123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425 |
- /*
- * Copyright (C) 2017 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "QuantizedLSTM.h"
- #include "CpuExecutor.h"
- #include "CpuOperationUtils.h"
- #include "Tracing.h"
- #include "public/gemmlowp.h"
- #include "tensorflow/lite/kernels/internal/reference/legacy_reference_ops.h"
- namespace android {
- namespace nn {
- namespace {
- template <typename T>
- inline T* GetBuffer(RunTimeOperandInfo* operand) {
- return reinterpret_cast<T*>(operand->buffer);
- }
- template <typename T>
- inline const T* GetBuffer(const RunTimeOperandInfo* operand) {
- return reinterpret_cast<const T*>(operand->buffer);
- }
- using tflite::Dims;
- // The function below is taken from TF Lite implementation in order to decouple
- // NN API from TF Lite dependency. Original function, with a description of its
- // parameters and types can be found by this link:
- // https://github.com/tensorflow/tensorflow/blob/0d697e5fc4c05c699eea0764364104ea500ccc68/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h#L1926
- //
- // clang-format off
- template <int StateIntegerBits>
- void quantizedLstmStep(const uint8_t* input_data_uint8, const Dims<4>& input_dims,
- const uint8_t* prev_activ_data_uint8,
- const Dims<4>& prev_activ_dims, const uint8_t* weights_data_uint8,
- const Dims<4>& weights_dims, const int32_t* bias_data_int32,
- const Dims<4>& bias_dims, const int16_t* prevCellState_data_int16,
- const Dims<4>& prevCellState_dims, int16_t* output_state_data_int16,
- const Dims<4>& output_state_dims, uint8_t* output_activ_data_uint8,
- const Dims<4>& output_activ_dims, uint8_t* concat_temp_data_uint8,
- const Dims<4>& concat_temp_dims, int16_t* activ_temp_data_int16,
- const Dims<4>& activ_temp_dims, int32_t weights_zero_point,
- int32_t accum_multiplier, int accum_shift) {
- // Gather dimensions information, and perform consistency checks.
- const int outer_size =
- MatchingFlatSizeSkipDim(input_dims, 0, prev_activ_dims, prevCellState_dims,
- output_state_dims, output_activ_dims);
- TFLITE_CHECK_EQ(ArraySize(weights_dims, 2), 1);
- TFLITE_CHECK_EQ(ArraySize(weights_dims, 3), 1);
- const int input_depth = ArraySize(input_dims, 0);
- const int prev_activ_depth = ArraySize(prev_activ_dims, 0);
- const int total_input_depth = prev_activ_depth + input_depth;
- TFLITE_CHECK_EQ(ArraySize(weights_dims, 0), total_input_depth);
- TFLITE_CHECK_EQ(MatchingArraySize(bias_dims, 1, bias_dims, 2, bias_dims, 3),
- 1);
- const int intern_activ_depth =
- MatchingArraySize(weights_dims, 1, bias_dims, 0);
- TFLITE_CHECK_EQ(intern_activ_depth % 4, 0);
- const int output_depth =
- MatchingArraySize(prevCellState_dims, 0, prev_activ_dims, 0,
- output_state_dims, 0, output_activ_dims, 0);
- TFLITE_CHECK_EQ(output_depth, intern_activ_depth / 4);
- const int fc_batches = FlatSizeSkipDim(activ_temp_dims, 0);
- const int fc_output_depth =
- MatchingArraySize(weights_dims, 1, activ_temp_dims, 0);
- const int fc_accum_depth = ArraySize(weights_dims, 0);
- TFLITE_CHECK_EQ(fc_output_depth, 4 * output_depth);
- // Depth-concatenate prev_activ and input data together.
- uint8_t const* concat_input_arrays_data[2] = {input_data_uint8,
- prev_activ_data_uint8};
- Dims<4> const* concat_input_arrays_dims[2] = {&input_dims, &prev_activ_dims};
- tflite::reference_ops::Concatenation<tflite::FusedActivationFunctionType::kNone, uint8_t>(
- 0, concat_input_arrays_data, concat_input_arrays_dims, 2,
- concat_temp_data_uint8, concat_temp_dims);
- // Implementation of the fully connected node inside the LSTM cell.
- // The operands are 8-bit integers, the accumulators are internally 32bit
- // integers, and the output is 16-bit fixed-point with 3 integer bits so
- // the output range is [-2^3, 2^3] == [-8, 8]. The rationale for that
- // is explained in the function comment above.
- for (int b = 0; b < fc_batches; ++b) {
- for (int out_c = 0; out_c < fc_output_depth; ++out_c) {
- // Internal accumulation.
- // Initialize accumulator with the bias-value.
- int32_t accum = bias_data_int32[out_c];
- // Accumulation loop.
- for (int d = 0; d < fc_accum_depth; ++d) {
- int16_t input_val = concat_temp_data_uint8[b * fc_accum_depth + d] - 128;
- int16_t weights_val =
- weights_data_uint8[out_c * fc_accum_depth + d] - weights_zero_point;
- accum += input_val * weights_val;
- }
- // Down-scale the final int32 accumulator to the scale used by our
- // (16-bit, using 3 integer bits) fixed-point format. The quantized
- // multiplier and shift here have been pre-computed offline
- // (e.g. by toco).
- accum =
- tflite::MultiplyByQuantizedMultiplier(accum, accum_multiplier, accum_shift);
- // Saturate, cast to int16, and store to the temporary activations array.
- accum = std::max(-32768, std::min(32767, accum));
- activ_temp_data_int16[out_c + fc_output_depth * b] = accum;
- }
- }
- // Rest of the LSTM cell: tanh and logistic math functions, and some adds
- // and muls, all done in 16-bit fixed-point.
- for (int b = 0; b < outer_size; ++b) {
- for (int c = 0; c < output_depth; ++c) {
- // Define the fixed-point data types that we will use here. All use
- // int16 as the underlying integer type i.e. all are 16-bit fixed-point.
- // They only differ by the number of integral vs. fractional bits,
- // determining the range of values that they can represent.
- //
- // F0 uses 0 integer bits, range [-1, 1].
- // This is the return type of math functions such as tanh, logistic,
- // whose range is in [-1, 1].
- using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
- // F3 uses 3 integer bits, range [-8, 8].
- // This is the range of the previous fully-connected node's output,
- // which is our input here.
- using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
- // FS uses StateIntegerBits integer bits, range [-2^StateIntegerBits,
- // 2^StateIntegerBits]. It's used to represent the internal state, whose
- // number of integer bits is currently dictated by the model. See comment
- // on the StateIntegerBits template parameter above.
- using FS = gemmlowp::FixedPoint<std::int16_t, StateIntegerBits>;
- // Implementation of input gate, using fixed-point logistic function.
- F3 input_gate_input = F3::FromRaw(
- activ_temp_data_int16[b * fc_output_depth + 0 * output_depth + c]);
- F0 input_gate_output = gemmlowp::logistic(input_gate_input);
- // Implementation of input modulation gate, using fixed-point tanh
- // function.
- F3 input_modulation_gate_input = F3::FromRaw(
- activ_temp_data_int16[b * fc_output_depth + 1 * output_depth + c]);
- F0 input_modulation_gate_output =
- gemmlowp::tanh(input_modulation_gate_input);
- // Implementation of forget gate, using fixed-point logistic function.
- F3 forget_gate_input = F3::FromRaw(
- activ_temp_data_int16[b * fc_output_depth + 2 * output_depth + c]);
- F0 forget_gate_output = gemmlowp::logistic(forget_gate_input);
- // Implementation of output gate, using fixed-point logistic function.
- F3 output_gate_input = F3::FromRaw(
- activ_temp_data_int16[b * fc_output_depth + 3 * output_depth + c]);
- F0 output_gate_output = gemmlowp::logistic(output_gate_input);
- // Implementation of internal multiplication nodes, still in fixed-point.
- F0 input_times_input_modulation =
- input_gate_output * input_modulation_gate_output;
- FS prevCellState = FS::FromRaw(prevCellState_data_int16[b * output_depth + c]);
- FS prevCellState_times_forget_state = forget_gate_output * prevCellState;
- // Implementation of internal addition node, saturating.
- FS new_state = gemmlowp::SaturatingAdd(
- gemmlowp::Rescale<StateIntegerBits>(input_times_input_modulation),
- prevCellState_times_forget_state);
- // Implementation of last internal Tanh node, still in fixed-point.
- // Since a Tanh fixed-point implementation is specialized for a given
- // number or integer bits, and each specialization can have a substantial
- // code size, and we already used above a Tanh on an input with 3 integer
- // bits, and per the table in the above function comment there is no
- // significant accuracy to be lost by clamping to [-8, +8] for a
- // 3-integer-bits representation, let us just do that. This helps people
- // porting this to targets where code footprint must be minimized.
- F3 new_state_f3 = gemmlowp::Rescale<3>(new_state);
- F0 output_activ_int16 = output_gate_output * gemmlowp::tanh(new_state_f3);
- // Store the new internal state back to memory, as 16-bit integers.
- // Note: here we store the original value with StateIntegerBits, not
- // the rescaled 3-integer-bits value fed to tanh.
- output_state_data_int16[b * output_depth + c] = new_state.raw();
- // Down-scale the output activations to 8-bit integers, saturating,
- // and store back to memory.
- int16_t rescaled_output_activ =
- gemmlowp::RoundingDivideByPOT(output_activ_int16.raw(), 8);
- int16_t clamped_output_activ =
- std::max<int16_t>(-128, std::min<int16_t>(127, rescaled_output_activ));
- output_activ_data_uint8[b * output_depth + c] =
- 128 + clamped_output_activ;
- }
- }
- }
- // clang-format on
- // The function assigns a 2D matrix to a submatrix of the weights at a given row
- // and column offsets.
- void assignWeightsSubmatrix(const RunTimeOperandInfo* submatrix, const int32_t offset_row,
- const int32_t offset_column, const std::vector<uint32_t>& weightsDims,
- uint8_t* weights) {
- const uint8_t* submatrixValues = GetBuffer<uint8_t>(submatrix);
- const std::vector<uint32_t> submatrixDims = submatrix->shape().dimensions;
- for (uint32_t i = 0; i < submatrixDims[0] * submatrixDims[1]; ++i) {
- const uint32_t row = i / submatrixDims[1];
- const uint32_t column = i % submatrixDims[1];
- weights[(row + offset_row) * weightsDims[1] + column + offset_column] = submatrixValues[i];
- }
- }
- } // namespace
- QuantizedLSTMCell::QuantizedLSTMCell(const Operation& operation,
- std::vector<RunTimeOperandInfo>& operands) {
- input_ = GetInput(operation, operands, kInputTensor);
- inputToInputWeights_ = GetInput(operation, operands, kInputToInputWeightsTensor);
- inputToForgetWeights_ = GetInput(operation, operands, kInputToForgetWeightsTensor);
- inputToCellWeights_ = GetInput(operation, operands, kInputToCellWeightsTensor);
- inputToOutputWeights_ = GetInput(operation, operands, kInputToOutputWeightsTensor);
- recurrentToInputWeights_ = GetInput(operation, operands, kRecurrentToInputWeightsTensor);
- recurrentToForgetWeights_ = GetInput(operation, operands, kRecurrentToForgetWeightsTensor);
- recurrentToCellWeights_ = GetInput(operation, operands, kRecurrentToCellWeightsTensor);
- recurrentToOutputWeights_ = GetInput(operation, operands, kRecurrentToOutputWeightsTensor);
- inputGateBias_ = GetInput(operation, operands, kInputGateBiasTensor);
- forgetGateBias_ = GetInput(operation, operands, kForgetGateBiasTensor);
- cellGateBias_ = GetInput(operation, operands, kCellGateBiasTensor);
- outputGateBias_ = GetInput(operation, operands, kOutputGateBiasTensor);
- prevCellState_ = GetInput(operation, operands, kPrevCellStateTensor);
- prevOutput_ = GetInput(operation, operands, kPrevOutputTensor);
- cellStateOut_ = GetOutput(operation, operands, kCellStateOutTensor);
- output_ = GetOutput(operation, operands, kOutputTensor);
- }
- bool QuantizedLSTMCell::prepare(const Operation& operation,
- std::vector<RunTimeOperandInfo>& operands, Shape* cellStateOutShape,
- Shape* outputShape) {
- auto input = GetInput(operation, operands, kInputTensor);
- NN_RET_CHECK_EQ(NumDimensions(input), 2);
- NN_RET_CHECK_EQ(input->scale, 1. / 128.0);
- NN_RET_CHECK_EQ(input->zeroPoint, 128);
- const uint32_t numBatches = SizeOfDimension(input, 0);
- const uint32_t inputSize = SizeOfDimension(input, 1);
- auto prevOutput = GetInput(operation, operands, kPrevOutputTensor);
- NN_RET_CHECK_EQ(NumDimensions(prevOutput), 2);
- NN_RET_CHECK_EQ(SizeOfDimension(prevOutput, 0), numBatches);
- NN_RET_CHECK_EQ(prevOutput->scale, 1. / 128.0);
- NN_RET_CHECK_EQ(prevOutput->zeroPoint, 128);
- const uint32_t outputSize = SizeOfDimension(prevOutput, 1);
- auto inputToInputWeights = GetInput(operation, operands, kInputToInputWeightsTensor);
- const float weightsScale = inputToInputWeights->scale;
- NN_RET_CHECK(weightsScale != 0);
- const float weightsZeroPoint = inputToInputWeights->zeroPoint;
- auto checkWeightsShape = [&](const RunTimeOperandInfo* weights, uint32_t columns) -> bool {
- NN_RET_CHECK_EQ(NumDimensions(weights), 2);
- NN_RET_CHECK_EQ(SizeOfDimension(weights, 0), outputSize);
- NN_RET_CHECK_EQ(SizeOfDimension(weights, 1), columns);
- NN_RET_CHECK_EQ(weights->scale, weightsScale);
- NN_RET_CHECK_EQ(weights->zeroPoint, weightsZeroPoint);
- return true;
- };
- auto inputToForgetWeights = GetInput(operation, operands, kInputToForgetWeightsTensor);
- auto inputToCellWeights = GetInput(operation, operands, kInputToCellWeightsTensor);
- auto inputToOutputWeights = GetInput(operation, operands, kInputToOutputWeightsTensor);
- NN_RET_CHECK(checkWeightsShape(inputToInputWeights, inputSize));
- NN_RET_CHECK(checkWeightsShape(inputToForgetWeights, inputSize));
- NN_RET_CHECK(checkWeightsShape(inputToCellWeights, inputSize));
- NN_RET_CHECK(checkWeightsShape(inputToOutputWeights, inputSize));
- auto recurrentToInputWeights = GetInput(operation, operands, kRecurrentToInputWeightsTensor);
- auto recurrentToForgetWeights = GetInput(operation, operands, kRecurrentToForgetWeightsTensor);
- auto recurrentToCellWeights = GetInput(operation, operands, kRecurrentToCellWeightsTensor);
- auto recurrentToOutputWeights = GetInput(operation, operands, kRecurrentToOutputWeightsTensor);
- NN_RET_CHECK(checkWeightsShape(recurrentToInputWeights, outputSize));
- NN_RET_CHECK(checkWeightsShape(recurrentToForgetWeights, outputSize));
- NN_RET_CHECK(checkWeightsShape(recurrentToCellWeights, outputSize));
- NN_RET_CHECK(checkWeightsShape(recurrentToOutputWeights, outputSize));
- auto inputGateBias = GetInput(operation, operands, kInputGateBiasTensor);
- const float biasScale = inputGateBias->scale;
- NN_RET_CHECK_EQ(biasScale, weightsScale / 128.0);
- const float biasZeroPoint = inputGateBias->zeroPoint;
- NN_RET_CHECK_EQ(biasZeroPoint, 0);
- auto checkBiasShape = [&](const RunTimeOperandInfo* bias) -> bool {
- NN_RET_CHECK_EQ(NumDimensions(bias), 1);
- NN_RET_CHECK_EQ(SizeOfDimension(bias, 0), outputSize);
- NN_RET_CHECK_EQ(bias->scale, biasScale);
- NN_RET_CHECK_EQ(bias->zeroPoint, biasZeroPoint);
- return true;
- };
- auto forgetGateBias = GetInput(operation, operands, kForgetGateBiasTensor);
- auto cellGateBias = GetInput(operation, operands, kCellGateBiasTensor);
- auto outputGateBias = GetInput(operation, operands, kOutputGateBiasTensor);
- NN_RET_CHECK(checkBiasShape(inputGateBias));
- NN_RET_CHECK(checkBiasShape(forgetGateBias));
- NN_RET_CHECK(checkBiasShape(cellGateBias));
- NN_RET_CHECK(checkBiasShape(outputGateBias));
- auto prevCellState = GetInput(operation, operands, kPrevCellStateTensor);
- NN_CHECK_EQ(NumDimensions(prevCellState), 2);
- NN_CHECK_EQ(SizeOfDimension(prevCellState, 0), numBatches);
- NN_CHECK_EQ(SizeOfDimension(prevCellState, 1), outputSize);
- NN_CHECK_EQ(prevCellState->zeroPoint, 0);
- // Cell state range for quantized LSTM is a function of StateIntegerBits and
- // can be calculated as:
- // [-2^StateIntegerBits, 2^StateIntegerBits * 32767/32768].
- // Therefore, for a fixed StateIntegerBits parameter, cell state scale is
- // equal to 2^StateIntegerBits * 2^(-15) = 2^(StateIntegerBits - 15) and
- // therefore:
- // StateIntegerBits = log2(cell state scale) + 15
- int stateScaleLog2Rounded;
- NN_CHECK(tflite::CheckedLog2(prevCellState->scale, &stateScaleLog2Rounded));
- const int stateIntegerBits = 15 + stateScaleLog2Rounded;
- // We only support StateIntegerBits == 4
- NN_CHECK(stateIntegerBits == 4);
- *cellStateOutShape = prevCellState->shape();
- *outputShape = prevOutput->shape();
- return true;
- }
- // The function contatenates 8 input weight matrices into one. Resulting matrix
- // has a shape [4 * outputSize, outputSize + inputSize]. The matrix is
- // constructed as follows:
- // +-----------------------------------+
- // | recurrentToInput | inputToInput |
- // |-------------------+---------------|
- // | recurrentToCell | inputToCell |
- // |-------------------+---------------|
- // | recurrentToForget | inputToForget |
- // |-------------------+---------------|
- // | recurrentToOutput | inputToOutput |
- // +-----------------------------------+
- void QuantizedLSTMCell::concatenateWeights(const std::vector<uint32_t>& weightsDims,
- uint8_t* weights) {
- const int outputSize = SizeOfDimension(inputToInputWeights_, 0);
- assignWeightsSubmatrix(inputToInputWeights_, 0 * outputSize, outputSize, weightsDims, weights);
- assignWeightsSubmatrix(inputToCellWeights_, 1 * outputSize, outputSize, weightsDims, weights);
- assignWeightsSubmatrix(inputToForgetWeights_, 2 * outputSize, outputSize, weightsDims, weights);
- assignWeightsSubmatrix(inputToOutputWeights_, 3 * outputSize, outputSize, weightsDims, weights);
- assignWeightsSubmatrix(recurrentToInputWeights_, 0 * outputSize, 0, weightsDims, weights);
- assignWeightsSubmatrix(recurrentToCellWeights_, 1 * outputSize, 0, weightsDims, weights);
- assignWeightsSubmatrix(recurrentToForgetWeights_, 2 * outputSize, 0, weightsDims, weights);
- assignWeightsSubmatrix(recurrentToOutputWeights_, 3 * outputSize, 0, weightsDims, weights);
- }
- // The function concatenate four bias vectors of shape [outputSize] into one
- // vector of shape [4 * outputSize].
- void QuantizedLSTMCell::concatenateBiases(uint32_t outputSize, int32_t* bias) {
- memcpy(bias + 0 * outputSize, GetBuffer<int32_t>(inputGateBias_), sizeof(int32_t) * outputSize);
- memcpy(bias + 1 * outputSize, GetBuffer<int32_t>(cellGateBias_), sizeof(int32_t) * outputSize);
- memcpy(bias + 2 * outputSize, GetBuffer<int32_t>(forgetGateBias_),
- sizeof(int32_t) * outputSize);
- memcpy(bias + 3 * outputSize, GetBuffer<int32_t>(outputGateBias_),
- sizeof(int32_t) * outputSize);
- }
- bool QuantizedLSTMCell::eval() {
- NNTRACE_COMP("QuantizedLSTM::eval");
- Shape weightsShape;
- weightsShape.dimensions = {4 * SizeOfDimension(prevOutput_, 1),
- SizeOfDimension(input_, 1) + SizeOfDimension(prevOutput_, 1)};
- std::vector<uint8_t> weights(getNumberOfElements(weightsShape));
- concatenateWeights(weightsShape.dimensions, weights.data());
- Shape biasShape;
- biasShape.dimensions = {getSizeOfDimension(weightsShape, 0)};
- std::vector<int32_t> bias(getNumberOfElements(biasShape));
- concatenateBiases(SizeOfDimension(prevOutput_, 1), bias.data());
- Shape concatTempShape;
- concatTempShape.dimensions = {SizeOfDimension(input_, 0), getSizeOfDimension(weightsShape, 1)};
- Shape activationTempShape;
- activationTempShape.dimensions = {SizeOfDimension(input_, 0),
- getSizeOfDimension(weightsShape, 0)};
- std::vector<uint8_t> concatTemp(getNumberOfElements(concatTempShape));
- std::vector<int16_t> activationTemp(getNumberOfElements(activationTempShape));
- // From https://arxiv.org/pdf/1712.05877, for a fully-connected layer,
- // accumulator multiplier is equal to:
- // (input scale) * (weights scale) / (fully-connected output scale)
- // In our case fully-connected output scale is fixed and equal to
- // 2^(-12) (See LSTMCell definition in TF Lite for more details on that).
- // But bias scale is set to (input scale) * (weights scale) (also from the
- // paper), so we can multiply it to an inverse of the fc-output scale to get
- // the multiplier value:
- double realAccumMultiplier = 4096 * inputGateBias_->scale;
- int32_t accumMultiplier;
- int accumShift;
- tflite::QuantizeMultiplier(realAccumMultiplier, &accumMultiplier, &accumShift);
- quantizedLstmStep<4>(
- // Inputs.
- GetBuffer<const uint8_t>(input_), convertShapeToDims(input_->shape()),
- GetBuffer<const uint8_t>(prevOutput_), convertShapeToDims(prevOutput_->shape()),
- weights.data(), convertShapeToDims(weightsShape), bias.data(),
- convertShapeToDims(biasShape), GetBuffer<const int16_t>(prevCellState_),
- convertShapeToDims(prevCellState_->shape()),
- // Outputs.
- GetBuffer<int16_t>(cellStateOut_), convertShapeToDims(cellStateOut_->shape()),
- GetBuffer<uint8_t>(output_), convertShapeToDims(output_->shape()), concatTemp.data(),
- convertShapeToDims(concatTempShape), activationTemp.data(),
- convertShapeToDims(activationTempShape), inputToInputWeights_->zeroPoint,
- accumMultiplier, accumShift);
- return true;
- }
- } // namespace nn
- } // namespace android
|