123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- /*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #define LOG_TAG "Operations"
- #include "HalInterfaces.h"
- #include "OperationResolver.h"
- #include "OperationsUtils.h"
- #include "Tracing.h"
- namespace android {
- namespace nn {
- namespace gather {
- constexpr char kOperationName[] = "GATHER";
- constexpr uint32_t kNumInputs = 3;
- constexpr uint32_t kInputTensor = 0;
- constexpr uint32_t kInputAxis = 1;
- constexpr uint32_t kInputIndices = 2;
- constexpr uint32_t kNumOutputs = 1;
- constexpr uint32_t kOutputTensor = 0;
- namespace {
- template <typename T>
- inline bool eval(const T* inputData, const Shape& inputShape, int32_t axis,
- const int32_t* indicesData, const Shape& indicesShape, T* outputData) {
- const auto outerSize = getNumberOfElements(inputShape, 0, axis);
- const auto axisSize = getSizeOfDimension(inputShape, axis);
- const auto innerSize =
- getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
- const auto indicesCount = getNumberOfElements(indicesShape);
- for (uint32_t outer = 0; outer < outerSize; ++outer) {
- for (uint32_t outputIndex = 0; outputIndex < indicesCount; ++outputIndex) {
- const auto inputIndex = static_cast<uint32_t>(indicesData[outputIndex]);
- NN_RET_CHECK_LE(0u, inputIndex);
- NN_RET_CHECK_LT(inputIndex, axisSize);
- std::memcpy(outputData + (outer * indicesCount + outputIndex) * innerSize,
- inputData + (outer * axisSize + inputIndex) * innerSize,
- sizeof(T) * innerSize);
- }
- }
- return true;
- }
- } // namespace
- bool validate(const IOperationValidationContext* context) {
- NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
- NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
- OperandType inputType = context->getInputType(kInputTensor);
- NN_RET_CHECK(
- inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 ||
- inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM)
- << "Unsupported tensor type for operation " << kOperationName;
- NN_RET_CHECK(validateInputTypes(context,
- {inputType, OperandType::INT32, OperandType::TENSOR_INT32}));
- NN_RET_CHECK(validateOutputTypes(context, {inputType}));
- return validateHalVersion(context, HalVersion::V1_2);
- }
- bool prepare(IOperationExecutionContext* context) {
- Shape input = context->getInputShape(kInputTensor);
- int32_t axis = context->getInputValue<int32_t>(kInputAxis);
- NN_RET_CHECK(handleNegativeAxis(input, &axis));
- Shape indices = context->getInputShape(kInputIndices);
- Shape output = context->getOutputShape(kOutputTensor);
- output.dimensions.clear();
- output.dimensions.reserve(getNumberOfDimensions(input) + getNumberOfDimensions(indices) - 1);
- output.dimensions.insert(output.dimensions.end(), input.dimensions.begin(),
- input.dimensions.begin() + axis);
- output.dimensions.insert(output.dimensions.end(), indices.dimensions.begin(),
- indices.dimensions.end());
- output.dimensions.insert(output.dimensions.end(), input.dimensions.begin() + axis + 1,
- input.dimensions.end());
- return context->setOutputShape(kOutputTensor, output);
- }
- bool execute(IOperationExecutionContext* context) {
- int32_t axis = context->getInputValue<int32_t>(kInputAxis);
- NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
- switch (context->getInputType(kInputTensor)) {
- case OperandType::TENSOR_FLOAT16:
- return eval(context->getInputBuffer<_Float16>(kInputTensor),
- context->getInputShape(kInputTensor), axis,
- context->getInputBuffer<int32_t>(kInputIndices),
- context->getInputShape(kInputIndices),
- context->getOutputBuffer<_Float16>(kOutputTensor));
- case OperandType::TENSOR_FLOAT32:
- return eval(context->getInputBuffer<float>(kInputTensor),
- context->getInputShape(kInputTensor), axis,
- context->getInputBuffer<int32_t>(kInputIndices),
- context->getInputShape(kInputIndices),
- context->getOutputBuffer<float>(kOutputTensor));
- case OperandType::TENSOR_INT32:
- return eval(context->getInputBuffer<int32_t>(kInputTensor),
- context->getInputShape(kInputTensor), axis,
- context->getInputBuffer<int32_t>(kInputIndices),
- context->getInputShape(kInputIndices),
- context->getOutputBuffer<int32_t>(kOutputTensor));
- case OperandType::TENSOR_QUANT8_ASYMM:
- return eval(context->getInputBuffer<uint8_t>(kInputTensor),
- context->getInputShape(kInputTensor), axis,
- context->getInputBuffer<int32_t>(kInputIndices),
- context->getInputShape(kInputIndices),
- context->getOutputBuffer<uint8_t>(kOutputTensor));
- default:
- NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
- }
- }
- } // namespace gather
- NN_REGISTER_OPERATION(GATHER, gather::kOperationName, gather::validate, gather::prepare,
- gather::execute);
- } // namespace nn
- } // namespace android
|