12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- /*
- * Copyright (C) 2017 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "CpuOperationUtils.h"
- #include "Operations.h"
- #include <algorithm>
- #include <cmath>
- #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
- #include "Tracing.h"
- namespace android {
- namespace nn {
- inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape,
- int32_t radius, float bias, float alpha, float beta,
- int32_t axis, float* outputData,
- const Shape& outputShape) {
- NNTRACE_TRANS("localResponseNormFloat32");
- const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
- const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
- const uint32_t innerSize =
- getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
- for (uint32_t outer = 0; outer < outerSize; ++outer) {
- const float* inputBase = inputData + outer * axisSize * innerSize;
- float* outputBase = outputData + outer * axisSize * innerSize;
- for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBase, ++outputBase) {
- for (int32_t i = 0; i < axisSize; i++) {
- const int32_t dBegin = std::max(0, i - radius);
- // Add 1 on dEnd to comply with optimized_ops in TFLite
- const int32_t dEnd = std::min(static_cast<int32_t>(axisSize), i + radius + 1);
- float sum = 0.0f;
- for (int32_t d = dBegin; d < dEnd; d++) {
- float val = inputBase[d * innerSize];
- sum += val * val;
- }
- float multiplier = std::pow(bias + alpha * sum, -beta);
- outputBase[i * innerSize] = inputBase[i * innerSize] * multiplier;
- }
- }
- }
- return true;
- }
- bool localResponseNormFloat16(const _Float16* inputData, const Shape& inputShape, int32_t radius,
- float bias, float alpha, float beta, int32_t axis,
- _Float16* outputData, const Shape& outputShape) {
- NNTRACE_TRANS("localResponseNormFloat16");
- std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
- convertFloat16ToFloat32(inputData, &inputDataFloat32);
- std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));
- localResponseNormFloat32(inputDataFloat32.data(), inputShape, radius, bias, alpha, beta, axis,
- outputDataFloat32.data(), outputShape);
- convertFloat32ToFloat16(outputDataFloat32, outputData);
- return true;
- }
- bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius,
- float bias, float alpha, float beta, int32_t axis, float* outputData,
- const Shape& outputShape) {
- int32_t ndim = getNumberOfDimensions(inputShape);
- NN_CHECK(handleNegativeAxis(inputShape, &axis));
- // TFLite optimized implementation only supports computation along the last axis
- if (axis == ndim - 1) {
- NNTRACE_COMP("optimized_ops::LocalResponseNormalization::float");
- tflite::LocalResponseNormalizationParams param = {
- .range = radius, .bias = bias, .alpha = alpha, .beta = beta};
- tflite::optimized_ops::LocalResponseNormalization(
- param, convertShapeToTflshape(inputShape), inputData,
- convertShapeToTflshape(outputShape), outputData);
- return true;
- } else {
- return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis,
- outputData, outputShape);
- }
- }
- } // namespace nn
- } // namespace android
|