sb_mixer.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961
  1. /*
  2. * Copyright (c) by Jaroslav Kysela <[email protected]>
  3. * Routines for Sound Blaster mixer control
  4. *
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. */
  21. #include <linux/io.h>
  22. #include <linux/delay.h>
  23. #include <linux/time.h>
  24. #include <sound/core.h>
  25. #include <sound/sb.h>
  26. #include <sound/control.h>
  27. #undef IO_DEBUG
  28. void snd_sbmixer_write(struct snd_sb *chip, unsigned char reg, unsigned char data)
  29. {
  30. outb(reg, SBP(chip, MIXER_ADDR));
  31. udelay(10);
  32. outb(data, SBP(chip, MIXER_DATA));
  33. udelay(10);
  34. #ifdef IO_DEBUG
  35. snd_printk(KERN_DEBUG "mixer_write 0x%x 0x%x\n", reg, data);
  36. #endif
  37. }
  38. unsigned char snd_sbmixer_read(struct snd_sb *chip, unsigned char reg)
  39. {
  40. unsigned char result;
  41. outb(reg, SBP(chip, MIXER_ADDR));
  42. udelay(10);
  43. result = inb(SBP(chip, MIXER_DATA));
  44. udelay(10);
  45. #ifdef IO_DEBUG
  46. snd_printk(KERN_DEBUG "mixer_read 0x%x 0x%x\n", reg, result);
  47. #endif
  48. return result;
  49. }
  50. /*
  51. * Single channel mixer element
  52. */
  53. static int snd_sbmixer_info_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  54. {
  55. int mask = (kcontrol->private_value >> 24) & 0xff;
  56. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  57. uinfo->count = 1;
  58. uinfo->value.integer.min = 0;
  59. uinfo->value.integer.max = mask;
  60. return 0;
  61. }
  62. static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  63. {
  64. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  65. unsigned long flags;
  66. int reg = kcontrol->private_value & 0xff;
  67. int shift = (kcontrol->private_value >> 16) & 0xff;
  68. int mask = (kcontrol->private_value >> 24) & 0xff;
  69. unsigned char val;
  70. spin_lock_irqsave(&sb->mixer_lock, flags);
  71. val = (snd_sbmixer_read(sb, reg) >> shift) & mask;
  72. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  73. ucontrol->value.integer.value[0] = val;
  74. return 0;
  75. }
  76. static int snd_sbmixer_put_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  77. {
  78. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  79. unsigned long flags;
  80. int reg = kcontrol->private_value & 0xff;
  81. int shift = (kcontrol->private_value >> 16) & 0x07;
  82. int mask = (kcontrol->private_value >> 24) & 0xff;
  83. int change;
  84. unsigned char val, oval;
  85. val = (ucontrol->value.integer.value[0] & mask) << shift;
  86. spin_lock_irqsave(&sb->mixer_lock, flags);
  87. oval = snd_sbmixer_read(sb, reg);
  88. val = (oval & ~(mask << shift)) | val;
  89. change = val != oval;
  90. if (change)
  91. snd_sbmixer_write(sb, reg, val);
  92. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  93. return change;
  94. }
  95. /*
  96. * Double channel mixer element
  97. */
  98. static int snd_sbmixer_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  99. {
  100. int mask = (kcontrol->private_value >> 24) & 0xff;
  101. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  102. uinfo->count = 2;
  103. uinfo->value.integer.min = 0;
  104. uinfo->value.integer.max = mask;
  105. return 0;
  106. }
  107. static int snd_sbmixer_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  108. {
  109. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  110. unsigned long flags;
  111. int left_reg = kcontrol->private_value & 0xff;
  112. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  113. int left_shift = (kcontrol->private_value >> 16) & 0x07;
  114. int right_shift = (kcontrol->private_value >> 19) & 0x07;
  115. int mask = (kcontrol->private_value >> 24) & 0xff;
  116. unsigned char left, right;
  117. spin_lock_irqsave(&sb->mixer_lock, flags);
  118. left = (snd_sbmixer_read(sb, left_reg) >> left_shift) & mask;
  119. right = (snd_sbmixer_read(sb, right_reg) >> right_shift) & mask;
  120. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  121. ucontrol->value.integer.value[0] = left;
  122. ucontrol->value.integer.value[1] = right;
  123. return 0;
  124. }
  125. static int snd_sbmixer_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  126. {
  127. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  128. unsigned long flags;
  129. int left_reg = kcontrol->private_value & 0xff;
  130. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  131. int left_shift = (kcontrol->private_value >> 16) & 0x07;
  132. int right_shift = (kcontrol->private_value >> 19) & 0x07;
  133. int mask = (kcontrol->private_value >> 24) & 0xff;
  134. int change;
  135. unsigned char left, right, oleft, oright;
  136. left = (ucontrol->value.integer.value[0] & mask) << left_shift;
  137. right = (ucontrol->value.integer.value[1] & mask) << right_shift;
  138. spin_lock_irqsave(&sb->mixer_lock, flags);
  139. if (left_reg == right_reg) {
  140. oleft = snd_sbmixer_read(sb, left_reg);
  141. left = (oleft & ~((mask << left_shift) | (mask << right_shift))) | left | right;
  142. change = left != oleft;
  143. if (change)
  144. snd_sbmixer_write(sb, left_reg, left);
  145. } else {
  146. oleft = snd_sbmixer_read(sb, left_reg);
  147. oright = snd_sbmixer_read(sb, right_reg);
  148. left = (oleft & ~(mask << left_shift)) | left;
  149. right = (oright & ~(mask << right_shift)) | right;
  150. change = left != oleft || right != oright;
  151. if (change) {
  152. snd_sbmixer_write(sb, left_reg, left);
  153. snd_sbmixer_write(sb, right_reg, right);
  154. }
  155. }
  156. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  157. return change;
  158. }
  159. /*
  160. * DT-019x / ALS-007 capture/input switch
  161. */
  162. static int snd_dt019x_input_sw_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  163. {
  164. static const char * const texts[5] = {
  165. "CD", "Mic", "Line", "Synth", "Master"
  166. };
  167. return snd_ctl_enum_info(uinfo, 1, 5, texts);
  168. }
  169. static int snd_dt019x_input_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  170. {
  171. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  172. unsigned long flags;
  173. unsigned char oval;
  174. spin_lock_irqsave(&sb->mixer_lock, flags);
  175. oval = snd_sbmixer_read(sb, SB_DT019X_CAPTURE_SW);
  176. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  177. switch (oval & 0x07) {
  178. case SB_DT019X_CAP_CD:
  179. ucontrol->value.enumerated.item[0] = 0;
  180. break;
  181. case SB_DT019X_CAP_MIC:
  182. ucontrol->value.enumerated.item[0] = 1;
  183. break;
  184. case SB_DT019X_CAP_LINE:
  185. ucontrol->value.enumerated.item[0] = 2;
  186. break;
  187. case SB_DT019X_CAP_MAIN:
  188. ucontrol->value.enumerated.item[0] = 4;
  189. break;
  190. /* To record the synth on these cards you must record the main. */
  191. /* Thus SB_DT019X_CAP_SYNTH == SB_DT019X_CAP_MAIN and would cause */
  192. /* duplicate case labels if left uncommented. */
  193. /* case SB_DT019X_CAP_SYNTH:
  194. * ucontrol->value.enumerated.item[0] = 3;
  195. * break;
  196. */
  197. default:
  198. ucontrol->value.enumerated.item[0] = 4;
  199. break;
  200. }
  201. return 0;
  202. }
  203. static int snd_dt019x_input_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  204. {
  205. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  206. unsigned long flags;
  207. int change;
  208. unsigned char nval, oval;
  209. if (ucontrol->value.enumerated.item[0] > 4)
  210. return -EINVAL;
  211. switch (ucontrol->value.enumerated.item[0]) {
  212. case 0:
  213. nval = SB_DT019X_CAP_CD;
  214. break;
  215. case 1:
  216. nval = SB_DT019X_CAP_MIC;
  217. break;
  218. case 2:
  219. nval = SB_DT019X_CAP_LINE;
  220. break;
  221. case 3:
  222. nval = SB_DT019X_CAP_SYNTH;
  223. break;
  224. case 4:
  225. nval = SB_DT019X_CAP_MAIN;
  226. break;
  227. default:
  228. nval = SB_DT019X_CAP_MAIN;
  229. }
  230. spin_lock_irqsave(&sb->mixer_lock, flags);
  231. oval = snd_sbmixer_read(sb, SB_DT019X_CAPTURE_SW);
  232. change = nval != oval;
  233. if (change)
  234. snd_sbmixer_write(sb, SB_DT019X_CAPTURE_SW, nval);
  235. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  236. return change;
  237. }
  238. /*
  239. * ALS4000 mono recording control switch
  240. */
  241. static int snd_als4k_mono_capture_route_info(struct snd_kcontrol *kcontrol,
  242. struct snd_ctl_elem_info *uinfo)
  243. {
  244. static const char * const texts[3] = {
  245. "L chan only", "R chan only", "L ch/2 + R ch/2"
  246. };
  247. return snd_ctl_enum_info(uinfo, 1, 3, texts);
  248. }
  249. static int snd_als4k_mono_capture_route_get(struct snd_kcontrol *kcontrol,
  250. struct snd_ctl_elem_value *ucontrol)
  251. {
  252. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  253. unsigned long flags;
  254. unsigned char oval;
  255. spin_lock_irqsave(&sb->mixer_lock, flags);
  256. oval = snd_sbmixer_read(sb, SB_ALS4000_MONO_IO_CTRL);
  257. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  258. oval >>= 6;
  259. if (oval > 2)
  260. oval = 2;
  261. ucontrol->value.enumerated.item[0] = oval;
  262. return 0;
  263. }
  264. static int snd_als4k_mono_capture_route_put(struct snd_kcontrol *kcontrol,
  265. struct snd_ctl_elem_value *ucontrol)
  266. {
  267. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  268. unsigned long flags;
  269. int change;
  270. unsigned char nval, oval;
  271. if (ucontrol->value.enumerated.item[0] > 2)
  272. return -EINVAL;
  273. spin_lock_irqsave(&sb->mixer_lock, flags);
  274. oval = snd_sbmixer_read(sb, SB_ALS4000_MONO_IO_CTRL);
  275. nval = (oval & ~(3 << 6))
  276. | (ucontrol->value.enumerated.item[0] << 6);
  277. change = nval != oval;
  278. if (change)
  279. snd_sbmixer_write(sb, SB_ALS4000_MONO_IO_CTRL, nval);
  280. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  281. return change;
  282. }
  283. /*
  284. * SBPRO input multiplexer
  285. */
  286. static int snd_sb8mixer_info_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  287. {
  288. static const char * const texts[3] = {
  289. "Mic", "CD", "Line"
  290. };
  291. return snd_ctl_enum_info(uinfo, 1, 3, texts);
  292. }
  293. static int snd_sb8mixer_get_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  294. {
  295. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  296. unsigned long flags;
  297. unsigned char oval;
  298. spin_lock_irqsave(&sb->mixer_lock, flags);
  299. oval = snd_sbmixer_read(sb, SB_DSP_CAPTURE_SOURCE);
  300. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  301. switch ((oval >> 0x01) & 0x03) {
  302. case SB_DSP_MIXS_CD:
  303. ucontrol->value.enumerated.item[0] = 1;
  304. break;
  305. case SB_DSP_MIXS_LINE:
  306. ucontrol->value.enumerated.item[0] = 2;
  307. break;
  308. default:
  309. ucontrol->value.enumerated.item[0] = 0;
  310. break;
  311. }
  312. return 0;
  313. }
  314. static int snd_sb8mixer_put_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  315. {
  316. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  317. unsigned long flags;
  318. int change;
  319. unsigned char nval, oval;
  320. if (ucontrol->value.enumerated.item[0] > 2)
  321. return -EINVAL;
  322. switch (ucontrol->value.enumerated.item[0]) {
  323. case 1:
  324. nval = SB_DSP_MIXS_CD;
  325. break;
  326. case 2:
  327. nval = SB_DSP_MIXS_LINE;
  328. break;
  329. default:
  330. nval = SB_DSP_MIXS_MIC;
  331. }
  332. nval <<= 1;
  333. spin_lock_irqsave(&sb->mixer_lock, flags);
  334. oval = snd_sbmixer_read(sb, SB_DSP_CAPTURE_SOURCE);
  335. nval |= oval & ~0x06;
  336. change = nval != oval;
  337. if (change)
  338. snd_sbmixer_write(sb, SB_DSP_CAPTURE_SOURCE, nval);
  339. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  340. return change;
  341. }
  342. /*
  343. * SB16 input switch
  344. */
  345. static int snd_sb16mixer_info_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  346. {
  347. uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
  348. uinfo->count = 4;
  349. uinfo->value.integer.min = 0;
  350. uinfo->value.integer.max = 1;
  351. return 0;
  352. }
  353. static int snd_sb16mixer_get_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  354. {
  355. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  356. unsigned long flags;
  357. int reg1 = kcontrol->private_value & 0xff;
  358. int reg2 = (kcontrol->private_value >> 8) & 0xff;
  359. int left_shift = (kcontrol->private_value >> 16) & 0x0f;
  360. int right_shift = (kcontrol->private_value >> 24) & 0x0f;
  361. unsigned char val1, val2;
  362. spin_lock_irqsave(&sb->mixer_lock, flags);
  363. val1 = snd_sbmixer_read(sb, reg1);
  364. val2 = snd_sbmixer_read(sb, reg2);
  365. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  366. ucontrol->value.integer.value[0] = (val1 >> left_shift) & 0x01;
  367. ucontrol->value.integer.value[1] = (val2 >> left_shift) & 0x01;
  368. ucontrol->value.integer.value[2] = (val1 >> right_shift) & 0x01;
  369. ucontrol->value.integer.value[3] = (val2 >> right_shift) & 0x01;
  370. return 0;
  371. }
  372. static int snd_sb16mixer_put_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  373. {
  374. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  375. unsigned long flags;
  376. int reg1 = kcontrol->private_value & 0xff;
  377. int reg2 = (kcontrol->private_value >> 8) & 0xff;
  378. int left_shift = (kcontrol->private_value >> 16) & 0x0f;
  379. int right_shift = (kcontrol->private_value >> 24) & 0x0f;
  380. int change;
  381. unsigned char val1, val2, oval1, oval2;
  382. spin_lock_irqsave(&sb->mixer_lock, flags);
  383. oval1 = snd_sbmixer_read(sb, reg1);
  384. oval2 = snd_sbmixer_read(sb, reg2);
  385. val1 = oval1 & ~((1 << left_shift) | (1 << right_shift));
  386. val2 = oval2 & ~((1 << left_shift) | (1 << right_shift));
  387. val1 |= (ucontrol->value.integer.value[0] & 1) << left_shift;
  388. val2 |= (ucontrol->value.integer.value[1] & 1) << left_shift;
  389. val1 |= (ucontrol->value.integer.value[2] & 1) << right_shift;
  390. val2 |= (ucontrol->value.integer.value[3] & 1) << right_shift;
  391. change = val1 != oval1 || val2 != oval2;
  392. if (change) {
  393. snd_sbmixer_write(sb, reg1, val1);
  394. snd_sbmixer_write(sb, reg2, val2);
  395. }
  396. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  397. return change;
  398. }
  399. /*
  400. */
  401. /*
  402. */
  403. int snd_sbmixer_add_ctl(struct snd_sb *chip, const char *name, int index, int type, unsigned long value)
  404. {
  405. static struct snd_kcontrol_new newctls[] = {
  406. [SB_MIX_SINGLE] = {
  407. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  408. .info = snd_sbmixer_info_single,
  409. .get = snd_sbmixer_get_single,
  410. .put = snd_sbmixer_put_single,
  411. },
  412. [SB_MIX_DOUBLE] = {
  413. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  414. .info = snd_sbmixer_info_double,
  415. .get = snd_sbmixer_get_double,
  416. .put = snd_sbmixer_put_double,
  417. },
  418. [SB_MIX_INPUT_SW] = {
  419. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  420. .info = snd_sb16mixer_info_input_sw,
  421. .get = snd_sb16mixer_get_input_sw,
  422. .put = snd_sb16mixer_put_input_sw,
  423. },
  424. [SB_MIX_CAPTURE_PRO] = {
  425. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  426. .info = snd_sb8mixer_info_mux,
  427. .get = snd_sb8mixer_get_mux,
  428. .put = snd_sb8mixer_put_mux,
  429. },
  430. [SB_MIX_CAPTURE_DT019X] = {
  431. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  432. .info = snd_dt019x_input_sw_info,
  433. .get = snd_dt019x_input_sw_get,
  434. .put = snd_dt019x_input_sw_put,
  435. },
  436. [SB_MIX_MONO_CAPTURE_ALS4K] = {
  437. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  438. .info = snd_als4k_mono_capture_route_info,
  439. .get = snd_als4k_mono_capture_route_get,
  440. .put = snd_als4k_mono_capture_route_put,
  441. },
  442. };
  443. struct snd_kcontrol *ctl;
  444. int err;
  445. ctl = snd_ctl_new1(&newctls[type], chip);
  446. if (! ctl)
  447. return -ENOMEM;
  448. strlcpy(ctl->id.name, name, sizeof(ctl->id.name));
  449. ctl->id.index = index;
  450. ctl->private_value = value;
  451. if ((err = snd_ctl_add(chip->card, ctl)) < 0)
  452. return err;
  453. return 0;
  454. }
  455. /*
  456. * SB 2.0 specific mixer elements
  457. */
  458. static struct sbmix_elem snd_sb20_controls[] = {
  459. SB_SINGLE("Master Playback Volume", SB_DSP20_MASTER_DEV, 1, 7),
  460. SB_SINGLE("PCM Playback Volume", SB_DSP20_PCM_DEV, 1, 3),
  461. SB_SINGLE("Synth Playback Volume", SB_DSP20_FM_DEV, 1, 7),
  462. SB_SINGLE("CD Playback Volume", SB_DSP20_CD_DEV, 1, 7)
  463. };
  464. static unsigned char snd_sb20_init_values[][2] = {
  465. { SB_DSP20_MASTER_DEV, 0 },
  466. { SB_DSP20_FM_DEV, 0 },
  467. };
  468. /*
  469. * SB Pro specific mixer elements
  470. */
  471. static struct sbmix_elem snd_sbpro_controls[] = {
  472. SB_DOUBLE("Master Playback Volume",
  473. SB_DSP_MASTER_DEV, SB_DSP_MASTER_DEV, 5, 1, 7),
  474. SB_DOUBLE("PCM Playback Volume",
  475. SB_DSP_PCM_DEV, SB_DSP_PCM_DEV, 5, 1, 7),
  476. SB_SINGLE("PCM Playback Filter", SB_DSP_PLAYBACK_FILT, 5, 1),
  477. SB_DOUBLE("Synth Playback Volume",
  478. SB_DSP_FM_DEV, SB_DSP_FM_DEV, 5, 1, 7),
  479. SB_DOUBLE("CD Playback Volume", SB_DSP_CD_DEV, SB_DSP_CD_DEV, 5, 1, 7),
  480. SB_DOUBLE("Line Playback Volume",
  481. SB_DSP_LINE_DEV, SB_DSP_LINE_DEV, 5, 1, 7),
  482. SB_SINGLE("Mic Playback Volume", SB_DSP_MIC_DEV, 1, 3),
  483. {
  484. .name = "Capture Source",
  485. .type = SB_MIX_CAPTURE_PRO
  486. },
  487. SB_SINGLE("Capture Filter", SB_DSP_CAPTURE_FILT, 5, 1),
  488. SB_SINGLE("Capture Low-Pass Filter", SB_DSP_CAPTURE_FILT, 3, 1)
  489. };
  490. static unsigned char snd_sbpro_init_values[][2] = {
  491. { SB_DSP_MASTER_DEV, 0 },
  492. { SB_DSP_PCM_DEV, 0 },
  493. { SB_DSP_FM_DEV, 0 },
  494. };
  495. /*
  496. * SB16 specific mixer elements
  497. */
  498. static struct sbmix_elem snd_sb16_controls[] = {
  499. SB_DOUBLE("Master Playback Volume",
  500. SB_DSP4_MASTER_DEV, (SB_DSP4_MASTER_DEV + 1), 3, 3, 31),
  501. SB_DOUBLE("PCM Playback Volume",
  502. SB_DSP4_PCM_DEV, (SB_DSP4_PCM_DEV + 1), 3, 3, 31),
  503. SB16_INPUT_SW("Synth Capture Route",
  504. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 6, 5),
  505. SB_DOUBLE("Synth Playback Volume",
  506. SB_DSP4_SYNTH_DEV, (SB_DSP4_SYNTH_DEV + 1), 3, 3, 31),
  507. SB16_INPUT_SW("CD Capture Route",
  508. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 2, 1),
  509. SB_DOUBLE("CD Playback Switch",
  510. SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 2, 1, 1),
  511. SB_DOUBLE("CD Playback Volume",
  512. SB_DSP4_CD_DEV, (SB_DSP4_CD_DEV + 1), 3, 3, 31),
  513. SB16_INPUT_SW("Mic Capture Route",
  514. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0),
  515. SB_SINGLE("Mic Playback Switch", SB_DSP4_OUTPUT_SW, 0, 1),
  516. SB_SINGLE("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
  517. SB_SINGLE("Beep Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
  518. SB_DOUBLE("Capture Volume",
  519. SB_DSP4_IGAIN_DEV, (SB_DSP4_IGAIN_DEV + 1), 6, 6, 3),
  520. SB_DOUBLE("Playback Volume",
  521. SB_DSP4_OGAIN_DEV, (SB_DSP4_OGAIN_DEV + 1), 6, 6, 3),
  522. SB16_INPUT_SW("Line Capture Route",
  523. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 4, 3),
  524. SB_DOUBLE("Line Playback Switch",
  525. SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 4, 3, 1),
  526. SB_DOUBLE("Line Playback Volume",
  527. SB_DSP4_LINE_DEV, (SB_DSP4_LINE_DEV + 1), 3, 3, 31),
  528. SB_SINGLE("Mic Auto Gain", SB_DSP4_MIC_AGC, 0, 1),
  529. SB_SINGLE("3D Enhancement Switch", SB_DSP4_3DSE, 0, 1),
  530. SB_DOUBLE("Tone Control - Bass",
  531. SB_DSP4_BASS_DEV, (SB_DSP4_BASS_DEV + 1), 4, 4, 15),
  532. SB_DOUBLE("Tone Control - Treble",
  533. SB_DSP4_TREBLE_DEV, (SB_DSP4_TREBLE_DEV + 1), 4, 4, 15)
  534. };
  535. static unsigned char snd_sb16_init_values[][2] = {
  536. { SB_DSP4_MASTER_DEV + 0, 0 },
  537. { SB_DSP4_MASTER_DEV + 1, 0 },
  538. { SB_DSP4_PCM_DEV + 0, 0 },
  539. { SB_DSP4_PCM_DEV + 1, 0 },
  540. { SB_DSP4_SYNTH_DEV + 0, 0 },
  541. { SB_DSP4_SYNTH_DEV + 1, 0 },
  542. { SB_DSP4_INPUT_LEFT, 0 },
  543. { SB_DSP4_INPUT_RIGHT, 0 },
  544. { SB_DSP4_OUTPUT_SW, 0 },
  545. { SB_DSP4_SPEAKER_DEV, 0 },
  546. };
  547. /*
  548. * DT019x specific mixer elements
  549. */
  550. static struct sbmix_elem snd_dt019x_controls[] = {
  551. /* ALS4000 below has some parts which we might be lacking,
  552. * e.g. snd_als4000_ctl_mono_playback_switch - check it! */
  553. SB_DOUBLE("Master Playback Volume",
  554. SB_DT019X_MASTER_DEV, SB_DT019X_MASTER_DEV, 4, 0, 15),
  555. SB_DOUBLE("PCM Playback Switch",
  556. SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 2, 1, 1),
  557. SB_DOUBLE("PCM Playback Volume",
  558. SB_DT019X_PCM_DEV, SB_DT019X_PCM_DEV, 4, 0, 15),
  559. SB_DOUBLE("Synth Playback Switch",
  560. SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 4, 3, 1),
  561. SB_DOUBLE("Synth Playback Volume",
  562. SB_DT019X_SYNTH_DEV, SB_DT019X_SYNTH_DEV, 4, 0, 15),
  563. SB_DOUBLE("CD Playback Switch",
  564. SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 2, 1, 1),
  565. SB_DOUBLE("CD Playback Volume",
  566. SB_DT019X_CD_DEV, SB_DT019X_CD_DEV, 4, 0, 15),
  567. SB_SINGLE("Mic Playback Switch", SB_DSP4_OUTPUT_SW, 0, 1),
  568. SB_SINGLE("Mic Playback Volume", SB_DT019X_MIC_DEV, 4, 7),
  569. SB_SINGLE("Beep Volume", SB_DT019X_SPKR_DEV, 0, 7),
  570. SB_DOUBLE("Line Playback Switch",
  571. SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 4, 3, 1),
  572. SB_DOUBLE("Line Playback Volume",
  573. SB_DT019X_LINE_DEV, SB_DT019X_LINE_DEV, 4, 0, 15),
  574. {
  575. .name = "Capture Source",
  576. .type = SB_MIX_CAPTURE_DT019X
  577. }
  578. };
  579. static unsigned char snd_dt019x_init_values[][2] = {
  580. { SB_DT019X_MASTER_DEV, 0 },
  581. { SB_DT019X_PCM_DEV, 0 },
  582. { SB_DT019X_SYNTH_DEV, 0 },
  583. { SB_DT019X_CD_DEV, 0 },
  584. { SB_DT019X_MIC_DEV, 0 }, /* Includes PC-speaker in high nibble */
  585. { SB_DT019X_LINE_DEV, 0 },
  586. { SB_DSP4_OUTPUT_SW, 0 },
  587. { SB_DT019X_OUTPUT_SW2, 0 },
  588. { SB_DT019X_CAPTURE_SW, 0x06 },
  589. };
  590. /*
  591. * ALS4000 specific mixer elements
  592. */
  593. static struct sbmix_elem snd_als4000_controls[] = {
  594. SB_DOUBLE("PCM Playback Switch",
  595. SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 2, 1, 1),
  596. SB_DOUBLE("Synth Playback Switch",
  597. SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 4, 3, 1),
  598. SB_SINGLE("Mic Boost (+20dB)", SB_ALS4000_MIC_IN_GAIN, 0, 0x03),
  599. SB_SINGLE("Master Mono Playback Switch", SB_ALS4000_MONO_IO_CTRL, 5, 1),
  600. {
  601. .name = "Master Mono Capture Route",
  602. .type = SB_MIX_MONO_CAPTURE_ALS4K
  603. },
  604. SB_SINGLE("Mono Playback Switch", SB_DT019X_OUTPUT_SW2, 0, 1),
  605. SB_SINGLE("Analog Loopback Switch", SB_ALS4000_MIC_IN_GAIN, 7, 0x01),
  606. SB_SINGLE("3D Control - Switch", SB_ALS4000_3D_SND_FX, 6, 0x01),
  607. SB_SINGLE("Digital Loopback Switch",
  608. SB_ALS4000_CR3_CONFIGURATION, 7, 0x01),
  609. /* FIXME: functionality of 3D controls might be swapped, I didn't find
  610. * a description of how to identify what is supposed to be what */
  611. SB_SINGLE("3D Control - Level", SB_ALS4000_3D_SND_FX, 0, 0x07),
  612. /* FIXME: maybe there's actually some standard 3D ctrl name for it?? */
  613. SB_SINGLE("3D Control - Freq", SB_ALS4000_3D_SND_FX, 4, 0x03),
  614. /* FIXME: ALS4000a.pdf mentions BBD (Bucket Brigade Device) time delay,
  615. * but what ALSA 3D attribute is that actually? "Center", "Depth",
  616. * "Wide" or "Space" or even "Level"? Assuming "Wide" for now... */
  617. SB_SINGLE("3D Control - Wide", SB_ALS4000_3D_TIME_DELAY, 0, 0x0f),
  618. SB_SINGLE("3D PowerOff Switch", SB_ALS4000_3D_TIME_DELAY, 4, 0x01),
  619. SB_SINGLE("Master Playback 8kHz / 20kHz LPF Switch",
  620. SB_ALS4000_FMDAC, 5, 0x01),
  621. #ifdef NOT_AVAILABLE
  622. SB_SINGLE("FMDAC Switch (Option ?)", SB_ALS4000_FMDAC, 0, 0x01),
  623. SB_SINGLE("QSound Mode", SB_ALS4000_QSOUND, 1, 0x1f),
  624. #endif
  625. };
  626. static unsigned char snd_als4000_init_values[][2] = {
  627. { SB_DSP4_MASTER_DEV + 0, 0 },
  628. { SB_DSP4_MASTER_DEV + 1, 0 },
  629. { SB_DSP4_PCM_DEV + 0, 0 },
  630. { SB_DSP4_PCM_DEV + 1, 0 },
  631. { SB_DSP4_SYNTH_DEV + 0, 0 },
  632. { SB_DSP4_SYNTH_DEV + 1, 0 },
  633. { SB_DSP4_SPEAKER_DEV, 0 },
  634. { SB_DSP4_OUTPUT_SW, 0 },
  635. { SB_DSP4_INPUT_LEFT, 0 },
  636. { SB_DSP4_INPUT_RIGHT, 0 },
  637. { SB_DT019X_OUTPUT_SW2, 0 },
  638. { SB_ALS4000_MIC_IN_GAIN, 0 },
  639. };
  640. /*
  641. */
  642. static int snd_sbmixer_init(struct snd_sb *chip,
  643. struct sbmix_elem *controls,
  644. int controls_count,
  645. unsigned char map[][2],
  646. int map_count,
  647. char *name)
  648. {
  649. unsigned long flags;
  650. struct snd_card *card = chip->card;
  651. int idx, err;
  652. /* mixer reset */
  653. spin_lock_irqsave(&chip->mixer_lock, flags);
  654. snd_sbmixer_write(chip, 0x00, 0x00);
  655. spin_unlock_irqrestore(&chip->mixer_lock, flags);
  656. /* mute and zero volume channels */
  657. for (idx = 0; idx < map_count; idx++) {
  658. spin_lock_irqsave(&chip->mixer_lock, flags);
  659. snd_sbmixer_write(chip, map[idx][0], map[idx][1]);
  660. spin_unlock_irqrestore(&chip->mixer_lock, flags);
  661. }
  662. for (idx = 0; idx < controls_count; idx++) {
  663. err = snd_sbmixer_add_ctl_elem(chip, &controls[idx]);
  664. if (err < 0)
  665. return err;
  666. }
  667. snd_component_add(card, name);
  668. strcpy(card->mixername, name);
  669. return 0;
  670. }
  671. int snd_sbmixer_new(struct snd_sb *chip)
  672. {
  673. struct snd_card *card;
  674. int err;
  675. if (snd_BUG_ON(!chip || !chip->card))
  676. return -EINVAL;
  677. card = chip->card;
  678. switch (chip->hardware) {
  679. case SB_HW_10:
  680. return 0; /* no mixer chip on SB1.x */
  681. case SB_HW_20:
  682. case SB_HW_201:
  683. if ((err = snd_sbmixer_init(chip,
  684. snd_sb20_controls,
  685. ARRAY_SIZE(snd_sb20_controls),
  686. snd_sb20_init_values,
  687. ARRAY_SIZE(snd_sb20_init_values),
  688. "CTL1335")) < 0)
  689. return err;
  690. break;
  691. case SB_HW_PRO:
  692. case SB_HW_JAZZ16:
  693. if ((err = snd_sbmixer_init(chip,
  694. snd_sbpro_controls,
  695. ARRAY_SIZE(snd_sbpro_controls),
  696. snd_sbpro_init_values,
  697. ARRAY_SIZE(snd_sbpro_init_values),
  698. "CTL1345")) < 0)
  699. return err;
  700. break;
  701. case SB_HW_16:
  702. case SB_HW_ALS100:
  703. case SB_HW_CS5530:
  704. if ((err = snd_sbmixer_init(chip,
  705. snd_sb16_controls,
  706. ARRAY_SIZE(snd_sb16_controls),
  707. snd_sb16_init_values,
  708. ARRAY_SIZE(snd_sb16_init_values),
  709. "CTL1745")) < 0)
  710. return err;
  711. break;
  712. case SB_HW_ALS4000:
  713. /* use only the first 16 controls from SB16 */
  714. err = snd_sbmixer_init(chip,
  715. snd_sb16_controls,
  716. 16,
  717. snd_sb16_init_values,
  718. ARRAY_SIZE(snd_sb16_init_values),
  719. "ALS4000");
  720. if (err < 0)
  721. return err;
  722. if ((err = snd_sbmixer_init(chip,
  723. snd_als4000_controls,
  724. ARRAY_SIZE(snd_als4000_controls),
  725. snd_als4000_init_values,
  726. ARRAY_SIZE(snd_als4000_init_values),
  727. "ALS4000")) < 0)
  728. return err;
  729. break;
  730. case SB_HW_DT019X:
  731. err = snd_sbmixer_init(chip,
  732. snd_dt019x_controls,
  733. ARRAY_SIZE(snd_dt019x_controls),
  734. snd_dt019x_init_values,
  735. ARRAY_SIZE(snd_dt019x_init_values),
  736. "DT019X");
  737. if (err < 0)
  738. return err;
  739. break;
  740. default:
  741. strcpy(card->mixername, "???");
  742. }
  743. return 0;
  744. }
  745. #ifdef CONFIG_PM
  746. static unsigned char sb20_saved_regs[] = {
  747. SB_DSP20_MASTER_DEV,
  748. SB_DSP20_PCM_DEV,
  749. SB_DSP20_FM_DEV,
  750. SB_DSP20_CD_DEV,
  751. };
  752. static unsigned char sbpro_saved_regs[] = {
  753. SB_DSP_MASTER_DEV,
  754. SB_DSP_PCM_DEV,
  755. SB_DSP_PLAYBACK_FILT,
  756. SB_DSP_FM_DEV,
  757. SB_DSP_CD_DEV,
  758. SB_DSP_LINE_DEV,
  759. SB_DSP_MIC_DEV,
  760. SB_DSP_CAPTURE_SOURCE,
  761. SB_DSP_CAPTURE_FILT,
  762. };
  763. static unsigned char sb16_saved_regs[] = {
  764. SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
  765. SB_DSP4_3DSE,
  766. SB_DSP4_BASS_DEV, SB_DSP4_BASS_DEV + 1,
  767. SB_DSP4_TREBLE_DEV, SB_DSP4_TREBLE_DEV + 1,
  768. SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
  769. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
  770. SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
  771. SB_DSP4_OUTPUT_SW,
  772. SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
  773. SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
  774. SB_DSP4_MIC_DEV,
  775. SB_DSP4_SPEAKER_DEV,
  776. SB_DSP4_IGAIN_DEV, SB_DSP4_IGAIN_DEV + 1,
  777. SB_DSP4_OGAIN_DEV, SB_DSP4_OGAIN_DEV + 1,
  778. SB_DSP4_MIC_AGC
  779. };
  780. static unsigned char dt019x_saved_regs[] = {
  781. SB_DT019X_MASTER_DEV,
  782. SB_DT019X_PCM_DEV,
  783. SB_DT019X_SYNTH_DEV,
  784. SB_DT019X_CD_DEV,
  785. SB_DT019X_MIC_DEV,
  786. SB_DT019X_SPKR_DEV,
  787. SB_DT019X_LINE_DEV,
  788. SB_DSP4_OUTPUT_SW,
  789. SB_DT019X_OUTPUT_SW2,
  790. SB_DT019X_CAPTURE_SW,
  791. };
  792. static unsigned char als4000_saved_regs[] = {
  793. /* please verify in dsheet whether regs to be added
  794. are actually real H/W or just dummy */
  795. SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
  796. SB_DSP4_OUTPUT_SW,
  797. SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
  798. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
  799. SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
  800. SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
  801. SB_DSP4_MIC_DEV,
  802. SB_DSP4_SPEAKER_DEV,
  803. SB_DSP4_IGAIN_DEV, SB_DSP4_IGAIN_DEV + 1,
  804. SB_DSP4_OGAIN_DEV, SB_DSP4_OGAIN_DEV + 1,
  805. SB_DT019X_OUTPUT_SW2,
  806. SB_ALS4000_MONO_IO_CTRL,
  807. SB_ALS4000_MIC_IN_GAIN,
  808. SB_ALS4000_FMDAC,
  809. SB_ALS4000_3D_SND_FX,
  810. SB_ALS4000_3D_TIME_DELAY,
  811. SB_ALS4000_CR3_CONFIGURATION,
  812. };
  813. static void save_mixer(struct snd_sb *chip, unsigned char *regs, int num_regs)
  814. {
  815. unsigned char *val = chip->saved_regs;
  816. if (snd_BUG_ON(num_regs > ARRAY_SIZE(chip->saved_regs)))
  817. return;
  818. for (; num_regs; num_regs--)
  819. *val++ = snd_sbmixer_read(chip, *regs++);
  820. }
  821. static void restore_mixer(struct snd_sb *chip, unsigned char *regs, int num_regs)
  822. {
  823. unsigned char *val = chip->saved_regs;
  824. if (snd_BUG_ON(num_regs > ARRAY_SIZE(chip->saved_regs)))
  825. return;
  826. for (; num_regs; num_regs--)
  827. snd_sbmixer_write(chip, *regs++, *val++);
  828. }
  829. void snd_sbmixer_suspend(struct snd_sb *chip)
  830. {
  831. switch (chip->hardware) {
  832. case SB_HW_20:
  833. case SB_HW_201:
  834. save_mixer(chip, sb20_saved_regs, ARRAY_SIZE(sb20_saved_regs));
  835. break;
  836. case SB_HW_PRO:
  837. case SB_HW_JAZZ16:
  838. save_mixer(chip, sbpro_saved_regs, ARRAY_SIZE(sbpro_saved_regs));
  839. break;
  840. case SB_HW_16:
  841. case SB_HW_ALS100:
  842. case SB_HW_CS5530:
  843. save_mixer(chip, sb16_saved_regs, ARRAY_SIZE(sb16_saved_regs));
  844. break;
  845. case SB_HW_ALS4000:
  846. save_mixer(chip, als4000_saved_regs, ARRAY_SIZE(als4000_saved_regs));
  847. break;
  848. case SB_HW_DT019X:
  849. save_mixer(chip, dt019x_saved_regs, ARRAY_SIZE(dt019x_saved_regs));
  850. break;
  851. default:
  852. break;
  853. }
  854. }
  855. void snd_sbmixer_resume(struct snd_sb *chip)
  856. {
  857. switch (chip->hardware) {
  858. case SB_HW_20:
  859. case SB_HW_201:
  860. restore_mixer(chip, sb20_saved_regs, ARRAY_SIZE(sb20_saved_regs));
  861. break;
  862. case SB_HW_PRO:
  863. case SB_HW_JAZZ16:
  864. restore_mixer(chip, sbpro_saved_regs, ARRAY_SIZE(sbpro_saved_regs));
  865. break;
  866. case SB_HW_16:
  867. case SB_HW_ALS100:
  868. case SB_HW_CS5530:
  869. restore_mixer(chip, sb16_saved_regs, ARRAY_SIZE(sb16_saved_regs));
  870. break;
  871. case SB_HW_ALS4000:
  872. restore_mixer(chip, als4000_saved_regs, ARRAY_SIZE(als4000_saved_regs));
  873. break;
  874. case SB_HW_DT019X:
  875. restore_mixer(chip, dt019x_saved_regs, ARRAY_SIZE(dt019x_saved_regs));
  876. break;
  877. default:
  878. break;
  879. }
  880. }
  881. #endif