123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415 |
- /*
- * Copyright (C) 2017 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #ifndef ANDROID_ML_NN_COMMON_UTILS_H
- #define ANDROID_ML_NN_COMMON_UTILS_H
- #include "HalInterfaces.h"
- #include "NeuralNetworks.h"
- #include "ValidateHal.h"
- #include <android-base/logging.h>
- #include <optional>
- #include <set>
- #include <vector>
- namespace android {
- namespace nn {
- // The number of data types (OperandCode) defined in NeuralNetworks.h.
- const int kNumberOfDataTypes = 14;
- // The number of operation types (OperationCode) defined in NeuralNetworks.h.
- const int kNumberOfOperationTypes = 95;
- // The number of execution preferences defined in NeuralNetworks.h.
- const int kNumberOfPreferences = 3;
- // The number of data types (OperandCode) defined in NeuralNetworksOEM.h.
- const int kNumberOfDataTypesOEM = 2;
- // The number of operation types (OperationCode) defined in NeuralNetworksOEM.h.
- const int kNumberOfOperationTypesOEM = 1;
- // The lowest number assigned to any OEM Code in NeuralNetworksOEM.h.
- const int kOEMCodeBase = 10000;
- /* IMPORTANT: if you change the following list, don't
- * forget to update the corresponding 'tags' table in
- * the initVlogMask() function implemented in Utils.cpp.
- */
- enum VLogFlags {
- MODEL = 0,
- COMPILATION,
- EXECUTION,
- CPUEXE,
- MANAGER,
- DRIVER
- };
- #define VLOG_IS_ON(TAG) \
- ((vLogMask & (1 << (TAG))) != 0)
- #define VLOG(TAG) \
- if (LIKELY(!VLOG_IS_ON(TAG))) \
- ; \
- else \
- LOG(INFO)
- extern int vLogMask;
- void initVLogMask();
- #ifdef NN_DEBUGGABLE
- #define SHOW_IF_DEBUG(msg) msg
- #else
- #define SHOW_IF_DEBUG(msg) ""
- #endif
- // DEPRECATED(b/118737105). Use CHECK.
- #define nnAssert(v) CHECK(v)
- #define NN_RETURN_IF_ERROR(expr) \
- do { \
- int _errorCode = (expr); \
- if (_errorCode != ANEURALNETWORKS_NO_ERROR) { \
- return _errorCode; \
- } \
- } while (0)
- // The NN_RET_CHECK family of macros defined below is similar to the CHECK family defined in
- // system/core/base/include/android-base/logging.h
- //
- // The difference is that NN_RET_CHECK macros use LOG(ERROR) instead of LOG(FATAL)
- // and return false instead of aborting.
- // Logs an error and returns false. Append context using << after. For example:
- //
- // NN_RET_CHECK_FAIL() << "Something went wrong";
- //
- // The containing function must return a bool.
- #define NN_RET_CHECK_FAIL() \
- return ::android::nn::FalseyErrorStream() \
- << "NN_RET_CHECK failed (" << __FILE__ << ":" << __LINE__ << "): "
- // Logs an error and returns false if condition is false. Extra logging can be appended using <<
- // after. For example:
- //
- // NN_RET_CHECK(false) << "Something went wrong";
- //
- // The containing function must return a bool.
- #define NN_RET_CHECK(condition) \
- while (UNLIKELY(!(condition))) NN_RET_CHECK_FAIL() << #condition << " "
- // Helper for NN_CHECK_xx(x, y) macros.
- #define NN_RET_CHECK_OP(LHS, RHS, OP) \
- for (auto _values = ::android::base::MakeEagerEvaluator(LHS, RHS); \
- UNLIKELY(!(_values.lhs OP _values.rhs)); \
- /* empty */) \
- NN_RET_CHECK_FAIL() << #LHS << " " << #OP << " " << #RHS << " (" << #LHS << " = " \
- << _values.lhs << ", " << #RHS << " = " << _values.rhs << ") "
- // Logs an error and returns false if a condition between x and y does not hold. Extra logging can
- // be appended using << after. For example:
- //
- // NN_RET_CHECK_EQ(a, b) << "Something went wrong";
- //
- // The values must implement the appropriate comparison operator as well as
- // `operator<<(std::ostream&, ...)`.
- // The containing function must return a bool.
- #define NN_RET_CHECK_EQ(x, y) NN_RET_CHECK_OP(x, y, ==)
- #define NN_RET_CHECK_NE(x, y) NN_RET_CHECK_OP(x, y, !=)
- #define NN_RET_CHECK_LE(x, y) NN_RET_CHECK_OP(x, y, <=)
- #define NN_RET_CHECK_LT(x, y) NN_RET_CHECK_OP(x, y, <)
- #define NN_RET_CHECK_GE(x, y) NN_RET_CHECK_OP(x, y, >=)
- #define NN_RET_CHECK_GT(x, y) NN_RET_CHECK_OP(x, y, >)
- // A wrapper around LOG(ERROR) that can be implicitly converted to bool (always evaluates to false).
- // Used to implement stream logging in NN_RET_CHECK.
- class FalseyErrorStream {
- DISALLOW_COPY_AND_ASSIGN(FalseyErrorStream);
- public:
- FalseyErrorStream() {}
- template <typename T>
- FalseyErrorStream& operator<<(const T& value) {
- mBuffer << value;
- return *this;
- }
- ~FalseyErrorStream() { LOG(ERROR) << mBuffer.str(); }
- operator bool() const { return false; }
- private:
- std::ostringstream mBuffer;
- };
- // Return a vector with one entry for each non extension OperandType, set to the
- // specified PerformanceInfo value. The vector will be sorted by OperandType.
- hidl_vec<Capabilities::OperandPerformance> nonExtensionOperandPerformance(PerformanceInfo perf);
- // Update the vector entry corresponding to the specified OperandType with the
- // specified PerformanceInfo value. The vector must already have an entry for
- // that OperandType, and must be sorted by OperandType.
- void update(hidl_vec<Capabilities::OperandPerformance>* operandPerformance, OperandType type,
- PerformanceInfo perf);
- // Look for a vector entry corresponding to the specified OperandType. If
- // found, return the associated PerformanceInfo. If not, return a pessimistic
- // PerformanceInfo (FLT_MAX). The vector must be sorted by OperandType.
- PerformanceInfo lookup(const hidl_vec<Capabilities::OperandPerformance>& operandPerformance,
- OperandType type);
- // Returns true if an operand type is an extension type.
- bool isExtensionOperandType(OperandType type);
- // Returns true if an operation type is an extension type.
- bool isExtensionOperationType(OperationType type);
- // Returns the amount of space needed to store a value of the specified
- // dimensions and type. For a tensor with unspecified rank or at least one
- // unspecified dimension, returns zero.
- //
- // Aborts if the specified type is an extension type.
- //
- // See also TypeManager::getSizeOfData(OperandType, const std::vector<uint32_t>&).
- uint32_t nonExtensionOperandSizeOfData(OperandType type, const std::vector<uint32_t>& dimensions);
- // Returns the amount of space needed to store a value of the dimensions and
- // type of this operand. For a tensor with unspecified rank or at least one
- // unspecified dimension, returns zero.
- //
- // Aborts if the specified type is an extension type.
- //
- // See also TypeManager::getSizeOfData(const Operand&).
- inline uint32_t nonExtensionOperandSizeOfData(const Operand& operand) {
- return nonExtensionOperandSizeOfData(operand.type, operand.dimensions);
- }
- // Returns true if a non-extension operand type is a scalar type.
- //
- // Aborts if the specified type is an extension type.
- //
- // See also TypeManager::isTensorType(OperandType).
- bool nonExtensionOperandTypeIsScalar(int type);
- // Returns the name of the operation type in ASCII.
- std::string getOperationName(OperationType opCode);
- // Returns the name of the operand type in ASCII.
- std::string getOperandTypeName(OperandType type);
- // Whether an operand of tensor type has unspecified dimensions.
- //
- // Undefined behavior if the operand type is a scalar type.
- bool tensorHasUnspecifiedDimensions(int type, const uint32_t* dim, uint32_t dimCount);
- bool tensorHasUnspecifiedDimensions(const Operand& operand);
- bool tensorHasUnspecifiedDimensions(const ANeuralNetworksOperandType* type);
- // Memory is unmapped.
- // Memory is reference counted by hidl_memory instances, and is deallocated
- // once there are no more references.
- hidl_memory allocateSharedMemory(int64_t size);
- // Returns the number of padding bytes needed to align data of the
- // specified length. It aligns object of length:
- // 2, 3 on a 2 byte boundary,
- // 4+ on a 4 byte boundary.
- // We may want to have different alignments for tensors.
- // TODO: This is arbitrary, more a proof of concept. We need
- // to determine what this should be.
- uint32_t alignBytesNeeded(uint32_t index, size_t length);
- // Does a detailed LOG(INFO) of the model
- void logModelToInfo(const V1_0::Model& model);
- void logModelToInfo(const V1_1::Model& model);
- void logModelToInfo(const V1_2::Model& model);
- inline std::string toString(uint32_t obj) {
- return std::to_string(obj);
- }
- template <typename Type>
- std::string toString(const std::vector<Type>& range) {
- std::string os = "[";
- for (size_t i = 0; i < range.size(); ++i) {
- os += (i == 0 ? "" : ", ") + toString(range[i]);
- }
- return os += "]";
- }
- inline std::string toString(HalVersion halVersion) {
- switch (halVersion) {
- case HalVersion::UNKNOWN:
- return "UNKNOWN HAL version";
- case HalVersion::V1_0:
- return "HAL version 1.0";
- case HalVersion::V1_1:
- return "HAL version 1.1";
- case HalVersion::V1_2:
- return "HAL version 1.2";
- }
- }
- inline bool validCode(uint32_t codeCount, uint32_t codeCountOEM, uint32_t code) {
- return (code < codeCount) || (code >= kOEMCodeBase && (code - kOEMCodeBase) < codeCountOEM);
- }
- bool validateOperandSymmPerChannelQuantParams(
- const Operand& halOperand, const ANeuralNetworksSymmPerChannelQuantParams& channelQuant,
- const char* tag);
- // Validates an operand type.
- //
- // extensionOperandTypeInfo must be nullptr iff the type is not an extension type.
- //
- // If allowPartial is true, the dimensions may be underspecified.
- int validateOperandType(const ANeuralNetworksOperandType& type,
- const Extension::OperandTypeInformation* const extensionOperandTypeInfo,
- const char* tag, bool allowPartial);
- int validateOperandList(uint32_t count, const uint32_t* list, uint32_t operandCount,
- const char* tag);
- // Returns ANEURALNETWORKS_NO_ERROR if the corresponding operation is defined and can handle the
- // provided operand types in the given HAL version, otherwise returns ANEURALNETWORKS_BAD_DATA.
- int validateOperation(ANeuralNetworksOperationType opType, uint32_t inputCount,
- const uint32_t* inputIndexes, uint32_t outputCount,
- const uint32_t* outputIndexes, const std::vector<Operand>& operands,
- HalVersion halVersion);
- inline size_t getSizeFromInts(int lower, int higher) {
- return (uint32_t)(lower) + ((uint64_t)(uint32_t)(higher) << 32);
- }
- // Convert ANEURALNETWORKS_* result code to ErrorStatus.
- // Not guaranteed to be a 1-to-1 mapping.
- ErrorStatus convertResultCodeToErrorStatus(int resultCode);
- // Convert ErrorStatus to ANEURALNETWORKS_* result code.
- // Not guaranteed to be a 1-to-1 mapping.
- int convertErrorStatusToResultCode(ErrorStatus status);
- // Versioning
- bool compliantWithV1_0(const V1_0::Capabilities& capabilities);
- bool compliantWithV1_0(const V1_1::Capabilities& capabilities);
- bool compliantWithV1_0(const V1_2::Capabilities& capabilities);
- bool compliantWithV1_1(const V1_0::Capabilities& capabilities);
- bool compliantWithV1_1(const V1_1::Capabilities& capabilities);
- bool compliantWithV1_1(const V1_2::Capabilities& capabilities);
- bool compliantWithV1_2(const V1_0::Capabilities& capabilities);
- bool compliantWithV1_2(const V1_1::Capabilities& capabilities);
- bool compliantWithV1_2(const V1_2::Capabilities& capabilities);
- bool compliantWithV1_0(const V1_2::Operand& operand);
- // If noncompliantOperations != nullptr, then
- // precondition: noncompliantOperations->empty()
- // postcondition: *noncompliantOperations consists of the indices of the noncompliant
- // operations; if the compliance check fails for some reason
- // other than a noncompliant operation,
- // *noncompliantOperations consists of the indices of all operations
- bool compliantWithV1_0(const V1_0::Model& model);
- bool compliantWithV1_0(const V1_1::Model& model);
- bool compliantWithV1_0(const V1_2::Model& model,
- std::set<uint32_t>* noncompliantOperations = nullptr);
- bool compliantWithV1_1(const V1_0::Model& model);
- bool compliantWithV1_1(const V1_1::Model& model);
- bool compliantWithV1_1(const V1_2::Model& model,
- std::set<uint32_t>* noncompliantOperations = nullptr);
- V1_0::Capabilities convertToV1_0(const V1_0::Capabilities& capabilities);
- V1_0::Capabilities convertToV1_0(const V1_1::Capabilities& capabilities);
- V1_0::Capabilities convertToV1_0(const V1_2::Capabilities& capabilities);
- V1_1::Capabilities convertToV1_1(const V1_0::Capabilities& capabilities);
- V1_1::Capabilities convertToV1_1(const V1_1::Capabilities& capabilities);
- V1_1::Capabilities convertToV1_1(const V1_2::Capabilities& capabilities);
- V1_2::Capabilities convertToV1_2(const V1_0::Capabilities& capabilities);
- V1_2::Capabilities convertToV1_2(const V1_1::Capabilities& capabilities);
- V1_2::Capabilities convertToV1_2(const V1_2::Capabilities& capabilities);
- V1_0::Model convertToV1_0(const V1_0::Model& model);
- V1_0::Model convertToV1_0(const V1_1::Model& model);
- V1_0::Model convertToV1_0(const V1_2::Model& model);
- V1_1::Model convertToV1_1(const V1_0::Model& model);
- V1_1::Model convertToV1_1(const V1_1::Model& model);
- V1_1::Model convertToV1_1(const V1_2::Model& model);
- V1_2::Model convertToV1_2(const V1_0::Model& model);
- V1_2::Model convertToV1_2(const V1_1::Model& model);
- V1_2::Model convertToV1_2(const V1_2::Model& model);
- // The IModelSlicer abstract class provides methods to create from an original
- // model a "slice" of that model consisting of the subset of operations that is
- // compliant with a particular HAL version, and a mechanism for mapping
- // operations from the slice back to operations of the original model. The
- // slice is intended to be passed to getSupportedOperations*(), with the mapping
- // used to translate the results of that call from the slice's operations to the
- // original model's operations. The slice has no other purpose (for example, it
- // is not guaranteed to have the same topology as a subgraph of the original
- // model).
- //
- // Note that the original model is not part of the ModelSlicer specification --
- // an instance of a class derived from ModelSlicer is responsible for knowing
- // the original model. getSlice*() methods may be called multiple times on a
- // given instance; the intention is that the instance cache slices internally.
- //
- // The meaning of the return value of the getSlice*() methods is explained by
- // the following example:
- //
- // IModelSlicer* slicer = ...;
- // auto ret = slicer->getSliceV1_0(); // getSliceV1_1() is similar
- // if (ret.has_value()) {
- // const V1_0::Model model = ret->first; // the slice
- // auto mapper = ret->second;
- // // mapper is a functor that takes an operation index in the
- // // slice and returns the corresponding operation index in the
- // // original model. The functor must remain valid for the lifetime
- // // of *slicer.
- // } else {
- // // Could not obtain a slice. For example, perhaps none of the
- // // original model's operations are compliant with V1_0.
- // }
- //
- class IModelSlicer {
- public:
- virtual std::optional<std::pair<V1_0::Model, std::function<uint32_t(uint32_t)>>>
- getSliceV1_0() = 0;
- virtual std::optional<std::pair<V1_1::Model, std::function<uint32_t(uint32_t)>>>
- getSliceV1_1() = 0;
- virtual ~IModelSlicer() = default;
- };
- V1_0::OperationType uncheckedConvertToV1_0(V1_2::OperationType type);
- V1_1::OperationType uncheckedConvertToV1_1(V1_2::OperationType type);
- V1_0::Operand convertToV1_0(const V1_2::Operand& operand);
- V1_2::Operand convertToV1_2(const V1_0::Operand& operand);
- V1_2::Operand convertToV1_2(const V1_2::Operand& operand);
- hidl_vec<V1_2::Operand> convertToV1_2(const hidl_vec<V1_0::Operand>& operands);
- hidl_vec<V1_2::Operand> convertToV1_2(const hidl_vec<V1_2::Operand>& operands);
- #ifdef NN_DEBUGGABLE
- uint32_t getProp(const char* str, uint32_t defaultValue = 0);
- #endif // NN_DEBUGGABLE
- } // namespace nn
- } // namespace android
- #endif // ANDROID_ML_NN_COMMON_UTILS_H
|