Detect first 512 KiB. If a write succeeds at the beginning of a
  350. * 512 KiB page we assume that the whole page is there.
  351. */
  352. EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
  353. EMU8000_SMLD_READ(emu); /* discard stale data */
  354. if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
  355. goto skip_detect; /* No RAM */
  356. snd_emu8000_read_wait(emu);
  357. for (size = 512 * 1024; size < EMU8000_MAX_DRAM; size += 512 * 1024) {
  358. /* Write a unique data on the test address.
  359. * if the address is out of range, the data is written on
  360. * 0x200000(=EMU8000_DRAM_OFFSET). Then the id word is
  361. * changed by this data.
  362. */
  363. /*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);*/
  364. EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
  365. EMU8000_SMLD_WRITE(emu, UNIQUE_ID2);
  366. snd_emu8000_write_wait(emu);
  367. /*
  368. * read the data on the just written DRAM address
  369. * if not the same then we have reached the end of ram.
  370. */
  371. /*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_READ);*/
  372. EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
  373. /*snd_emu8000_read_wait(emu);*/
  374. EMU8000_SMLD_READ(emu); /* discard stale data */
  375. if (EMU8000_SMLD_READ(emu) != UNIQUE_ID2)
  376. break; /* no memory at this address */
  377. snd_emu8000_read_wait(emu);
  378. /*
  379. * If it is the same it could be that the address just
  380. * wraps back to the beginning; so check to see if the
  381. * initial value has been overwritten.
  382. */
  383. EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
  384. EMU8000_SMLD_READ(emu); /* discard stale data */
  385. if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
  386. break; /* we must have wrapped around */
  387. snd_emu8000_read_wait(emu);
  388. /* Otherwise, it's valid memory. */
  389. }
  390. skip_detect:
  391. /* wait until FULL bit in SMAxW register is false */
  392. for (i = 0; i < 10000; i++) {
  393. if ((EMU8000_SMALW_READ(emu) & 0x80000000) == 0)
  394. break;
  395. schedule_timeout_interruptible(1);
  396. if (signal_pending(current))
  397. break;
  398. }
  399. snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_CLOSE);
  400. snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_CLOSE);
  401. pr_info("EMU8000 [0x%lx]: %d KiB on-board DRAM detected\n",
  402. emu->port1, size/1024);
  403. emu->mem_size = size;
  404. emu->dram_checked = 1;
  405. }
  406. /*
  407. * Initiailise the FM section. You have to do this to use sample RAM
  408. * and therefore lose 2 voices.
  409. */
  410. /*exported*/ void
  411. snd_emu8000_init_fm(struct snd_emu8000 *emu)
  412. {
  413. unsigned long flags;
  414. /* Initialize the last two channels for DRAM refresh and producing
  415. the reverb and chorus effects for Yamaha OPL-3 synthesizer */
  416. /* 31: FM left channel, 0xffffe0-0xffffe8 */
  417. EMU8000_DCYSUSV_WRITE(emu, 30, 0x80);
  418. EMU8000_PSST_WRITE(emu, 30, 0xFFFFFFE0); /* full left */
  419. EMU8000_CSL_WRITE(emu, 30, 0x00FFFFE8 | (emu->fm_chorus_depth << 24));
  420. EMU8000_PTRX_WRITE(emu, 30, (emu->fm_reverb_depth << 8));
  421. EMU8000_CPF_WRITE(emu, 30, 0);
  422. EMU8000_CCCA_WRITE(emu, 30, 0x00FFFFE3);
  423. /* 32: FM right channel, 0xfffff0-0xfffff8 */
  424. EMU8000_DCYSUSV_WRITE(emu, 31, 0x80);
  425. EMU8000_PSST_WRITE(emu, 31, 0x00FFFFF0); /* full right */
  426. EMU8000_CSL_WRITE(emu, 31, 0x00FFFFF8 | (emu->fm_chorus_depth << 24));
  427. EMU8000_PTRX_WRITE(emu, 31, (emu->fm_reverb_depth << 8));
  428. EMU8000_CPF_WRITE(emu, 31, 0x8000);
  429. EMU8000_CCCA_WRITE(emu, 31, 0x00FFFFF3);
  430. snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0);
  431. spin_lock_irqsave(&emu->reg_lock, flags);
  432. while (!(inw(EMU8000_PTR(emu)) & 0x1000))
  433. ;
  434. while ((inw(EMU8000_PTR(emu)) & 0x1000))
  435. ;
  436. spin_unlock_irqrestore(&emu->reg_lock, flags);
  437. snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0x4828);
  438. /* this is really odd part.. */
  439. outb(0x3C, EMU8000_PTR(emu));
  440. outb(0, EMU8000_DATA1(emu));
  441. /* skew volume & cutoff */
  442. EMU8000_VTFT_WRITE(emu, 30, 0x8000FFFF);
  443. EMU8000_VTFT_WRITE(emu, 31, 0x8000FFFF);
  444. }
  445. /*
  446. * The main initialization routine.
  447. */
  448. static void
  449. snd_emu8000_init_hw(struct snd_emu8000 *emu)
  450. {
  451. int i;
  452. emu->last_reg = 0xffff; /* reset the last register index */
  453. /* initialize hardware configuration */
  454. EMU8000_HWCF1_WRITE(emu, 0x0059);
  455. EMU8000_HWCF2_WRITE(emu, 0x0020);
  456. /* disable audio; this seems to reduce a clicking noise a bit.. */
  457. EMU8000_HWCF3_WRITE(emu, 0);
  458. /* initialize audio channels */
  459. init_audio(emu);
  460. /* initialize DMA */
  461. init_dma(emu);
  462. /* initialize init arrays */
  463. init_arrays(emu);
  464. /*
  465. * Initialize the FM section of the AWE32, this is needed
  466. * for DRAM refresh as well
  467. */
  468. snd_emu8000_init_fm(emu);
  469. /* terminate all voices */
  470. for (i = 0; i < EMU8000_DRAM_VOICES; i++)
  471. EMU8000_DCYSUSV_WRITE(emu, 0, 0x807F);
  472. /* check DRAM memory size */
  473. size_dram(emu);
  474. /* enable audio */
  475. EMU8000_HWCF3_WRITE(emu, 0x4);
  476. /* set equzlier, chorus and reverb modes */
  477. snd_emu8000_update_equalizer(emu);
  478. snd_emu8000_update_chorus_mode(emu);
  479. snd_emu8000_update_reverb_mode(emu);
  480. }
  481. /*----------------------------------------------------------------
  482. * Bass/Treble Equalizer
  483. *----------------------------------------------------------------*/
  484. static unsigned short bass_parm[12][3] = {
  485. {0xD26A, 0xD36A, 0x0000}, /* -12 dB */
  486. {0xD25B, 0xD35B, 0x0000}, /* -8 */
  487. {0xD24C, 0xD34C, 0x0000}, /* -6 */
  488. {0xD23D, 0xD33D, 0x0000}, /* -4 */
  489. {0xD21F, 0xD31F, 0x0000}, /* -2 */
  490. {0xC208, 0xC308, 0x0001}, /* 0 (HW default) */
  491. {0xC219, 0xC319, 0x0001}, /* +2 */
  492. {0xC22A, 0xC32A, 0x0001}, /* +4 */
  493. {0xC24C, 0xC34C, 0x0001}, /* +6 */
  494. {0xC26E, 0xC36E, 0x0001}, /* +8 */
  495. {0xC248, 0xC384, 0x0002}, /* +10 */
  496. {0xC26A, 0xC36A, 0x0002}, /* +12 dB */
  497. };
  498. static unsigned short treble_parm[12][9] = {
  499. {0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */
  500. {0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
  501. {0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
  502. {0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
  503. {0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
  504. {0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002},
  505. {0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002},
  506. {0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002},
  507. {0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002},
  508. {0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */
  509. {0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002},
  510. {0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002} /* +12 dB */
  511. };
  512. /*
  513. * set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB]
  514. */
  515. /*exported*/ void
  516. snd_emu8000_update_equalizer(struct snd_emu8000 *emu)
  517. {
  518. unsigned short w;
  519. int bass = emu->bass_level;
  520. int treble = emu->treble_level;
  521. if (bass < 0 || bass > 11 || treble < 0 || treble > 11)
  522. return;
  523. EMU8000_INIT4_WRITE(emu, 0x01, bass_parm[bass][0]);
  524. EMU8000_INIT4_WRITE(emu, 0x11, bass_parm[bass][1]);
  525. EMU8000_INIT3_WRITE(emu, 0x11, treble_parm[treble][0]);
  526. EMU8000_INIT3_WRITE(emu, 0x13, treble_parm[treble][1]);
  527. EMU8000_INIT3_WRITE(emu, 0x1b, treble_parm[treble][2]);
  528. EMU8000_INIT4_WRITE(emu, 0x07, treble_parm[treble][3]);
  529. EMU8000_INIT4_WRITE(emu, 0x0b, treble_parm[treble][4]);
  530. EMU8000_INIT4_WRITE(emu, 0x0d, treble_parm[treble][5]);
  531. EMU8000_INIT4_WRITE(emu, 0x17, treble_parm[treble][6]);
  532. EMU8000_INIT4_WRITE(emu, 0x19, treble_parm[treble][7]);
  533. w = bass_parm[bass][2] + treble_parm[treble][8];
  534. EMU8000_INIT4_WRITE(emu, 0x15, (unsigned short)(w + 0x0262));
  535. EMU8000_INIT4_WRITE(emu, 0x1d, (unsigned short)(w + 0x8362));
  536. }
  537. /*----------------------------------------------------------------
  538. * Chorus mode control
  539. *----------------------------------------------------------------*/
  540. /*
  541. * chorus mode parameters
  542. */
  543. #define SNDRV_EMU8000_CHORUS_1 0
  544. #define SNDRV_EMU8000_CHORUS_2 1
  545. #define SNDRV_EMU8000_CHORUS_3 2
  546. #define SNDRV_EMU8000_CHORUS_4 3
  547. #define SNDRV_EMU8000_CHORUS_FEEDBACK 4
  548. #define SNDRV_EMU8000_CHORUS_FLANGER 5
  549. #define SNDRV_EMU8000_CHORUS_SHORTDELAY 6
  550. #define SNDRV_EMU8000_CHORUS_SHORTDELAY2 7
  551. #define SNDRV_EMU8000_CHORUS_PREDEFINED 8
  552. /* user can define chorus modes up to 32 */
  553. #define SNDRV_EMU8000_CHORUS_NUMBERS 32
  554. struct soundfont_chorus_fx {
  555. unsigned short feedback; /* feedback level (0xE600-0xE6FF) */
  556. unsigned short delay_offset; /* delay (0-0x0DA3) [1/44100 sec] */
  557. unsigned short lfo_depth; /* LFO depth (0xBC00-0xBCFF) */
  558. unsigned int delay; /* right delay (0-0xFFFFFFFF) [1/256/44100 sec] */
  559. unsigned int lfo_freq; /* LFO freq LFO freq (0-0xFFFFFFFF) */
  560. };
  561. /* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */
  562. static char chorus_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
  563. static struct soundfont_chorus_fx chorus_parm[SNDRV_EMU8000_CHORUS_NUMBERS] = {
  564. {0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */
  565. {0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */
  566. {0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */
  567. {0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */
  568. {0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */
  569. {0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */
  570. {0xE600, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay */
  571. {0xE6C0, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay + feedback */
  572. };
  573. /*exported*/ int
  574. snd_emu8000_load_chorus_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
  575. {
  576. struct soundfont_chorus_fx rec;
  577. if (mode < SNDRV_EMU8000_CHORUS_PREDEFINED || mode >= SNDRV_EMU8000_CHORUS_NUMBERS) {
  578. snd_printk(KERN_WARNING "invalid chorus mode %d for uploading\n", mode);
  579. return -EINVAL;
  580. }
  581. if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
  582. return -EFAULT;
  583. chorus_parm[mode] = rec;
  584. chorus_defined[mode] = 1;
  585. return 0;
  586. }
  587. /*exported*/ void
  588. snd_emu8000_update_chorus_mode(struct snd_emu8000 *emu)
  589. {
  590. int effect = emu->chorus_mode;
  591. if (effect < 0 || effect >= SNDRV_EMU8000_CHORUS_NUMBERS ||
  592. (effect >= SNDRV_EMU8000_CHORUS_PREDEFINED && !chorus_defined[effect]))
  593. return;
  594. EMU8000_INIT3_WRITE(emu, 0x09, chorus_parm[effect].feedback);
  595. EMU8000_INIT3_WRITE(emu, 0x0c, chorus_parm[effect].delay_offset);
  596. EMU8000_INIT4_WRITE(emu, 0x03, chorus_parm[effect].lfo_depth);
  597. EMU8000_HWCF4_WRITE(emu, chorus_parm[effect].delay);
  598. EMU8000_HWCF5_WRITE(emu, chorus_parm[effect].lfo_freq);
  599. EMU8000_HWCF6_WRITE(emu, 0x8000);
  600. EMU8000_HWCF7_WRITE(emu, 0x0000);
  601. }
  602. /*----------------------------------------------------------------
  603. * Reverb mode control
  604. *----------------------------------------------------------------*/
  605. /*
  606. * reverb mode parameters
  607. */
  608. #define SNDRV_EMU8000_REVERB_ROOM1 0
  609. #define SNDRV_EMU8000_REVERB_ROOM2 1
  610. #define SNDRV_EMU8000_REVERB_ROOM3 2
  611. #define SNDRV_EMU8000_REVERB_HALL1 3
  612. #define SNDRV_EMU8000_REVERB_HALL2 4
  613. #define SNDRV_EMU8000_REVERB_PLATE 5
  614. #define SNDRV_EMU8000_REVERB_DELAY 6
  615. #define SNDRV_EMU8000_REVERB_PANNINGDELAY 7
  616. #define SNDRV_EMU8000_REVERB_PREDEFINED 8
  617. /* user can define reverb modes up to 32 */
  618. #define SNDRV_EMU8000_REVERB_NUMBERS 32
  619. struct soundfont_reverb_fx {
  620. unsigned short parms[28];
  621. };
  622. /* reverb mode settings; write the following 28 data of 16 bit length
  623. * on the corresponding ports in the reverb_cmds array
  624. */
  625. static char reverb_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
  626. static struct soundfont_reverb_fx reverb_parm[SNDRV_EMU8000_REVERB_NUMBERS] = {
  627. {{ /* room 1 */
  628. 0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4,
  629. 0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516,
  630. 0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
  631. 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
  632. }},
  633. {{ /* room 2 */
  634. 0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284,
  635. 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
  636. 0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
  637. 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
  638. }},
  639. {{ /* room 3 */
  640. 0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284,
  641. 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516,
  642. 0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B,
  643. 0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A,
  644. }},
  645. {{ /* hall 1 */
  646. 0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284,
  647. 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
  648. 0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A,
  649. 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529,
  650. }},
  651. {{ /* hall 2 */
  652. 0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254,
  653. 0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3,
  654. 0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
  655. 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
  656. }},
  657. {{ /* plate */
  658. 0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234,
  659. 0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548,
  660. 0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
  661. 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
  662. }},
  663. {{ /* delay */
  664. 0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204,
  665. 0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
  666. 0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
  667. 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
  668. }},
  669. {{ /* panning delay */
  670. 0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204,
  671. 0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
  672. 0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
  673. 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
  674. }},
  675. };
  676. enum { DATA1, DATA2 };
  677. #define AWE_INIT1(c) EMU8000_CMD(2,c), DATA1
  678. #define AWE_INIT2(c) EMU8000_CMD(2,c), DATA2
  679. #define AWE_INIT3(c) EMU8000_CMD(3,c), DATA1
  680. #define AWE_INIT4(c) EMU8000_CMD(3,c), DATA2
  681. static struct reverb_cmd_pair {
  682. unsigned short cmd, port;
  683. } reverb_cmds[28] = {
  684. {AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)},
  685. {AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)},
  686. {AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)},
  687. {AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)},
  688. {AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)},
  689. {AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)},
  690. {AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)},
  691. };
  692. /*exported*/ int
  693. snd_emu8000_load_reverb_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
  694. {
  695. struct soundfont_reverb_fx rec;
  696. if (mode < SNDRV_EMU8000_REVERB_PREDEFINED || mode >= SNDRV_EMU8000_REVERB_NUMBERS) {
  697. snd_printk(KERN_WARNING "invalid reverb mode %d for uploading\n", mode);
  698. return -EINVAL;
  699. }
  700. if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
  701. return -EFAULT;
  702. reverb_parm[mode] = rec;
  703. reverb_defined[mode] = 1;
  704. return 0;
  705. }
  706. /*exported*/ void
  707. snd_emu8000_update_reverb_mode(struct snd_emu8000 *emu)
  708. {
  709. int effect = emu->reverb_mode;
  710. int i;
  711. if (effect < 0 || effect >= SNDRV_EMU8000_REVERB_NUMBERS ||
  712. (effect >= SNDRV_EMU8000_REVERB_PREDEFINED && !reverb_defined[effect]))
  713. return;
  714. for (i = 0; i < 28; i++) {
  715. int port;
  716. if (reverb_cmds[i].port == DATA1)
  717. port = EMU8000_DATA1(emu);
  718. else
  719. port = EMU8000_DATA2(emu);
  720. snd_emu8000_poke(emu, port, reverb_cmds[i].cmd, reverb_parm[effect].parms[i]);
  721. }
  722. }
  723. /*----------------------------------------------------------------
  724. * mixer interface
  725. *----------------------------------------------------------------*/
  726. /*
  727. * bass/treble
  728. */
  729. static int mixer_bass_treble_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  730. {
  731. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  732. uinfo->count = 1;
  733. uinfo->value.integer.min = 0;
  734. uinfo->value.integer.max = 11;
  735. return 0;
  736. }
  737. static int mixer_bass_treble_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  738. {
  739. struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
  740. ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->treble_level : emu->bass_level;
  741. return 0;
  742. }
  743. static int mixer_bass_treble_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  744. {
  745. struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
  746. unsigned long flags;
  747. int change;
  748. unsigned short val1;
  749. val1 = ucontrol->value.integer.value[0] % 12;
  750. spin_lock_irqsave(&emu->control_lock, flags);
  751. if (kcontrol->private_value) {
  752. change = val1 != emu->treble_level;
  753. emu->treble_level = val1;
  754. } else {
  755. change = val1 != emu->bass_level;
  756. emu->bass_level = val1;
  757. }
  758. spin_unlock_irqrestore(&emu->control_lock, flags);
  759. snd_emu8000_update_equalizer(emu);
  760. return change;
  761. }
  762. static struct snd_kcontrol_new mixer_bass_control =
  763. {
  764. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  765. .name = "Synth Tone Control - Bass",
  766. .info = mixer_bass_treble_info,
  767. .get = mixer_bass_treble_get,
  768. .put = mixer_bass_treble_put,
  769. .private_value = 0,
  770. };
  771. static struct snd_kcontrol_new mixer_treble_control =
  772. {
  773. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  774. .name = "Synth Tone Control - Treble",
  775. .info = mixer_bass_treble_info,
  776. .get = mixer_bass_treble_get,
  777. .put = mixer_bass_treble_put,
  778. .private_value = 1,
  779. };
  780. /*
  781. * chorus/reverb mode
  782. */
  783. static int mixer_chorus_reverb_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  784. {
  785. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  786. uinfo->count = 1;
  787. uinfo->value.integer.min = 0;
  788. uinfo->value.integer.max = kcontrol->private_value ? (SNDRV_EMU8000_CHORUS_NUMBERS-1) : (SNDRV_EMU8000_REVERB_NUMBERS-1);
  789. return 0;
  790. }
  791. static int mixer_chorus_reverb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  792. {
  793. struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
  794. ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->chorus_mode : emu->reverb_mode;
  795. return 0;
  796. }
  797. static int mixer_chorus_reverb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  798. {
  799. struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
  800. unsigned long flags;
  801. int change;
  802. unsigned short val1;
  803. spin_lock_irqsave(&emu->control_lock, flags);
  804. if (kcontrol->private_value) {
  805. val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_CHORUS_NUMBERS;
  806. change = val1 != emu->chorus_mode;
  807. emu->chorus_mode = val1;
  808. } else {
  809. val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_REVERB_NUMBERS;
  810. change = val1 != emu->reverb_mode;
  811. emu->reverb_mode = val1;
  812. }
  813. spin_unlock_irqrestore(&emu->control_lock, flags);
  814. if (change) {
  815. if (kcontrol->private_value)
  816. snd_emu8000_update_chorus_mode(emu);
  817. else
  818. snd_emu8000_update_reverb_mode(emu);
  819. }
  820. return change;
  821. }
  822. static struct snd_kcontrol_new mixer_chorus_mode_control =
  823. {
  824. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  825. .name = "Chorus Mode",
  826. .info = mixer_chorus_reverb_info,
  827. .get = mixer_chorus_reverb_get,
  828. .put = mixer_chorus_reverb_put,
  829. .private_value = 1,
  830. };
  831. static struct snd_kcontrol_new mixer_reverb_mode_control =
  832. {
  833. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  834. .name = "Reverb Mode",
  835. .info = mixer_chorus_reverb_info,
  836. .get = mixer_chorus_reverb_get,
  837. .put = mixer_chorus_reverb_put,
  838. .private_value = 0,
  839. };
  840. /*
  841. * FM OPL3 chorus/reverb depth
  842. */
  843. static int mixer_fm_depth_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  844. {
  845. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  846. uinfo->count = 1;
  847. uinfo->value.integer.min = 0;
  848. uinfo->value.integer.max = 255;
  849. return 0;
  850. }
  851. static int mixer_fm_depth_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  852. {
  853. struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
  854. ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->fm_chorus_depth : emu->fm_reverb_depth;
  855. return 0;
  856. }
  857. static int mixer_fm_depth_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  858. {
  859. struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
  860. unsigned long flags;
  861. int change;
  862. unsigned short val1;
  863. val1 = ucontrol->value.integer.value[0] % 256;
  864. spin_lock_irqsave(&emu->control_lock, flags);
  865. if (kcontrol->private_value) {
  866. change = val1 != emu->fm_chorus_depth;
  867. emu->fm_chorus_depth = val1;
  868. } else {
  869. change = val1 != emu->fm_reverb_depth;
  870. emu->fm_reverb_depth = val1;
  871. }
  872. spin_unlock_irqrestore(&emu->control_lock, flags);
  873. if (change)
  874. snd_emu8000_init_fm(emu);
  875. return change;
  876. }
  877. static struct snd_kcontrol_new mixer_fm_chorus_depth_control =
  878. {
  879. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  880. .name = "FM Chorus Depth",
  881. .info = mixer_fm_depth_info,
  882. .get = mixer_fm_depth_get,
  883. .put = mixer_fm_depth_put,
  884. .private_value = 1,
  885. };
  886. static struct snd_kcontrol_new mixer_fm_reverb_depth_control =
  887. {
  888. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  889. .name = "FM Reverb Depth",
  890. .info = mixer_fm_depth_info,
  891. .get = mixer_fm_depth_get,
  892. .put = mixer_fm_depth_put,
  893. .private_value = 0,
  894. };
  895. static struct snd_kcontrol_new *mixer_defs[EMU8000_NUM_CONTROLS] = {
  896. &mixer_bass_control,
  897. &mixer_treble_control,
  898. &mixer_chorus_mode_control,
  899. &mixer_reverb_mode_control,
  900. &mixer_fm_chorus_depth_control,
  901. &mixer_fm_reverb_depth_control,
  902. };
  903. /*
  904. * create and attach mixer elements for WaveTable treble/bass controls
  905. */
  906. static int
  907. snd_emu8000_create_mixer(struct snd_card *card, struct snd_emu8000 *emu)
  908. {
  909. int i, err = 0;
  910. if (snd_BUG_ON(!emu || !card))
  911. return -EINVAL;
  912. spin_lock_init(&emu->control_lock);
  913. memset(emu->controls, 0, sizeof(emu->controls));
  914. for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
  915. if ((err = snd_ctl_add(card, emu->controls[i] = snd_ctl_new1(mixer_defs[i], emu))) < 0)
  916. goto __error;
  917. }
  918. return 0;
  919. __error:
  920. for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
  921. down_write(&card->controls_rwsem);
  922. if (emu->controls[i])
  923. snd_ctl_remove(card, emu->controls[i]);
  924. up_write(&card->controls_rwsem);
  925. }
  926. return err;
  927. }
  928. /*
  929. * free resources
  930. */
  931. static int snd_emu8000_free(struct snd_emu8000 *hw)
  932. {
  933. release_and_free_resource(hw->res_port1);
  934. release_and_free_resource(hw->res_port2);
  935. release_and_free_resource(hw->res_port3);
  936. kfree(hw);
  937. return 0;
  938. }
  939. /*
  940. */
  941. static int snd_emu8000_dev_free(struct snd_device *device)
  942. {
  943. struct snd_emu8000 *hw = device->device_data;
  944. return snd_emu8000_free(hw);
  945. }
  946. /*
  947. * initialize and register emu8000 synth device.
  948. */
  949. int
  950. snd_emu8000_new(struct snd_card *card, int index, long port, int seq_ports,
  951. struct snd_seq_device **awe_ret)
  952. {
  953. struct snd_seq_device *awe;
  954. struct snd_emu8000 *hw;
  955. int err;
  956. static struct snd_device_ops ops = {
  957. .dev_free = snd_emu8000_dev_free,
  958. };
  959. if (awe_ret)
  960. *awe_ret = NULL;
  961. if (seq_ports <= 0)
  962. return 0;
  963. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  964. if (hw == NULL)
  965. return -ENOMEM;
  966. spin_lock_init(&hw->reg_lock);
  967. hw->index = index;
  968. hw->port1 = port;
  969. hw->port2 = port + 0x400;
  970. hw->port3 = port + 0x800;
  971. if (!(hw->res_port1 = request_region(hw->port1, 4, "Emu8000-1")) ||
  972. !(hw->res_port2 = request_region(hw->port2, 4, "Emu8000-2")) ||
  973. !(hw->res_port3 = request_region(hw->port3, 4, "Emu8000-3"))) {
  974. snd_printk(KERN_ERR "sbawe: can't grab ports 0x%lx, 0x%lx, 0x%lx\n", hw->port1, hw->port2, hw->port3);
  975. snd_emu8000_free(hw);
  976. return -EBUSY;
  977. }
  978. hw->mem_size = 0;
  979. hw->card = card;
  980. hw->seq_ports = seq_ports;
  981. hw->bass_level = 5;
  982. hw->treble_level = 9;
  983. hw->chorus_mode = 2;
  984. hw->reverb_mode = 4;
  985. hw->fm_chorus_depth = 0;
  986. hw->fm_reverb_depth = 0;
  987. if (snd_emu8000_detect(hw) < 0) {
  988. snd_emu8000_free(hw);
  989. return -ENODEV;
  990. }
  991. snd_emu8000_init_hw(hw);
  992. if ((err = snd_emu8000_create_mixer(card, hw)) < 0) {
  993. snd_emu8000_free(hw);
  994. return err;
  995. }
  996. if ((err = snd_device_new(card, SNDRV_DEV_CODEC, hw, &ops)) < 0) {
  997. snd_emu8000_free(hw);
  998. return err;
  999. }
  1000. #if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE))
  1001. if (snd_seq_device_new(card, index, SNDRV_SEQ_DEV_ID_EMU8000,
  1002. sizeof(struct snd_emu8000*), &awe) >= 0) {
  1003. strcpy(awe->name, "EMU-8000");
  1004. *(struct snd_emu8000 **)SNDRV_SEQ_DEVICE_ARGPTR(awe) = hw;
  1005. }
  1006. #else
  1007. awe = NULL;
  1008. #endif
  1009. if (awe_ret)
  1010. *awe_ret = awe;
  1011. return 0;
  1012. }
  1013. /*
  1014. * exported stuff
  1015. */
  1016. EXPORT_SYMBOL(snd_emu8000_poke);
  1017. EXPORT_SYMBOL(snd_emu8000_peek);
  1018. EXPORT_SYMBOL(snd_emu8000_poke_dw);
  1019. EXPORT_SYMBOL(snd_emu8000_peek_dw);
  1020. EXPORT_SYMBOL(snd_emu8000_dma_chan);
  1021. EXPORT_SYMBOL(snd_emu8000_init_fm);
  1022. EXPORT_SYMBOL(snd_emu8000_load_chorus_fx);
  1023. EXPORT_SYMBOL(snd_emu8000_load_reverb_fx);
  1024. EXPORT_SYMBOL(snd_emu8000_update_chorus_mode);
  1025. EXPORT_SYMBOL(snd_emu8000_update_reverb_mode);
  1026. EXPORT_SYMBOL(snd_emu8000_update_equalizer);