123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- /*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "CpuOperationUtils.h"
- #include "Operations.h"
- #include <cfloat>
- #include <cmath>
- #include "Tracing.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- namespace android {
- namespace nn {
- #define ANDROID_NN_GROUPED_CONV_PARAMETERS \
- uint32_t numBatches = getSizeOfDimension(inputShape, 0); \
- uint32_t inputHeight = getSizeOfDimension(inputShape, 1); \
- uint32_t inputWidth = getSizeOfDimension(inputShape, 2); \
- uint32_t inputDepth = getSizeOfDimension(inputShape, 3); \
- uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \
- uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \
- uint32_t filterDepth = getSizeOfDimension(filterShape, 3); \
- uint32_t outputHeight = getSizeOfDimension(outputShape, 1); \
- uint32_t outputWidth = getSizeOfDimension(outputShape, 2); \
- uint32_t outputDepth = getSizeOfDimension(outputShape, 3); \
- uint32_t outputGroupDepth = outputDepth / numGroups;
- bool groupedConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData,
- const Shape& filterShape, const float* biasData, const Shape& biasShape,
- int32_t padding_left, int32_t padding_right, int32_t padding_top,
- int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
- int32_t numGroups, int32_t activation, float* outputData,
- const Shape& outputShape) {
- NNTRACE_TRANS("groupConvFloat32");
- ANDROID_NN_GROUPED_CONV_PARAMETERS
- float output_activation_min = 0.0f, output_activation_max = 0.0f;
- CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
- const float* inputBase = inputData;
- float* outPtr = outputData;
- for (uint32_t b = 0; b < numBatches; b++) {
- for (uint32_t h = 0; h < outputHeight; h++) {
- for (uint32_t w = 0; w < outputWidth; w++) {
- const float* filterBase = filterData;
- for (uint32_t g = 0; g < numGroups; g++) {
- for (uint32_t d = 0; d < outputGroupDepth; d++) {
- int32_t wInputOrigin =
- static_cast<int32_t>(w) * stride_width - padding_left;
- int32_t hInputOrigin =
- static_cast<int32_t>(h) * stride_height - padding_top;
- float sum = 0.0f;
- for (uint32_t i = 0; i < filterHeight; i++) {
- for (uint32_t j = 0; j < filterWidth; j++) {
- for (uint32_t k = 0; k < filterDepth; k++) {
- int32_t hInput = hInputOrigin + static_cast<int32_t>(i);
- int32_t wInput = wInputOrigin + static_cast<int32_t>(j);
- uint32_t dInput = filterDepth * g + k;
- if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) &&
- wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) {
- uint32_t filterIndex =
- i * filterWidth * filterDepth + j * filterDepth + k;
- uint32_t inputIndex = hInput * inputWidth * inputDepth +
- wInput * inputDepth + dInput;
- sum += filterBase[filterIndex] * inputBase[inputIndex];
- }
- }
- }
- }
- sum += biasData[g * outputGroupDepth + d];
- sum = std::max(std::min(sum, output_activation_max), output_activation_min);
- outPtr[d] = sum;
- filterBase += filterHeight * filterWidth * filterDepth;
- }
- outPtr += outputGroupDepth;
- }
- }
- }
- inputBase += inputHeight * inputWidth * inputDepth;
- }
- return true;
- }
- bool groupedConvQuant8(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData,
- const Shape& filterShape, const int32_t* biasData, const Shape& biasShape,
- int32_t padding_left, int32_t padding_right, int32_t padding_top,
- int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
- int32_t numGroups, int32_t activation, uint8_t* outputData,
- const Shape& outputShape) {
- NNTRACE_TRANS("groupConvQuant8");
- ANDROID_NN_GROUPED_CONV_PARAMETERS
- int32_t inputOffset = -inputShape.offset;
- int32_t filterOffset = -filterShape.offset;
- int32_t outputOffset = outputShape.offset;
- double realMultiplier = 0.0;
- int32_t outputMultiplier = 0;
- int32_t outputShift = 0;
- NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape,
- &realMultiplier));
- int exponent;
- NN_RET_CHECK(QuantizeMultiplier(realMultiplier, &outputMultiplier, &exponent));
- outputShift = -exponent;
- int32_t output_activation_min = 0, output_activation_max = 0;
- CalculateActivationRangeUint8(activation, outputShape, &output_activation_min,
- &output_activation_max);
- const uint8_t* inputBase = inputData;
- uint8_t* outPtr = outputData;
- for (uint32_t b = 0; b < numBatches; b++) {
- for (uint32_t h = 0; h < outputHeight; h++) {
- for (uint32_t w = 0; w < outputWidth; w++) {
- const uint8_t* filterBase = filterData;
- for (uint32_t g = 0; g < numGroups; g++) {
- for (uint32_t d = 0; d < outputGroupDepth; d++) {
- int32_t wInputOrigin =
- static_cast<int32_t>(w) * stride_width - padding_left;
- int32_t hInputOrigin =
- static_cast<int32_t>(h) * stride_height - padding_top;
- int32_t sum = 0.0f;
- for (uint32_t i = 0; i < filterHeight; i++) {
- for (uint32_t j = 0; j < filterWidth; j++) {
- for (uint32_t k = 0; k < filterDepth; k++) {
- int32_t hInput = hInputOrigin + static_cast<int32_t>(i);
- int32_t wInput = wInputOrigin + static_cast<int32_t>(j);
- uint32_t dInput = filterDepth * g + k;
- if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) &&
- wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) {
- uint32_t filterIndex =
- i * filterWidth * filterDepth + j * filterDepth + k;
- uint32_t inputIndex = hInput * inputWidth * inputDepth +
- wInput * inputDepth + dInput;
- sum += (static_cast<int32_t>(filterBase[filterIndex]) +
- filterOffset) *
- (static_cast<int32_t>(inputBase[inputIndex]) +
- inputOffset);
- }
- }
- }
- }
- sum += biasData[g * outputGroupDepth + d];
- sum = tflite::MultiplyByQuantizedMultiplier(sum, outputMultiplier,
- -outputShift);
- sum += outputOffset;
- sum = std::max(std::min(sum, output_activation_max), output_activation_min);
- outPtr[d] = static_cast<uint8_t>(sum);
- filterBase += filterHeight * filterWidth * filterDepth;
- }
- outPtr += outputGroupDepth;
- }
- }
- }
- inputBase += inputHeight * inputWidth * inputDepth;
- }
- return true;
- }
- bool groupedConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape,
- const int8_t* filterData, const Shape& filterShape,
- const float* filterScales, const int32_t* biasData,
- const Shape& biasShape, int32_t padding_left,
- int32_t padding_right, int32_t padding_top, int32_t padding_bottom,
- int32_t stride_width, int32_t stride_height, int32_t numGroups,
- int32_t activation, uint8_t* outputData,
- const Shape& outputShape) {
- NNTRACE_TRANS("groupConvQuant8");
- ANDROID_NN_GROUPED_CONV_PARAMETERS
- int32_t inputOffset = -inputShape.offset;
- int32_t outputOffset = outputShape.offset;
- auto realMultiplier = std::vector<double>(outputDepth, .0f);
- auto outputMultiplier = std::vector<int32_t>(outputDepth, 0);
- auto outputShift = std::vector<int32_t>(outputDepth, 0);
- for (int i = 0; i < outputDepth; ++i) {
- Shape filterChannelShape = filterShape;
- filterChannelShape.scale = filterScales[i];
- Shape biasChannelShape = biasShape;
- biasChannelShape.scale = filterScales[i] * inputShape.scale;
- NN_RET_CHECK(GetQuantizedConvolutionMultipler(
- inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i]));
- int exponent;
- NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent));
- outputShift[i] = -exponent;
- }
- int32_t output_activation_min = 0, output_activation_max = 0;
- CalculateActivationRangeUint8(activation, outputShape, &output_activation_min,
- &output_activation_max);
- const uint8_t* inputBase = inputData;
- uint8_t* outPtr = outputData;
- for (uint32_t b = 0; b < numBatches; b++) {
- for (uint32_t h = 0; h < outputHeight; h++) {
- for (uint32_t w = 0; w < outputWidth; w++) {
- const int8_t* filterBase = filterData;
- for (uint32_t g = 0; g < numGroups; g++) {
- for (uint32_t d = 0; d < outputGroupDepth; d++) {
- int32_t wInputOrigin =
- static_cast<int32_t>(w) * stride_width - padding_left;
- int32_t hInputOrigin =
- static_cast<int32_t>(h) * stride_height - padding_top;
- int32_t sum = 0.0f;
- for (uint32_t i = 0; i < filterHeight; i++) {
- for (uint32_t j = 0; j < filterWidth; j++) {
- for (uint32_t k = 0; k < filterDepth; k++) {
- int32_t hInput = hInputOrigin + static_cast<int32_t>(i);
- int32_t wInput = wInputOrigin + static_cast<int32_t>(j);
- uint32_t dInput = filterDepth * g + k;
- if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) &&
- wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) {
- uint32_t filterIndex =
- i * filterWidth * filterDepth + j * filterDepth + k;
- uint32_t inputIndex = hInput * inputWidth * inputDepth +
- wInput * inputDepth + dInput;
- sum += (static_cast<int32_t>(filterBase[filterIndex])) *
- (static_cast<int32_t>(inputBase[inputIndex]) +
- inputOffset);
- }
- }
- }
- }
- int channelIndex = g * outputGroupDepth + d;
- sum += biasData[channelIndex];
- sum = tflite::MultiplyByQuantizedMultiplier(
- sum, outputMultiplier[channelIndex], -outputShift[channelIndex]);
- sum += outputOffset;
- sum = std::max(std::min(sum, output_activation_max), output_activation_min);
- outPtr[d] = static_cast<uint8_t>(sum);
- filterBase += filterHeight * filterWidth * filterDepth;
- }
- outPtr += outputGroupDepth;
- }
- }
- }
- inputBase += inputHeight * inputWidth * inputDepth;
- }
- return true;
- }
- bool groupedConvFloat16(const _Float16* inputData, const Shape& inputShape,
- const _Float16* filterData, const Shape& filterShape,
- const _Float16* biasData, const Shape& biasShape, int32_t padding_left,
- int32_t padding_right, int32_t padding_top, int32_t padding_bottom,
- int32_t stride_width, int32_t stride_height, int32_t numGroups,
- int32_t activation, _Float16* outputData, const Shape& outputShape) {
- NNTRACE_TRANS("groupConvFloat16");
- std::vector<float> inputData_float32(getNumberOfElements(inputShape));
- std::vector<float> filterData_float32(getNumberOfElements(filterShape));
- std::vector<float> biasData_float32(getNumberOfElements(biasShape));
- std::vector<float> outputData_float32(getNumberOfElements(outputShape));
- convertFloat16ToFloat32(inputData, &inputData_float32);
- convertFloat16ToFloat32(filterData, &filterData_float32);
- convertFloat16ToFloat32(biasData, &biasData_float32);
- groupedConvFloat32(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape,
- biasData_float32.data(), biasShape, padding_left, padding_right, padding_top,
- padding_bottom, stride_width, stride_height, numGroups, activation,
- outputData_float32.data(), outputShape);
- convertFloat32ToFloat16(outputData_float32, outputData);
- return true;
- }
- #undef ANDROID_NN_GROUPED_CONV_PARAMETERS
- } // namespace nn
- } // namespace android
|