LSTMTest.cpp 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113
  1. /*
  2. * Copyright (C) 2017 The Android Open Source Project
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "LSTM.h"
  17. #include "NeuralNetworksWrapper.h"
  18. #include "gmock/gmock-matchers.h"
  19. #include "gtest/gtest.h"
  20. namespace android {
  21. namespace nn {
  22. namespace wrapper {
  23. using ::testing::Each;
  24. using ::testing::FloatNear;
  25. using ::testing::Matcher;
  26. namespace {
  27. std::vector<Matcher<float>> ArrayFloatNear(const std::vector<float>& values,
  28. float max_abs_error=1.e-6) {
  29. std::vector<Matcher<float>> matchers;
  30. matchers.reserve(values.size());
  31. for (const float& v : values) {
  32. matchers.emplace_back(FloatNear(v, max_abs_error));
  33. }
  34. return matchers;
  35. }
  36. } // anonymous namespace
  37. #define FOR_ALL_INPUT_AND_WEIGHT_TENSORS(ACTION) \
  38. ACTION(Input) \
  39. ACTION(InputToInputWeights) \
  40. ACTION(InputToCellWeights) \
  41. ACTION(InputToForgetWeights) \
  42. ACTION(InputToOutputWeights) \
  43. ACTION(RecurrentToInputWeights) \
  44. ACTION(RecurrentToCellWeights) \
  45. ACTION(RecurrentToForgetWeights) \
  46. ACTION(RecurrentToOutputWeights) \
  47. ACTION(CellToInputWeights) \
  48. ACTION(CellToForgetWeights) \
  49. ACTION(CellToOutputWeights) \
  50. ACTION(InputGateBias) \
  51. ACTION(CellGateBias) \
  52. ACTION(ForgetGateBias) \
  53. ACTION(OutputGateBias) \
  54. ACTION(ProjectionWeights) \
  55. ACTION(ProjectionBias) \
  56. ACTION(OutputStateIn) \
  57. ACTION(CellStateIn)
  58. // For all output and intermediate states
  59. #define FOR_ALL_OUTPUT_TENSORS(ACTION) \
  60. ACTION(ScratchBuffer) \
  61. ACTION(OutputStateOut) \
  62. ACTION(CellStateOut) \
  63. ACTION(Output) \
  64. class LSTMOpModel {
  65. public:
  66. LSTMOpModel(uint32_t n_batch, uint32_t n_input,
  67. uint32_t n_cell, uint32_t n_output, bool use_cifg,
  68. bool use_peephole, bool use_projection_weights,
  69. bool use_projection_bias, float cell_clip, float proj_clip,
  70. const std::vector<std::vector<uint32_t>>& input_shapes0)
  71. : n_input_(n_input),
  72. n_output_(n_output),
  73. use_cifg_(use_cifg), use_peephole_(use_peephole),
  74. use_projection_weights_(use_projection_weights),
  75. use_projection_bias_(use_projection_bias),
  76. activation_(ActivationFn::kActivationTanh),
  77. cell_clip_(cell_clip), proj_clip_(proj_clip) {
  78. std::vector<uint32_t> inputs;
  79. std::vector<std::vector<uint32_t>> input_shapes(input_shapes0);
  80. input_shapes.push_back({n_batch, n_output});
  81. input_shapes.push_back({n_batch, n_cell});
  82. auto it = input_shapes.begin();
  83. // Input and weights
  84. #define AddInput(X) \
  85. OperandType X##OpndTy(Type::TENSOR_FLOAT32, *it++); \
  86. inputs.push_back(model_.addOperand(&X##OpndTy));
  87. FOR_ALL_INPUT_AND_WEIGHT_TENSORS(AddInput);
  88. #undef AddOperand
  89. // Parameters
  90. OperandType ActivationOpndTy(Type::INT32, {});
  91. inputs.push_back(model_.addOperand(&ActivationOpndTy));
  92. OperandType CellClipOpndTy(Type::FLOAT32, {});
  93. inputs.push_back(model_.addOperand(&CellClipOpndTy));
  94. OperandType ProjClipOpndTy(Type::FLOAT32, {});
  95. inputs.push_back(model_.addOperand(&ProjClipOpndTy));
  96. // Output and other intermediate state
  97. std::vector<std::vector<uint32_t>> output_shapes{
  98. {n_batch, n_cell * (use_cifg ? 3 : 4)},
  99. {n_batch, n_output},
  100. {n_batch, n_cell},
  101. {n_batch, n_output},
  102. };
  103. std::vector<uint32_t> outputs;
  104. auto it2 = output_shapes.begin();
  105. #define AddOutput(X)\
  106. OperandType X##OpndTy(Type::TENSOR_FLOAT32, *it2++); \
  107. outputs.push_back(model_.addOperand(&X##OpndTy));
  108. FOR_ALL_OUTPUT_TENSORS(AddOutput);
  109. #undef AddOutput
  110. model_.addOperation(ANEURALNETWORKS_LSTM, inputs, outputs);
  111. model_.identifyInputsAndOutputs(inputs, outputs);
  112. Input_.insert(Input_.end(), n_batch * n_input, 0.f);
  113. OutputStateIn_.insert(OutputStateIn_.end(), n_batch * n_output, 0.f);
  114. CellStateIn_.insert(CellStateIn_.end(), n_batch * n_cell, 0.f);
  115. auto multiAll = [](const std::vector<uint32_t> &dims) -> uint32_t {
  116. uint32_t sz = 1;
  117. for(uint32_t d:dims) { sz *= d; }
  118. return sz;
  119. };
  120. it2 = output_shapes.begin();
  121. #define ReserveOutput(X) X##_.insert(X##_.end(), multiAll(*it2++), 0.f);
  122. FOR_ALL_OUTPUT_TENSORS(ReserveOutput);
  123. #undef ReserveOutput
  124. model_.finish();
  125. }
  126. #define DefineSetter(X) \
  127. void Set##X(const std::vector<float> &f) { \
  128. X##_.insert(X##_.end(), f.begin(), f.end()); \
  129. }
  130. FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineSetter);
  131. #undef DefineSetter
  132. void ResetOutputState() {
  133. std::fill(OutputStateIn_.begin(), OutputStateIn_.end(), 0.f);
  134. std::fill(OutputStateOut_.begin(), OutputStateOut_.end(), 0.f);
  135. }
  136. void ResetCellState() {
  137. std::fill(CellStateIn_.begin(), CellStateIn_.end(), 0.f);
  138. std::fill(CellStateOut_.begin(), CellStateOut_.end(), 0.f);
  139. }
  140. void SetInput(int offset, float *begin, float *end) {
  141. for (;begin != end; begin++, offset++) {
  142. Input_[offset] = *begin;
  143. }
  144. }
  145. uint32_t num_inputs() const { return n_input_; }
  146. uint32_t num_outputs() const { return n_output_; }
  147. const std::vector<float> &GetOutput() const { return Output_; }
  148. void Invoke() {
  149. ASSERT_TRUE(model_.isValid());
  150. OutputStateIn_.swap(OutputStateOut_);
  151. CellStateIn_.swap(CellStateOut_);
  152. Compilation compilation(&model_);
  153. compilation.finish();
  154. Execution execution(&compilation);
  155. #define SetInputOrWeight(X) \
  156. ASSERT_EQ(execution.setInput(LSTMCell::k##X##Tensor, X##_.data(), \
  157. sizeof(float)*X##_.size()), \
  158. Result::NO_ERROR);
  159. FOR_ALL_INPUT_AND_WEIGHT_TENSORS(SetInputOrWeight);
  160. #undef SetInputOrWeight
  161. #define SetOutput(X) \
  162. ASSERT_EQ(execution.setOutput(LSTMCell::k##X##Tensor, X##_.data(), \
  163. sizeof(float)*X##_.size()), \
  164. Result::NO_ERROR);
  165. FOR_ALL_OUTPUT_TENSORS(SetOutput);
  166. #undef SetOutput
  167. if (use_cifg_) {
  168. execution.setInput(LSTMCell::kInputToInputWeightsTensor, nullptr, 0);
  169. execution.setInput(LSTMCell::kRecurrentToInputWeightsTensor, nullptr, 0);
  170. }
  171. if (use_peephole_) {
  172. if (use_cifg_) {
  173. execution.setInput(LSTMCell::kCellToInputWeightsTensor, nullptr, 0);
  174. }
  175. } else {
  176. execution.setInput(LSTMCell::kCellToInputWeightsTensor, nullptr, 0);
  177. execution.setInput(LSTMCell::kCellToForgetWeightsTensor, nullptr, 0);
  178. execution.setInput(LSTMCell::kCellToOutputWeightsTensor, nullptr, 0);
  179. }
  180. if (use_projection_weights_) {
  181. if (!use_projection_bias_) {
  182. execution.setInput(LSTMCell::kProjectionBiasTensor, nullptr, 0);
  183. }
  184. } else {
  185. execution.setInput(LSTMCell::kProjectionWeightsTensor, nullptr, 0);
  186. execution.setInput(LSTMCell::kProjectionBiasTensor, nullptr, 0);
  187. }
  188. ASSERT_EQ(execution.setInput(LSTMCell::kActivationParam,
  189. &activation_, sizeof(activation_)),
  190. Result::NO_ERROR);
  191. ASSERT_EQ(execution.setInput(LSTMCell::kCellClipParam,
  192. &cell_clip_, sizeof(cell_clip_)),
  193. Result::NO_ERROR);
  194. ASSERT_EQ(execution.setInput(LSTMCell::kProjClipParam,
  195. &proj_clip_, sizeof(proj_clip_)),
  196. Result::NO_ERROR);
  197. ASSERT_EQ(execution.compute(), Result::NO_ERROR);
  198. }
  199. private:
  200. Model model_;
  201. // Execution execution_;
  202. const uint32_t n_input_;
  203. const uint32_t n_output_;
  204. const bool use_cifg_;
  205. const bool use_peephole_;
  206. const bool use_projection_weights_;
  207. const bool use_projection_bias_;
  208. const int activation_;
  209. const float cell_clip_;
  210. const float proj_clip_;
  211. #define DefineTensor(X) \
  212. std::vector<float> X##_;
  213. FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineTensor);
  214. FOR_ALL_OUTPUT_TENSORS(DefineTensor);
  215. #undef DefineTensor
  216. };
  217. TEST(LSTMOpTest, BlackBoxTestNoCifgNoPeepholeNoProjectionNoClipping) {
  218. const int n_batch = 1;
  219. const int n_input = 2;
  220. // n_cell and n_output have the same size when there is no projection.
  221. const int n_cell = 4;
  222. const int n_output = 4;
  223. LSTMOpModel lstm(n_batch, n_input, n_cell, n_output,
  224. /*use_cifg=*/false, /*use_peephole=*/false,
  225. /*use_projection_weights=*/false,
  226. /*use_projection_bias=*/false,
  227. /*cell_clip=*/0.0, /*proj_clip=*/0.0,
  228. {
  229. {n_batch, n_input}, // input tensor
  230. {n_cell, n_input}, // input_to_input_weight tensor
  231. {n_cell, n_input}, // input_to_forget_weight tensor
  232. {n_cell, n_input}, // input_to_cell_weight tensor
  233. {n_cell, n_input}, // input_to_output_weight tensor
  234. {n_cell, n_output}, // recurrent_to_input_weight tensor
  235. {n_cell, n_output}, // recurrent_to_forget_weight tensor
  236. {n_cell, n_output}, // recurrent_to_cell_weight tensor
  237. {n_cell, n_output}, // recurrent_to_output_weight tensor
  238. {0}, // cell_to_input_weight tensor
  239. {0}, // cell_to_forget_weight tensor
  240. {0}, // cell_to_output_weight tensor
  241. {n_cell}, // input_gate_bias tensor
  242. {n_cell}, // forget_gate_bias tensor
  243. {n_cell}, // cell_bias tensor
  244. {n_cell}, // output_gate_bias tensor
  245. {0, 0}, // projection_weight tensor
  246. {0}, // projection_bias tensor
  247. });
  248. lstm.SetInputToInputWeights({-0.45018822, -0.02338299, -0.0870589,
  249. -0.34550029, 0.04266912, -0.15680569,
  250. -0.34856534, 0.43890524});
  251. lstm.SetInputToCellWeights({-0.50013041, 0.1370284, 0.11810488, 0.2013163,
  252. -0.20583314, 0.44344562, 0.22077113,
  253. -0.29909778});
  254. lstm.SetInputToForgetWeights({0.09701663, 0.20334584, -0.50592935,
  255. -0.31343272, -0.40032279, 0.44781327,
  256. 0.01387155, -0.35593212});
  257. lstm.SetInputToOutputWeights({-0.25065863, -0.28290087, 0.04613829,
  258. 0.40525138, 0.44272184, 0.03897077, -0.1556896,
  259. 0.19487578});
  260. lstm.SetInputGateBias({0., 0., 0., 0.});
  261. lstm.SetCellGateBias({0., 0., 0., 0.});
  262. lstm.SetForgetGateBias({1., 1., 1., 1.});
  263. lstm.SetOutputGateBias({0., 0., 0., 0.});
  264. lstm.SetRecurrentToInputWeights(
  265. {-0.0063535, -0.2042388, 0.31454784, -0.35746509, 0.28902304, 0.08183324,
  266. -0.16555229, 0.02286911, -0.13566875, 0.03034258, 0.48091322,
  267. -0.12528998, 0.24077177, -0.51332325, -0.33502164, 0.10629296});
  268. lstm.SetRecurrentToCellWeights(
  269. {-0.3407414, 0.24443203, -0.2078532, 0.26320225, 0.05695659, -0.00123841,
  270. -0.4744786, -0.35869038, -0.06418842, -0.13502428, -0.501764, 0.22830659,
  271. -0.46367589, 0.26016325, -0.03894562, -0.16368064});
  272. lstm.SetRecurrentToForgetWeights(
  273. {-0.48684245, -0.06655136, 0.42224967, 0.2112639, 0.27654213, 0.20864892,
  274. -0.07646349, 0.45877004, 0.00141793, -0.14609534, 0.36447752, 0.09196436,
  275. 0.28053468, 0.01560611, -0.20127171, -0.01140004});
  276. lstm.SetRecurrentToOutputWeights(
  277. {0.43385774, -0.17194885, 0.2718237, 0.09215671, 0.24107647, -0.39835793,
  278. 0.18212086, 0.01301402, 0.48572797, -0.50656658, 0.20047462, -0.20607421,
  279. -0.51818722, -0.15390486, 0.0468148, 0.39922136});
  280. static float lstm_input[] = {2., 3., 3., 4., 1., 1.};
  281. static float lstm_golden_output[] = {-0.02973187, 0.1229473, 0.20885126,
  282. -0.15358765, -0.03716109, 0.12507336,
  283. 0.41193449, -0.20860538, -0.15053082,
  284. 0.09120187, 0.24278517, -0.12222792};
  285. // Resetting cell_state and output_state
  286. lstm.ResetCellState();
  287. lstm.ResetOutputState();
  288. const int input_sequence_size =
  289. sizeof(lstm_input) / sizeof(float) / (lstm.num_inputs());
  290. for (int i = 0; i < input_sequence_size; i++) {
  291. float* batch0_start = lstm_input + i * lstm.num_inputs();
  292. float* batch0_end = batch0_start + lstm.num_inputs();
  293. lstm.SetInput(0, batch0_start, batch0_end);
  294. lstm.Invoke();
  295. float* golden_start = lstm_golden_output + i * lstm.num_outputs();
  296. float* golden_end = golden_start + lstm.num_outputs();
  297. std::vector<float> expected;
  298. expected.insert(expected.end(), golden_start, golden_end);
  299. EXPECT_THAT(lstm.GetOutput(), ElementsAreArray(ArrayFloatNear(expected)));
  300. }
  301. }
  302. TEST(LSTMOpTest, BlackBoxTestWithCifgWithPeepholeNoProjectionNoClipping) {
  303. const int n_batch = 1;
  304. const int n_input = 2;
  305. // n_cell and n_output have the same size when there is no projection.
  306. const int n_cell = 4;
  307. const int n_output = 4;
  308. LSTMOpModel lstm(n_batch, n_input, n_cell, n_output,
  309. /*use_cifg=*/true, /*use_peephole=*/true,
  310. /*use_projection_weights=*/false,
  311. /*use_projection_bias=*/false,
  312. /*cell_clip=*/0.0, /*proj_clip=*/0.0,
  313. {
  314. {n_batch, n_input}, // input tensor
  315. {0, 0}, // input_to_input_weight tensor
  316. {n_cell, n_input}, // input_to_forget_weight tensor
  317. {n_cell, n_input}, // input_to_cell_weight tensor
  318. {n_cell, n_input}, // input_to_output_weight tensor
  319. {0, 0}, // recurrent_to_input_weight tensor
  320. {n_cell, n_output}, // recurrent_to_forget_weight tensor
  321. {n_cell, n_output}, // recurrent_to_cell_weight tensor
  322. {n_cell, n_output}, // recurrent_to_output_weight tensor
  323. {0}, // cell_to_input_weight tensor
  324. {n_cell}, // cell_to_forget_weight tensor
  325. {n_cell}, // cell_to_output_weight tensor
  326. {n_cell}, // input_gate_bias tensor
  327. {n_cell}, // forget_gate_bias tensor
  328. {n_cell}, // cell_bias tensor
  329. {n_cell}, // output_gate_bias tensor
  330. {0, 0}, // projection_weight tensor
  331. {0}, // projection_bias tensor
  332. });
  333. lstm.SetInputToCellWeights({-0.49770179, -0.27711356, -0.09624726, 0.05100781,
  334. 0.04717243, 0.48944736, -0.38535351,
  335. -0.17212132});
  336. lstm.SetInputToForgetWeights({-0.55291498, -0.42866567, 0.13056988,
  337. -0.3633365, -0.22755712, 0.28253698, 0.24407166,
  338. 0.33826375});
  339. lstm.SetInputToOutputWeights({0.10725588, -0.02335852, -0.55932593,
  340. -0.09426838, -0.44257352, 0.54939759,
  341. 0.01533556, 0.42751634});
  342. lstm.SetCellGateBias({0., 0., 0., 0.});
  343. lstm.SetForgetGateBias({1., 1., 1., 1.});
  344. lstm.SetOutputGateBias({0., 0., 0., 0.});
  345. lstm.SetRecurrentToCellWeights(
  346. {0.54066205, -0.32668582, -0.43562764, -0.56094903, 0.42957711,
  347. 0.01841056, -0.32764608, -0.33027974, -0.10826075, 0.20675004,
  348. 0.19069612, -0.03026325, -0.54532051, 0.33003211, 0.44901288,
  349. 0.21193194});
  350. lstm.SetRecurrentToForgetWeights(
  351. {-0.13832897, -0.0515101, -0.2359007, -0.16661474, -0.14340827,
  352. 0.36986142, 0.23414481, 0.55899, 0.10798943, -0.41174671, 0.17751795,
  353. -0.34484994, -0.35874045, -0.11352962, 0.27268326, 0.54058349});
  354. lstm.SetRecurrentToOutputWeights(
  355. {0.41613156, 0.42610586, -0.16495961, -0.5663873, 0.30579174, -0.05115908,
  356. -0.33941799, 0.23364776, 0.11178309, 0.09481031, -0.26424935, 0.46261835,
  357. 0.50248802, 0.26114327, -0.43736315, 0.33149987});
  358. lstm.SetCellToForgetWeights(
  359. {0.47485286, -0.51955009, -0.24458408, 0.31544167});
  360. lstm.SetCellToOutputWeights(
  361. {-0.17135078, 0.82760304, 0.85573703, -0.77109635});
  362. static float lstm_input[] = {2., 3., 3., 4., 1., 1.};
  363. static float lstm_golden_output[] = {-0.36444446, -0.00352185, 0.12886585,
  364. -0.05163646, -0.42312205, -0.01218222,
  365. 0.24201041, -0.08124574, -0.358325,
  366. -0.04621704, 0.21641694, -0.06471302};
  367. // Resetting cell_state and output_state
  368. lstm.ResetCellState();
  369. lstm.ResetOutputState();
  370. const int input_sequence_size =
  371. sizeof(lstm_input) / sizeof(float) / (lstm.num_inputs());
  372. for (int i = 0; i < input_sequence_size; i++) {
  373. float* batch0_start = lstm_input + i * lstm.num_inputs();
  374. float* batch0_end = batch0_start + lstm.num_inputs();
  375. lstm.SetInput(0, batch0_start, batch0_end);
  376. lstm.Invoke();
  377. float* golden_start = lstm_golden_output + i * lstm.num_outputs();
  378. float* golden_end = golden_start + lstm.num_outputs();
  379. std::vector<float> expected;
  380. expected.insert(expected.end(), golden_start, golden_end);
  381. EXPECT_THAT(lstm.GetOutput(), ElementsAreArray(ArrayFloatNear(expected)));
  382. }
  383. }
  384. TEST(LSTMOpTest, BlackBoxTestWithPeepholeWithProjectionNoClipping) {
  385. const int n_batch = 2;
  386. const int n_input = 5;
  387. const int n_cell = 20;
  388. const int n_output = 16;
  389. LSTMOpModel lstm(n_batch, n_input, n_cell, n_output,
  390. /*use_cifg=*/false, /*use_peephole=*/true,
  391. /*use_projection_weights=*/true,
  392. /*use_projection_bias=*/false,
  393. /*cell_clip=*/0.0, /*proj_clip=*/0.0,
  394. {
  395. {n_batch, n_input}, // input tensor
  396. {n_cell, n_input}, // input_to_input_weight tensor
  397. {n_cell, n_input}, // input_to_forget_weight tensor
  398. {n_cell, n_input}, // input_to_cell_weight tensor
  399. {n_cell, n_input}, // input_to_output_weight tensor
  400. {n_cell, n_output}, // recurrent_to_input_weight tensor
  401. {n_cell, n_output}, // recurrent_to_forget_weight tensor
  402. {n_cell, n_output}, // recurrent_to_cell_weight tensor
  403. {n_cell, n_output}, // recurrent_to_output_weight tensor
  404. {n_cell}, // cell_to_input_weight tensor
  405. {n_cell}, // cell_to_forget_weight tensor
  406. {n_cell}, // cell_to_output_weight tensor
  407. {n_cell}, // input_gate_bias tensor
  408. {n_cell}, // forget_gate_bias tensor
  409. {n_cell}, // cell_bias tensor
  410. {n_cell}, // output_gate_bias tensor
  411. {n_output, n_cell}, // projection_weight tensor
  412. {0}, // projection_bias tensor
  413. });
  414. lstm.SetInputToInputWeights(
  415. {0.021393683, 0.06124551, 0.046905167, -0.014657677, -0.03149463,
  416. 0.09171803, 0.14647801, 0.10797193, -0.0057968358, 0.0019193048,
  417. -0.2726754, 0.10154029, -0.018539885, 0.080349885, -0.10262385,
  418. -0.022599787, -0.09121155, -0.008675967, -0.045206103, -0.0821282,
  419. -0.008045952, 0.015478081, 0.055217247, 0.038719587, 0.044153627,
  420. -0.06453243, 0.05031825, -0.046935108, -0.008164439, 0.014574226,
  421. -0.1671009, -0.15519552, -0.16819797, -0.13971269, -0.11953059,
  422. 0.25005487, -0.22790983, 0.009855087, -0.028140958, -0.11200698,
  423. 0.11295408, -0.0035217577, 0.054485075, 0.05184695, 0.064711206,
  424. 0.10989193, 0.11674786, 0.03490607, 0.07727357, 0.11390585,
  425. -0.1863375, -0.1034451, -0.13945189, -0.049401227, -0.18767063,
  426. 0.042483903, 0.14233552, 0.13832581, 0.18350165, 0.14545603,
  427. -0.028545704, 0.024939531, 0.050929718, 0.0076203286, -0.0029723682,
  428. -0.042484224, -0.11827596, -0.09171104, -0.10808628, -0.16327988,
  429. -0.2273378, -0.0993647, -0.017155107, 0.0023917493, 0.049272764,
  430. 0.0038534778, 0.054764505, 0.089753784, 0.06947234, 0.08014476,
  431. -0.04544234, -0.0497073, -0.07135631, -0.048929106, -0.004042012,
  432. -0.009284026, 0.018042054, 0.0036860977, -0.07427302, -0.11434604,
  433. -0.018995456, 0.031487543, 0.012834908, 0.019977754, 0.044256654,
  434. -0.39292613, -0.18519334, -0.11651281, -0.06809892, 0.011373677});
  435. lstm.SetInputToForgetWeights(
  436. {-0.0018401089, -0.004852237, 0.03698424, 0.014181704, 0.028273236,
  437. -0.016726194, -0.05249759, -0.10204261, 0.00861066, -0.040979505,
  438. -0.009899187, 0.01923892, -0.028177269, -0.08535103, -0.14585495,
  439. 0.10662567, -0.01909731, -0.017883534, -0.0047269356, -0.045103323,
  440. 0.0030784295, 0.076784775, 0.07463696, 0.094531395, 0.0814421,
  441. -0.12257899, -0.033945758, -0.031303465, 0.045630626, 0.06843887,
  442. -0.13492945, -0.012480007, -0.0811829, -0.07224499, -0.09628791,
  443. 0.045100946, 0.0012300825, 0.013964662, 0.099372394, 0.02543059,
  444. 0.06958324, 0.034257296, 0.0482646, 0.06267997, 0.052625068,
  445. 0.12784666, 0.07077897, 0.025725935, 0.04165009, 0.07241905,
  446. 0.018668644, -0.037377294, -0.06277783, -0.08833636, -0.040120605,
  447. -0.011405586, -0.007808335, -0.010301386, -0.005102167, 0.027717464,
  448. 0.05483423, 0.11449111, 0.11289652, 0.10939839, 0.13396506,
  449. -0.08402166, -0.01901462, -0.044678304, -0.07720565, 0.014350063,
  450. -0.11757958, -0.0652038, -0.08185733, -0.076754324, -0.092614375,
  451. 0.10405491, 0.052960336, 0.035755895, 0.035839386, -0.012540553,
  452. 0.036881298, 0.02913376, 0.03420159, 0.05448447, -0.054523353,
  453. 0.02582715, 0.02327355, -0.011857179, -0.0011980024, -0.034641717,
  454. -0.026125094, -0.17582615, -0.15923657, -0.27486774, -0.0006143371,
  455. 0.0001771948, -8.470171e-05, 0.02651807, 0.045790765, 0.06956496});
  456. lstm.SetInputToCellWeights(
  457. {-0.04580283, -0.09549462, -0.032418985, -0.06454633,
  458. -0.043528453, 0.043018587, -0.049152344, -0.12418144,
  459. -0.078985475, -0.07596889, 0.019484362, -0.11434962,
  460. -0.0074034138, -0.06314844, -0.092981495, 0.0062155537,
  461. -0.025034338, -0.0028890965, 0.048929527, 0.06235075,
  462. 0.10665918, -0.032036792, -0.08505916, -0.10843358,
  463. -0.13002433, -0.036816437, -0.02130134, -0.016518239,
  464. 0.0047691227, -0.0025825808, 0.066017866, 0.029991534,
  465. -0.10652836, -0.1037554, -0.13056071, -0.03266643,
  466. -0.033702414, -0.006473424, -0.04611692, 0.014419339,
  467. -0.025174323, 0.0396852, 0.081777506, 0.06157468,
  468. 0.10210095, -0.009658194, 0.046511717, 0.03603906,
  469. 0.0069369148, 0.015960095, -0.06507666, 0.09551598,
  470. 0.053568836, 0.06408714, 0.12835667, -0.008714329,
  471. -0.20211966, -0.12093674, 0.029450472, 0.2849013,
  472. -0.029227901, 0.1164364, -0.08560263, 0.09941786,
  473. -0.036999565, -0.028842626, -0.0033637602, -0.017012902,
  474. -0.09720865, -0.11193351, -0.029155117, -0.017936034,
  475. -0.009768936, -0.04223324, -0.036159635, 0.06505112,
  476. -0.021742892, -0.023377212, -0.07221364, -0.06430552,
  477. 0.05453865, 0.091149814, 0.06387331, 0.007518393,
  478. 0.055960953, 0.069779344, 0.046411168, 0.10509911,
  479. 0.07463894, 0.0075130584, 0.012850982, 0.04555431,
  480. 0.056955688, 0.06555285, 0.050801456, -0.009862683,
  481. 0.00826772, -0.026555609, -0.0073611983, -0.0014897042});
  482. lstm.SetInputToOutputWeights(
  483. {-0.0998932, -0.07201956, -0.052803773, -0.15629593, -0.15001918,
  484. -0.07650751, 0.02359855, -0.075155355, -0.08037709, -0.15093534,
  485. 0.029517552, -0.04751393, 0.010350531, -0.02664851, -0.016839722,
  486. -0.023121163, 0.0077019283, 0.012851257, -0.05040649, -0.0129761,
  487. -0.021737747, -0.038305793, -0.06870586, -0.01481247, -0.001285394,
  488. 0.10124236, 0.083122835, 0.053313006, -0.062235646, -0.075637154,
  489. -0.027833903, 0.029774971, 0.1130802, 0.09218906, 0.09506135,
  490. -0.086665764, -0.037162706, -0.038880914, -0.035832845, -0.014481564,
  491. -0.09825003, -0.12048569, -0.097665586, -0.05287633, -0.0964047,
  492. -0.11366429, 0.035777505, 0.13568819, 0.052451383, 0.050649304,
  493. 0.05798951, -0.021852335, -0.099848844, 0.014740475, -0.078897946,
  494. 0.04974699, 0.014160473, 0.06973932, 0.04964942, 0.033364646,
  495. 0.08190124, 0.025535367, 0.050893165, 0.048514254, 0.06945813,
  496. -0.078907564, -0.06707616, -0.11844508, -0.09986688, -0.07509403,
  497. 0.06263226, 0.14925587, 0.20188436, 0.12098451, 0.14639415,
  498. 0.0015017595, -0.014267382, -0.03417257, 0.012711468, 0.0028300495,
  499. -0.024758482, -0.05098548, -0.0821182, 0.014225672, 0.021544158,
  500. 0.08949725, 0.07505268, -0.0020780868, 0.04908258, 0.06476295,
  501. -0.022907063, 0.027562456, 0.040185735, 0.019567577, -0.015598739,
  502. -0.049097303, -0.017121866, -0.083368234, -0.02332002, -0.0840956});
  503. lstm.SetInputGateBias(
  504. {0.02234832, 0.14757581, 0.18176508, 0.10380666, 0.053110216,
  505. -0.06928846, -0.13942584, -0.11816189, 0.19483899, 0.03652339,
  506. -0.10250295, 0.036714908, -0.18426876, 0.036065217, 0.21810818,
  507. 0.02383196, -0.043370757, 0.08690144, -0.04444982, 0.00030581196});
  508. lstm.SetForgetGateBias({0.035185695, -0.042891346, -0.03032477, 0.23027696,
  509. 0.11098921, 0.15378423, 0.09263801, 0.09790885,
  510. 0.09508917, 0.061199076, 0.07665568, -0.015443159,
  511. -0.03499149, 0.046190713, 0.08895977, 0.10899629,
  512. 0.40694186, 0.06030037, 0.012413437, -0.06108739});
  513. lstm.SetCellGateBias({-0.024379363, 0.0055531194, 0.23377132, 0.033463873,
  514. -0.1483596, -0.10639995, -0.091433935, 0.058573797,
  515. -0.06809782, -0.07889636, -0.043246906, -0.09829136,
  516. -0.4279842, 0.034901652, 0.18797937, 0.0075234566,
  517. 0.016178843, 0.1749513, 0.13975595, 0.92058027});
  518. lstm.SetOutputGateBias(
  519. {0.046159424, -0.0012809046, 0.03563469, 0.12648113, 0.027195795,
  520. 0.35373217, -0.018957434, 0.008907322, -0.0762701, 0.12018895,
  521. 0.04216877, 0.0022856654, 0.040952638, 0.3147856, 0.08225149,
  522. -0.057416286, -0.14995944, -0.008040261, 0.13208859, 0.029760877});
  523. lstm.SetRecurrentToInputWeights(
  524. {-0.001374326, -0.078856036, 0.10672688, 0.029162422,
  525. -0.11585556, 0.02557986, -0.13446963, -0.035785314,
  526. -0.01244275, 0.025961924, -0.02337298, -0.044228926,
  527. -0.055839065, -0.046598054, -0.010546039, -0.06900766,
  528. 0.027239809, 0.022582639, -0.013296484, -0.05459212,
  529. 0.08981, -0.045407712, 0.08682226, -0.06867011,
  530. -0.14390695, -0.02916037, 0.000996957, 0.091420636,
  531. 0.14283475, -0.07390571, -0.06402044, 0.062524505,
  532. -0.093129106, 0.04860203, -0.08364217, -0.08119002,
  533. 0.009352075, 0.22920375, 0.0016303885, 0.11583097,
  534. -0.13732095, 0.012405723, -0.07551853, 0.06343048,
  535. 0.12162708, -0.031923793, -0.014335606, 0.01790974,
  536. -0.10650317, -0.0724401, 0.08554849, -0.05727212,
  537. 0.06556731, -0.042729504, -0.043227166, 0.011683251,
  538. -0.013082158, -0.029302018, -0.010899579, -0.062036745,
  539. -0.022509435, -0.00964907, -0.01567329, 0.04260106,
  540. -0.07787477, -0.11576462, 0.017356863, 0.048673786,
  541. -0.017577527, -0.05527947, -0.082487635, -0.040137455,
  542. -0.10820036, -0.04666372, 0.022746278, -0.07851417,
  543. 0.01068115, 0.032956902, 0.022433773, 0.0026891115,
  544. 0.08944216, -0.0685835, 0.010513544, 0.07228705,
  545. 0.02032331, -0.059686817, -0.0005566496, -0.086984694,
  546. 0.040414046, -0.1380399, 0.094208956, -0.05722982,
  547. 0.012092817, -0.04989123, -0.086576, -0.003399834,
  548. -0.04696032, -0.045747425, 0.10091314, 0.048676282,
  549. -0.029037097, 0.031399418, -0.0040285117, 0.047237843,
  550. 0.09504992, 0.041799378, -0.049185462, -0.031518843,
  551. -0.10516937, 0.026374253, 0.10058866, -0.0033195973,
  552. -0.041975245, 0.0073591834, 0.0033782164, -0.004325073,
  553. -0.10167381, 0.042500053, -0.01447153, 0.06464186,
  554. -0.017142897, 0.03312627, 0.009205989, 0.024138335,
  555. -0.011337001, 0.035530265, -0.010912711, 0.0706555,
  556. -0.005894094, 0.051841937, -0.1401738, -0.02351249,
  557. 0.0365468, 0.07590991, 0.08838724, 0.021681072,
  558. -0.10086113, 0.019608743, -0.06195883, 0.077335775,
  559. 0.023646897, -0.095322326, 0.02233014, 0.09756986,
  560. -0.048691444, -0.009579111, 0.07595467, 0.11480546,
  561. -0.09801813, 0.019894179, 0.08502348, 0.004032281,
  562. 0.037211012, 0.068537936, -0.048005626, -0.091520436,
  563. -0.028379958, -0.01556313, 0.06554592, -0.045599163,
  564. -0.01672207, -0.020169014, -0.011877351, -0.20212261,
  565. 0.010889619, 0.0047078193, 0.038385306, 0.08540671,
  566. -0.017140968, -0.0035865551, 0.016678626, 0.005633034,
  567. 0.015963363, 0.00871737, 0.060130805, 0.028611384,
  568. 0.10109069, -0.015060172, -0.07894427, 0.06401885,
  569. 0.011584063, -0.024466386, 0.0047652307, -0.09041358,
  570. 0.030737216, -0.0046374933, 0.14215417, -0.11823516,
  571. 0.019899689, 0.006106124, -0.027092824, 0.0786356,
  572. 0.05052217, -0.058925, -0.011402121, -0.024987547,
  573. -0.0013661642, -0.06832946, -0.015667673, -0.1083353,
  574. -0.00096863037, -0.06988685, -0.053350925, -0.027275559,
  575. -0.033664223, -0.07978348, -0.025200296, -0.017207067,
  576. -0.058403496, -0.055697463, 0.005798788, 0.12965427,
  577. -0.062582195, 0.0013350133, -0.10482091, 0.0379771,
  578. 0.072521195, -0.0029455067, -0.13797039, -0.03628521,
  579. 0.013806405, -0.017858358, -0.01008298, -0.07700066,
  580. -0.017081132, 0.019358726, 0.0027079724, 0.004635139,
  581. 0.062634714, -0.02338735, -0.039547626, -0.02050681,
  582. 0.03385117, -0.083611414, 0.002862572, -0.09421313,
  583. 0.058618143, -0.08598433, 0.00972939, 0.023867095,
  584. -0.053934585, -0.023203006, 0.07452513, -0.048767887,
  585. -0.07314807, -0.056307215, -0.10433547, -0.06440842,
  586. 0.04328182, 0.04389765, -0.020006588, -0.09076438,
  587. -0.11652589, -0.021705797, 0.03345259, -0.010329105,
  588. -0.025767034, 0.013057034, -0.07316461, -0.10145612,
  589. 0.06358255, 0.18531723, 0.07759293, 0.12006465,
  590. 0.1305557, 0.058638252, -0.03393652, 0.09622831,
  591. -0.16253184, -2.4580743e-06, 0.079869635, -0.070196845,
  592. -0.005644518, 0.06857898, -0.12598175, -0.035084512,
  593. 0.03156317, -0.12794146, -0.031963028, 0.04692781,
  594. 0.030070418, 0.0071660685, -0.095516115, -0.004643372,
  595. 0.040170413, -0.062104587, -0.0037324072, 0.0554317,
  596. 0.08184801, -0.019164372, 0.06791302, 0.034257166,
  597. -0.10307039, 0.021943003, 0.046745934, 0.0790918,
  598. -0.0265588, -0.007824208, 0.042546265, -0.00977924,
  599. -0.0002440307, -0.017384544, -0.017990116, 0.12252321,
  600. -0.014512694, -0.08251313, 0.08861942, 0.13589665,
  601. 0.026351685, 0.012641483, 0.07466548, 0.044301085,
  602. -0.045414884, -0.051112458, 0.03444247, -0.08502782,
  603. -0.04106223, -0.028126027, 0.028473156, 0.10467447});
  604. lstm.SetRecurrentToForgetWeights(
  605. {-0.057784554, -0.026057621, -0.068447545, -0.022581743,
  606. 0.14811787, 0.10826372, 0.09471067, 0.03987225,
  607. -0.0039523416, 0.00030638507, 0.053185795, 0.10572994,
  608. 0.08414449, -0.022036452, -0.00066928595, -0.09203576,
  609. 0.032950465, -0.10985798, -0.023809856, 0.0021431844,
  610. -0.02196096, -0.00326074, 0.00058621005, -0.074678116,
  611. -0.06193199, 0.055729095, 0.03736828, 0.020123724,
  612. 0.061878487, -0.04729229, 0.034919553, -0.07585433,
  613. -0.04421272, -0.044019096, 0.085488975, 0.04058006,
  614. -0.06890133, -0.030951202, -0.024628663, -0.07672815,
  615. 0.034293607, 0.08556707, -0.05293577, -0.033561368,
  616. -0.04899627, 0.0241671, 0.015736353, -0.095442444,
  617. -0.029564252, 0.016493602, -0.035026584, 0.022337519,
  618. -0.026871363, 0.004780428, 0.0077918363, -0.03601621,
  619. 0.016435321, -0.03263031, -0.09543275, -0.047392778,
  620. 0.013454138, 0.028934088, 0.01685226, -0.086110644,
  621. -0.046250615, -0.01847454, 0.047608484, 0.07339695,
  622. 0.034546845, -0.04881143, 0.009128804, -0.08802852,
  623. 0.03761666, 0.008096139, -0.014454086, 0.014361001,
  624. -0.023502491, -0.0011840804, -0.07607001, 0.001856849,
  625. -0.06509276, -0.006021153, -0.08570962, -0.1451793,
  626. 0.060212336, 0.055259194, 0.06974018, 0.049454916,
  627. -0.027794661, -0.08077226, -0.016179763, 0.1169753,
  628. 0.17213494, -0.0056326236, -0.053934924, -0.0124349,
  629. -0.11520337, 0.05409887, 0.088759385, 0.0019655675,
  630. 0.0042065294, 0.03881498, 0.019844765, 0.041858196,
  631. -0.05695512, 0.047233116, 0.038937137, -0.06542224,
  632. 0.014429736, -0.09719407, 0.13908425, -0.05379757,
  633. 0.012321099, 0.082840554, -0.029899208, 0.044217527,
  634. 0.059855383, 0.07711018, -0.045319796, 0.0948846,
  635. -0.011724666, -0.0033288454, -0.033542685, -0.04764985,
  636. -0.13873616, 0.040668588, 0.034832682, -0.015319203,
  637. -0.018715994, 0.046002675, 0.0599172, -0.043107376,
  638. 0.0294216, -0.002314414, -0.022424703, 0.0030315618,
  639. 0.0014641669, 0.0029166266, -0.11878115, 0.013738511,
  640. 0.12375372, -0.0006038222, 0.029104086, 0.087442465,
  641. 0.052958444, 0.07558703, 0.04817258, 0.044462286,
  642. -0.015213451, -0.08783778, -0.0561384, -0.003008196,
  643. 0.047060397, -0.002058388, 0.03429439, -0.018839769,
  644. 0.024734668, 0.024614193, -0.042046934, 0.09597743,
  645. -0.0043254104, 0.04320769, 0.0064070094, -0.0019131786,
  646. -0.02558259, -0.022822596, -0.023273505, -0.02464396,
  647. -0.10991725, -0.006240552, 0.0074488563, 0.024044557,
  648. 0.04383914, -0.046476185, 0.028658995, 0.060410924,
  649. 0.050786525, 0.009452605, -0.0073054377, -0.024810238,
  650. 0.0052906186, 0.0066939713, -0.0020913032, 0.014515517,
  651. 0.015898481, 0.021362653, -0.030262267, 0.016587038,
  652. -0.011442813, 0.041154444, -0.007631438, -0.03423484,
  653. -0.010977775, 0.036152758, 0.0066366293, 0.11915515,
  654. 0.02318443, -0.041350313, 0.021485701, -0.10906167,
  655. -0.028218046, -0.00954771, 0.020531068, -0.11995105,
  656. -0.03672871, 0.024019798, 0.014255957, -0.05221243,
  657. -0.00661567, -0.04630967, 0.033188973, 0.10107534,
  658. -0.014027541, 0.030796422, -0.10270911, -0.035999842,
  659. 0.15443139, 0.07684145, 0.036571592, -0.035900835,
  660. -0.0034699554, 0.06209149, 0.015920248, -0.031122351,
  661. -0.03858649, 0.01849943, 0.13872518, 0.01503974,
  662. 0.069941424, -0.06948533, -0.0088794185, 0.061282158,
  663. -0.047401894, 0.03100163, -0.041533746, -0.10430945,
  664. 0.044574402, -0.01425562, -0.024290353, 0.034563623,
  665. 0.05866852, 0.023947537, -0.09445152, 0.035450947,
  666. 0.02247216, -0.0042998926, 0.061146557, -0.10250651,
  667. 0.020881841, -0.06747029, 0.10062043, -0.0023941975,
  668. 0.03532124, -0.016341697, 0.09685456, -0.016764693,
  669. 0.051808182, 0.05875331, -0.04536488, 0.001626336,
  670. -0.028892258, -0.01048663, -0.009793449, -0.017093895,
  671. 0.010987891, 0.02357273, -0.00010856845, 0.0099760275,
  672. -0.001845119, -0.03551521, 0.0018358806, 0.05763657,
  673. -0.01769146, 0.040995963, 0.02235177, -0.060430344,
  674. 0.11475477, -0.023854522, 0.10071741, 0.0686208,
  675. -0.014250481, 0.034261297, 0.047418304, 0.08562733,
  676. -0.030519066, 0.0060542435, 0.014653856, -0.038836084,
  677. 0.04096551, 0.032249358, -0.08355519, -0.026823482,
  678. 0.056386515, -0.010401743, -0.028396193, 0.08507674,
  679. 0.014410365, 0.020995233, 0.17040324, 0.11511526,
  680. 0.02459721, 0.0066619175, 0.025853224, -0.023133837,
  681. -0.081302024, 0.017264642, -0.009585969, 0.09491168,
  682. -0.051313367, 0.054532815, -0.014298593, 0.10657464,
  683. 0.007076659, 0.10964551, 0.0409152, 0.008275321,
  684. -0.07283536, 0.07937492, 0.04192024, -0.1075027});
  685. lstm.SetRecurrentToCellWeights(
  686. {-0.037322544, 0.018592842, 0.0056175636, -0.06253426,
  687. 0.055647098, -0.05713207, -0.05626563, 0.005559383,
  688. 0.03375411, -0.025757805, -0.088049285, 0.06017052,
  689. -0.06570978, 0.007384076, 0.035123326, -0.07920549,
  690. 0.053676967, 0.044480428, -0.07663568, 0.0071805613,
  691. 0.08089997, 0.05143358, 0.038261272, 0.03339287,
  692. -0.027673481, 0.044746667, 0.028349208, 0.020090483,
  693. -0.019443132, -0.030755889, -0.0040000007, 0.04465846,
  694. -0.021585021, 0.0031670958, 0.0053199246, -0.056117613,
  695. -0.10893326, 0.076739706, -0.08509834, -0.027997585,
  696. 0.037871376, 0.01449768, -0.09002357, -0.06111149,
  697. -0.046195522, 0.0422062, -0.005683705, -0.1253618,
  698. -0.012925729, -0.04890792, 0.06985068, 0.037654128,
  699. 0.03398274, -0.004781977, 0.007032333, -0.031787455,
  700. 0.010868644, -0.031489216, 0.09525667, 0.013939797,
  701. 0.0058680447, 0.0167067, 0.02668468, -0.04797466,
  702. -0.048885044, -0.12722108, 0.035304096, 0.06554885,
  703. 0.00972396, -0.039238118, -0.05159735, -0.11329045,
  704. 0.1613692, -0.03750952, 0.06529313, -0.071974665,
  705. -0.11769596, 0.015524369, -0.0013754242, -0.12446318,
  706. 0.02786344, -0.014179351, 0.005264273, 0.14376344,
  707. 0.015983658, 0.03406988, -0.06939408, 0.040699873,
  708. 0.02111075, 0.09669095, 0.041345075, -0.08316494,
  709. -0.07684199, -0.045768797, 0.032298047, -0.041805092,
  710. 0.0119405, 0.0061010392, 0.12652606, 0.0064572375,
  711. -0.024950314, 0.11574242, 0.04508852, -0.04335324,
  712. 0.06760663, -0.027437469, 0.07216407, 0.06977076,
  713. -0.05438599, 0.034033038, -0.028602652, 0.05346137,
  714. 0.043184172, -0.037189785, 0.10420091, 0.00882477,
  715. -0.054019816, -0.074273005, -0.030617684, -0.0028467078,
  716. 0.024302477, -0.0038869337, 0.005332455, 0.0013399826,
  717. 0.04361412, -0.007001822, 0.09631092, -0.06702025,
  718. -0.042049985, -0.035070654, -0.04103342, -0.10273396,
  719. 0.0544271, 0.037184782, -0.13150354, -0.0058036847,
  720. -0.008264958, 0.042035464, 0.05891794, 0.029673764,
  721. 0.0063542654, 0.044788733, 0.054816857, 0.062257513,
  722. -0.00093483756, 0.048938446, -0.004952862, -0.007730018,
  723. -0.04043371, -0.017094059, 0.07229206, -0.023670016,
  724. -0.052195564, -0.025616996, -0.01520939, 0.045104615,
  725. -0.007376126, 0.003533447, 0.006570588, 0.056037236,
  726. 0.12436656, 0.051817212, 0.028532185, -0.08686856,
  727. 0.11868599, 0.07663395, -0.07323171, 0.03463402,
  728. -0.050708205, -0.04458982, -0.11590894, 0.021273347,
  729. 0.1251325, -0.15313013, -0.12224372, 0.17228661,
  730. 0.023029093, 0.086124025, 0.006445803, -0.03496501,
  731. 0.028332196, 0.04449512, -0.042436164, -0.026587414,
  732. -0.006041347, -0.09292539, -0.05678812, 0.03897832,
  733. 0.09465633, 0.008115513, -0.02171956, 0.08304309,
  734. 0.071401566, 0.019622514, 0.032163795, -0.004167056,
  735. 0.02295182, 0.030739572, 0.056506045, 0.004612461,
  736. 0.06524936, 0.059999723, 0.046395954, -0.0045512207,
  737. -0.1335546, -0.030136576, 0.11584653, -0.014678886,
  738. 0.0020118146, -0.09688814, -0.0790206, 0.039770417,
  739. -0.0329582, 0.07922767, 0.029322514, 0.026405897,
  740. 0.04207835, -0.07073373, 0.063781224, 0.0859677,
  741. -0.10925287, -0.07011058, 0.048005477, 0.03438226,
  742. -0.09606514, -0.006669445, -0.043381985, 0.04240257,
  743. -0.06955775, -0.06769346, 0.043903265, -0.026784198,
  744. -0.017840602, 0.024307009, -0.040079936, -0.019946516,
  745. 0.045318738, -0.12233574, 0.026170589, 0.0074471775,
  746. 0.15978073, 0.10185836, 0.10298046, -0.015476589,
  747. -0.039390966, -0.072174534, 0.0739445, -0.1211869,
  748. -0.0347889, -0.07943156, 0.014809798, -0.12412325,
  749. -0.0030663363, 0.039695457, 0.0647603, -0.08291318,
  750. -0.018529687, -0.004423833, 0.0037507233, 0.084633216,
  751. -0.01514876, -0.056505352, -0.012800942, -0.06994386,
  752. 0.012962922, -0.031234352, 0.07029052, 0.016418684,
  753. 0.03618972, 0.055686004, -0.08663945, -0.017404709,
  754. -0.054761406, 0.029065743, 0.052404847, 0.020238016,
  755. 0.0048197987, -0.0214882, 0.07078733, 0.013016777,
  756. 0.06262858, 0.009184685, 0.020785125, -0.043904778,
  757. -0.0270329, -0.03299152, -0.060088247, -0.015162964,
  758. -0.001828936, 0.12642565, -0.056757294, 0.013586685,
  759. 0.09232601, -0.035886683, 0.06000002, 0.05229691,
  760. -0.052580316, -0.082029596, -0.010794592, 0.012947712,
  761. -0.036429964, -0.085508935, -0.13127148, -0.017744139,
  762. 0.031502828, 0.036232427, -0.031581745, 0.023051167,
  763. -0.05325106, -0.03421577, 0.028793324, -0.034633752,
  764. -0.009881397, -0.043551125, -0.018609839, 0.0019097115,
  765. -0.008799762, 0.056595087, 0.0022273948, 0.055752404});
  766. lstm.SetRecurrentToOutputWeights({
  767. 0.025825322, -0.05813119, 0.09495884, -0.045984812, -0.01255415,
  768. -0.0026479573, -0.08196161, -0.054914974, -0.0046604523, -0.029587349,
  769. -0.044576716, -0.07480124, -0.082868785, 0.023254942, 0.027502948,
  770. -0.0039728214, -0.08683098, -0.08116779, -0.014675607, -0.037924774,
  771. -0.023314456, -0.007401714, -0.09255757, 0.029460307, -0.08829125,
  772. -0.005139627, -0.08989442, -0.0555066, 0.13596267, -0.025062224,
  773. -0.048351806, -0.03850004, 0.07266485, -0.022414139, 0.05940088,
  774. 0.075114764, 0.09597592, -0.010211725, -0.0049794707, -0.011523867,
  775. -0.025980417, 0.072999895, 0.11091378, -0.081685916, 0.014416728,
  776. 0.043229222, 0.034178585, -0.07530371, 0.035837382, -0.085607,
  777. -0.007721233, -0.03287832, -0.043848954, -0.06404588, -0.06632928,
  778. -0.073643476, 0.008214239, -0.045984086, 0.039764922, 0.03474462,
  779. 0.060612556, -0.080590084, 0.049127717, 0.04151091, -0.030063879,
  780. 0.008801774, -0.023021035, -0.019558564, 0.05158114, -0.010947698,
  781. -0.011825728, 0.0075720972, 0.0699727, -0.0039981045, 0.069350146,
  782. 0.08799282, 0.016156472, 0.035502106, 0.11695009, 0.006217345,
  783. 0.13392477, -0.037875112, 0.025745004, 0.08940699, -0.00924166,
  784. 0.0046702605, -0.036598757, -0.08811812, 0.10522024, -0.032441203,
  785. 0.008176899, -0.04454919, 0.07058152, 0.0067963637, 0.039206743,
  786. 0.03259838, 0.03725492, -0.09515802, 0.013326398, -0.052055415,
  787. -0.025676316, 0.03198509, -0.015951829, -0.058556724, 0.036879618,
  788. 0.043357447, 0.028362012, -0.05908629, 0.0059240665, -0.04995891,
  789. -0.019187413, 0.0276265, -0.01628143, 0.0025863599, 0.08800015,
  790. 0.035250366, -0.022165963, -0.07328642, -0.009415526, -0.07455109,
  791. 0.11690406, 0.0363299, 0.07411125, 0.042103454, -0.009660886,
  792. 0.019076364, 0.018299393, -0.046004917, 0.08891175, 0.0431396,
  793. -0.026327137, -0.051502608, 0.08979574, -0.051670972, 0.04940282,
  794. -0.07491107, -0.021240504, 0.022596184, -0.034280192, 0.060163025,
  795. -0.058211457, -0.051837247, -0.01349775, -0.04639988, -0.035936575,
  796. -0.011681591, 0.064818054, 0.0073146066, -0.021745546, -0.043124277,
  797. -0.06471268, -0.07053354, -0.029321948, -0.05330136, 0.016933719,
  798. -0.053782392, 0.13747959, -0.1361751, -0.11569455, 0.0033329215,
  799. 0.05693899, -0.053219706, 0.063698, 0.07977434, -0.07924483,
  800. 0.06936997, 0.0034815092, -0.007305279, -0.037325785, -0.07251102,
  801. -0.033633437, -0.08677009, 0.091591336, -0.14165086, 0.021752775,
  802. 0.019683983, 0.0011612234, -0.058154266, 0.049996935, 0.0288841,
  803. -0.0024567875, -0.14345716, 0.010955264, -0.10234828, 0.1183656,
  804. -0.0010731248, -0.023590032, -0.072285876, -0.0724771, -0.026382286,
  805. -0.0014920527, 0.042667855, 0.0018776858, 0.02986552, 0.009814309,
  806. 0.0733756, 0.12289186, 0.018043943, -0.0458958, 0.049412545,
  807. 0.033632483, 0.05495232, 0.036686596, -0.013781798, -0.010036754,
  808. 0.02576849, -0.08307328, 0.010112348, 0.042521734, -0.05869831,
  809. -0.071689695, 0.03876447, -0.13275425, -0.0352966, -0.023077697,
  810. 0.10285965, 0.084736146, 0.15568255, -0.00040734606, 0.027835453,
  811. -0.10292561, -0.032401145, 0.10053256, -0.026142767, -0.08271222,
  812. -0.0030240538, -0.016368777, 0.1070414, 0.042672627, 0.013456989,
  813. -0.0437609, -0.022309763, 0.11576483, 0.04108048, 0.061026827,
  814. -0.0190714, -0.0869359, 0.037901703, 0.0610107, 0.07202949,
  815. 0.01675338, 0.086139716, -0.08795751, -0.014898893, -0.023771819,
  816. -0.01965048, 0.007955471, -0.043740474, 0.03346837, -0.10549954,
  817. 0.090567775, 0.042013682, -0.03176985, 0.12569028, -0.02421228,
  818. -0.029526481, 0.023851605, 0.031539805, 0.05292009, -0.02344001,
  819. -0.07811758, -0.08834428, 0.10094801, 0.16594367, -0.06861939,
  820. -0.021256343, -0.041093912, -0.06669611, 0.035498552, 0.021757556,
  821. -0.09302526, -0.015403468, -0.06614931, -0.051798206, -0.013874718,
  822. 0.03630673, 0.010412845, -0.08077351, 0.046185967, 0.0035662893,
  823. 0.03541868, -0.094149634, -0.034814864, 0.003128424, -0.020674974,
  824. -0.03944324, -0.008110165, -0.11113267, 0.08484226, 0.043586485,
  825. 0.040582247, 0.0968012, -0.065249965, -0.028036479, 0.0050708856,
  826. 0.0017462453, 0.0326779, 0.041296225, 0.09164146, -0.047743853,
  827. -0.015952192, -0.034451712, 0.084197424, -0.05347844, -0.11768019,
  828. 0.085926116, -0.08251791, -0.045081906, 0.0948852, 0.068401024,
  829. 0.024856757, 0.06978981, -0.057309967, -0.012775832, -0.0032452994,
  830. 0.01977615, -0.041040014, -0.024264973, 0.063464895, 0.05431621,
  831. });
  832. lstm.SetCellToInputWeights(
  833. {0.040369894, 0.030746894, 0.24704495, 0.018586371, -0.037586458,
  834. -0.15312155, -0.11812848, -0.11465643, 0.20259799, 0.11418174,
  835. -0.10116027, -0.011334949, 0.12411352, -0.076769054, -0.052169047,
  836. 0.21198851, -0.38871562, -0.09061183, -0.09683246, -0.21929175});
  837. lstm.SetCellToForgetWeights(
  838. {-0.01998659, -0.15568835, -0.24248174, -0.012770197, 0.041331276,
  839. -0.072311886, -0.052123554, -0.0066330447, -0.043891653, 0.036225766,
  840. -0.047248036, 0.021479502, 0.033189066, 0.11952997, -0.020432774,
  841. 0.64658105, -0.06650122, -0.03467612, 0.095340036, 0.23647355});
  842. lstm.SetCellToOutputWeights(
  843. {0.08286371, -0.08261836, -0.51210177, 0.002913762, 0.17764764,
  844. -0.5495371, -0.08460716, -0.24552552, 0.030037103, 0.04123544,
  845. -0.11940523, 0.007358328, 0.1890978, 0.4833202, -0.34441817,
  846. 0.36312827, -0.26375428, 0.1457655, -0.19724406, 0.15548733});
  847. lstm.SetProjectionWeights(
  848. {-0.009802181, 0.09401916, 0.0717386, -0.13895074, 0.09641832,
  849. 0.060420845, 0.08539281, 0.054285463, 0.061395317, 0.034448683,
  850. -0.042991187, 0.019801661, -0.16840284, -0.015726732, -0.23041931,
  851. -0.024478018, -0.10959692, -0.013875541, 0.18600968, -0.061274476,
  852. 0.0138165, -0.08160894, -0.07661644, 0.032372914, 0.16169067,
  853. 0.22465782, -0.03993472, -0.004017731, 0.08633481, -0.28869787,
  854. 0.08682067, 0.17240396, 0.014975425, 0.056431185, 0.031037588,
  855. 0.16702051, 0.0077946745, 0.15140012, 0.29405436, 0.120285,
  856. -0.188994, -0.027265169, 0.043389652, -0.022061434, 0.014777949,
  857. -0.20203483, 0.094781205, 0.19100232, 0.13987629, -0.036132768,
  858. -0.06426278, -0.05108664, 0.13221376, 0.009441198, -0.16715929,
  859. 0.15859416, -0.040437475, 0.050779544, -0.022187516, 0.012166504,
  860. 0.027685808, -0.07675938, -0.0055694645, -0.09444123, 0.0046453946,
  861. 0.050794356, 0.10770313, -0.20790008, -0.07149004, -0.11425117,
  862. 0.008225835, -0.035802525, 0.14374903, 0.15262283, 0.048710253,
  863. 0.1847461, -0.007487823, 0.11000021, -0.09542012, 0.22619456,
  864. -0.029149994, 0.08527916, 0.009043713, 0.0042746216, 0.016261552,
  865. 0.022461696, 0.12689082, -0.043589946, -0.12035478, -0.08361797,
  866. -0.050666027, -0.1248618, -0.1275799, -0.071875185, 0.07377272,
  867. 0.09944291, -0.18897448, -0.1593054, -0.06526116, -0.040107165,
  868. -0.004618631, -0.067624845, -0.007576253, 0.10727444, 0.041546922,
  869. -0.20424393, 0.06907816, 0.050412357, 0.00724631, 0.039827548,
  870. 0.12449835, 0.10747581, 0.13708383, 0.09134148, -0.12617786,
  871. -0.06428341, 0.09956831, 0.1208086, -0.14676677, -0.0727722,
  872. 0.1126304, 0.010139365, 0.015571211, -0.038128063, 0.022913318,
  873. -0.042050496, 0.16842307, -0.060597885, 0.10531834, -0.06411776,
  874. -0.07451711, -0.03410368, -0.13393489, 0.06534304, 0.003620307,
  875. 0.04490757, 0.05970546, 0.05197996, 0.02839995, 0.10434969,
  876. -0.013699693, -0.028353551, -0.07260381, 0.047201227, -0.024575593,
  877. -0.036445823, 0.07155557, 0.009672501, -0.02328883, 0.009533515,
  878. -0.03606021, -0.07421458, -0.028082801, -0.2678904, -0.13221288,
  879. 0.18419984, -0.13012612, -0.014588381, -0.035059117, -0.04824723,
  880. 0.07830115, -0.056184657, 0.03277091, 0.025466874, 0.14494097,
  881. -0.12522776, -0.098633975, -0.10766018, -0.08317623, 0.08594209,
  882. 0.07749552, 0.039474737, 0.1776665, -0.07409566, -0.0477268,
  883. 0.29323658, 0.10801441, 0.1154011, 0.013952499, 0.10739139,
  884. 0.10708251, -0.051456142, 0.0074137426, -0.10430189, 0.10034707,
  885. 0.045594677, 0.0635285, -0.0715442, -0.089667566, -0.10811871,
  886. 0.00026344223, 0.08298446, -0.009525053, 0.006585689, -0.24567553,
  887. -0.09450807, 0.09648481, 0.026996298, -0.06419476, -0.04752702,
  888. -0.11063944, -0.23441927, -0.17608605, -0.052156363, 0.067035615,
  889. 0.19271925, -0.0032889997, -0.043264326, 0.09663576, -0.057112187,
  890. -0.10100678, 0.0628376, 0.04447668, 0.017961001, -0.10094388,
  891. -0.10190601, 0.18335468, 0.10494553, -0.052095775, -0.0026118709,
  892. 0.10539724, -0.04383912, -0.042349473, 0.08438151, -0.1947263,
  893. 0.02251204, 0.11216432, -0.10307853, 0.17351969, -0.039091777,
  894. 0.08066188, -0.00561982, 0.12633002, 0.11335965, -0.0088127935,
  895. -0.019777594, 0.06864014, -0.059751723, 0.016233567, -0.06894641,
  896. -0.28651384, -0.004228674, 0.019708522, -0.16305895, -0.07468996,
  897. -0.0855457, 0.099339016, -0.07580735, -0.13775392, 0.08434318,
  898. 0.08330512, -0.12131499, 0.031935584, 0.09180414, -0.08876437,
  899. -0.08049874, 0.008753825, 0.03498998, 0.030215185, 0.03907079,
  900. 0.089751154, 0.029194152, -0.03337423, -0.019092513, 0.04331237,
  901. 0.04299654, -0.036394123, -0.12915532, 0.09793732, 0.07512415,
  902. -0.11319543, -0.032502122, 0.15661901, 0.07671967, -0.005491124,
  903. -0.19379048, -0.218606, 0.21448623, 0.017840758, 0.1416943,
  904. -0.07051762, 0.19488361, 0.02664691, -0.18104725, -0.09334311,
  905. 0.15026465, -0.15493552, -0.057762887, -0.11604192, -0.262013,
  906. -0.01391798, 0.012185008, 0.11156489, -0.07483202, 0.06693364,
  907. -0.26151478, 0.046425626, 0.036540434, -0.16435726, 0.17338543,
  908. -0.21401681, -0.11385144, -0.08283257, -0.069031075, 0.030635102,
  909. 0.010969227, 0.11109743, 0.010919218, 0.027526086, 0.13519906,
  910. 0.01891392, -0.046839405, -0.040167913, 0.017953383, -0.09700955,
  911. 0.0061885654, -0.07000971, 0.026893595, -0.038844477, 0.14543656});
  912. static float lstm_input[][20] = {
  913. {// Batch0: 4 (input_sequence_size) * 5 (n_input)
  914. 0.787926, 0.151646, 0.071352, 0.118426, 0.458058, 0.596268, 0.998386,
  915. 0.568695, 0.864524, 0.571277, 0.073204, 0.296072, 0.743333, 0.069199,
  916. 0.045348, 0.867394, 0.291279, 0.013714, 0.482521, 0.626339},
  917. {// Batch1: 4 (input_sequence_size) * 5 (n_input)
  918. 0.295743, 0.544053, 0.690064, 0.858138, 0.497181, 0.642421, 0.524260,
  919. 0.134799, 0.003639, 0.162482, 0.640394, 0.930399, 0.050782, 0.432485,
  920. 0.988078, 0.082922, 0.563329, 0.865614, 0.333232, 0.259916}};
  921. static float lstm_golden_output[][64] = {
  922. {// Batch0: 4 (input_sequence_size) * 16 (n_output)
  923. -0.00396806, 0.029352, -0.00279226, 0.0159977, -0.00835576,
  924. -0.0211779, 0.0283512, -0.0114597, 0.00907307, -0.0244004,
  925. -0.0152191, -0.0259063, 0.00914318, 0.00415118, 0.017147,
  926. 0.0134203, -0.0166936, 0.0381209, 0.000889694, 0.0143363,
  927. -0.0328911, -0.0234288, 0.0333051, -0.012229, 0.0110322,
  928. -0.0457725, -0.000832209, -0.0202817, 0.0327257, 0.0121308,
  929. 0.0155969, 0.0312091, -0.0213783, 0.0350169, 0.000324794,
  930. 0.0276012, -0.0263374, -0.0371449, 0.0446149, -0.0205474,
  931. 0.0103729, -0.0576349, -0.0150052, -0.0292043, 0.0376827,
  932. 0.0136115, 0.0243435, 0.0354492, -0.0189322, 0.0464512,
  933. -0.00251373, 0.0225745, -0.0308346, -0.0317124, 0.0460407,
  934. -0.0189395, 0.0149363, -0.0530162, -0.0150767, -0.0340193,
  935. 0.0286833, 0.00824207, 0.0264887, 0.0305169},
  936. {// Batch1: 4 (input_sequence_size) * 16 (n_output)
  937. -0.013869, 0.0287268, -0.00334693, 0.00733398, -0.0287926,
  938. -0.0186926, 0.0193662, -0.0115437, 0.00422612, -0.0345232,
  939. 0.00223253, -0.00957321, 0.0210624, 0.013331, 0.0150954,
  940. 0.02168, -0.0141913, 0.0322082, 0.00227024, 0.0260507,
  941. -0.0188721, -0.0296489, 0.0399134, -0.0160509, 0.0116039,
  942. -0.0447318, -0.0150515, -0.0277406, 0.0316596, 0.0118233,
  943. 0.0214762, 0.0293641, -0.0204549, 0.0450315, -0.00117378,
  944. 0.0167673, -0.0375007, -0.0238314, 0.038784, -0.0174034,
  945. 0.0131743, -0.0506589, -0.0048447, -0.0240239, 0.0325789,
  946. 0.00790065, 0.0220157, 0.0333314, -0.0264787, 0.0387855,
  947. -0.000764675, 0.0217599, -0.037537, -0.0335206, 0.0431679,
  948. -0.0211424, 0.010203, -0.062785, -0.00832363, -0.025181,
  949. 0.0412031, 0.0118723, 0.0239643, 0.0394009}};
  950. // Resetting cell_state and output_state
  951. lstm.ResetCellState();
  952. lstm.ResetOutputState();
  953. const int input_sequence_size =
  954. sizeof(lstm_input[0]) / sizeof(float) / (lstm.num_inputs());
  955. for (int i = 0; i < input_sequence_size; i++) {
  956. float* batch0_start = lstm_input[0] + i * lstm.num_inputs();
  957. float* batch0_end = batch0_start + lstm.num_inputs();
  958. lstm.SetInput(0, batch0_start, batch0_end);
  959. float* batch1_start = lstm_input[1] + i * lstm.num_inputs();
  960. float* batch1_end = batch1_start + lstm.num_inputs();
  961. lstm.SetInput(lstm.num_inputs(), batch1_start, batch1_end);
  962. lstm.Invoke();
  963. float* golden_start_batch0 = lstm_golden_output[0] + i * lstm.num_outputs();
  964. float* golden_end_batch0 = golden_start_batch0 + lstm.num_outputs();
  965. float* golden_start_batch1 = lstm_golden_output[1] + i * lstm.num_outputs();
  966. float* golden_end_batch1 = golden_start_batch1 + lstm.num_outputs();
  967. std::vector<float> expected;
  968. expected.insert(expected.end(), golden_start_batch0, golden_end_batch0);
  969. expected.insert(expected.end(), golden_start_batch1, golden_end_batch1);
  970. EXPECT_THAT(lstm.GetOutput(), ElementsAreArray(ArrayFloatNear(expected)));
  971. }
  972. }
  973. } // namespace wrapper
  974. } // namespace nn
  975. } // namespace android