123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 |
- /*
- * Copyright (C) 2017 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "RNN.h"
- #include "NeuralNetworksWrapper.h"
- #include "gmock/gmock-matchers.h"
- #include "gtest/gtest.h"
- namespace android {
- namespace nn {
- namespace wrapper {
- using ::testing::Each;
- using ::testing::FloatNear;
- using ::testing::Matcher;
- namespace {
- std::vector<Matcher<float>> ArrayFloatNear(const std::vector<float>& values,
- float max_abs_error = 1.e-5) {
- std::vector<Matcher<float>> matchers;
- matchers.reserve(values.size());
- for (const float& v : values) {
- matchers.emplace_back(FloatNear(v, max_abs_error));
- }
- return matchers;
- }
- static float rnn_input[] = {
- 0.23689353, 0.285385, 0.037029743, -0.19858193, -0.27569133,
- 0.43773448, 0.60379338, 0.35562468, -0.69424844, -0.93421471,
- -0.87287879, 0.37144363, -0.62476718, 0.23791671, 0.40060222,
- 0.1356622, -0.99774903, -0.98858172, -0.38952237, -0.47685933,
- 0.31073618, 0.71511042, -0.63767755, -0.31729108, 0.33468103,
- 0.75801885, 0.30660987, -0.37354088, 0.77002847, -0.62747043,
- -0.68572164, 0.0069220066, 0.65791464, 0.35130811, 0.80834007,
- -0.61777675, -0.21095741, 0.41213346, 0.73784804, 0.094794154,
- 0.47791874, 0.86496925, -0.53376222, 0.85315156, 0.10288584,
- 0.86684, -0.011186242, 0.10513687, 0.87825835, 0.59929144,
- 0.62827742, 0.18899453, 0.31440187, 0.99059987, 0.87170351,
- -0.35091716, 0.74861872, 0.17831337, 0.2755419, 0.51864719,
- 0.55084288, 0.58982027, -0.47443086, 0.20875752, -0.058871567,
- -0.66609079, 0.59098077, 0.73017097, 0.74604273, 0.32882881,
- -0.17503482, 0.22396147, 0.19379807, 0.29120302, 0.077113032,
- -0.70331609, 0.15804303, -0.93407321, 0.40182066, 0.036301374,
- 0.66521823, 0.0300982, -0.7747041, -0.02038002, 0.020698071,
- -0.90300065, 0.62870288, -0.23068321, 0.27531278, -0.095755219,
- -0.712036, -0.17384434, -0.50593495, -0.18646687, -0.96508682,
- 0.43519354, 0.14744234, 0.62589407, 0.1653645, -0.10651493,
- -0.045277178, 0.99032974, -0.88255352, -0.85147917, 0.28153265,
- 0.19455957, -0.55479527, -0.56042433, 0.26048636, 0.84702539,
- 0.47587705, -0.074295521, -0.12287641, 0.70117295, 0.90532446,
- 0.89782166, 0.79817224, 0.53402734, -0.33286154, 0.073485017,
- -0.56172788, -0.044897556, 0.89964068, -0.067662835, 0.76863563,
- 0.93455386, -0.6324693, -0.083922029};
- static float rnn_golden_output[] = {
- 0.496726, 0, 0.965996, 0, 0.0584254, 0,
- 0, 0.12315, 0, 0, 0.612266, 0.456601,
- 0, 0.52286, 1.16099, 0.0291232,
- 0, 0, 0.524901, 0, 0, 0,
- 0, 1.02116, 0, 1.35762, 0, 0.356909,
- 0.436415, 0.0355727, 0, 0,
- 0, 0, 0, 0.262335, 0, 0,
- 0, 1.33992, 0, 2.9739, 0, 0,
- 1.31914, 2.66147, 0, 0,
- 0.942568, 0, 0, 0, 0.025507, 0,
- 0, 0, 0.321429, 0.569141, 1.25274, 1.57719,
- 0.8158, 1.21805, 0.586239, 0.25427,
- 1.04436, 0, 0.630725, 0, 0.133801, 0.210693,
- 0.363026, 0, 0.533426, 0, 1.25926, 0.722707,
- 0, 1.22031, 1.30117, 0.495867,
- 0.222187, 0, 0.72725, 0, 0.767003, 0,
- 0, 0.147835, 0, 0, 0, 0.608758,
- 0.469394, 0.00720298, 0.927537, 0,
- 0.856974, 0.424257, 0, 0, 0.937329, 0,
- 0, 0, 0.476425, 0, 0.566017, 0.418462,
- 0.141911, 0.996214, 1.13063, 0,
- 0.967899, 0, 0, 0, 0.0831304, 0,
- 0, 1.00378, 0, 0, 0, 1.44818,
- 1.01768, 0.943891, 0.502745, 0,
- 0.940135, 0, 0, 0, 0, 0,
- 0, 2.13243, 0, 0.71208, 0.123918, 1.53907,
- 1.30225, 1.59644, 0.70222, 0,
- 0.804329, 0, 0.430576, 0, 0.505872, 0.509603,
- 0.343448, 0, 0.107756, 0.614544, 1.44549, 1.52311,
- 0.0454298, 0.300267, 0.562784, 0.395095,
- 0.228154, 0, 0.675323, 0, 1.70536, 0.766217,
- 0, 0, 0, 0.735363, 0.0759267, 1.91017,
- 0.941888, 0, 0, 0,
- 0, 0, 1.5909, 0, 0, 0,
- 0, 0.5755, 0, 0.184687, 0, 1.56296,
- 0.625285, 0, 0, 0,
- 0, 0, 0.0857888, 0, 0, 0,
- 0, 0.488383, 0.252786, 0, 0, 0,
- 1.02817, 1.85665, 0, 0,
- 0.00981836, 0, 1.06371, 0, 0, 0,
- 0, 0, 0, 0.290445, 0.316406, 0,
- 0.304161, 1.25079, 0.0707152, 0,
- 0.986264, 0.309201, 0, 0, 0, 0,
- 0, 1.64896, 0.346248, 0, 0.918175, 0.78884,
- 0.524981, 1.92076, 2.07013, 0.333244,
- 0.415153, 0.210318, 0, 0, 0, 0,
- 0, 2.02616, 0, 0.728256, 0.84183, 0.0907453,
- 0.628881, 3.58099, 1.49974, 0};
- } // anonymous namespace
- #define FOR_ALL_INPUT_AND_WEIGHT_TENSORS(ACTION) \
- ACTION(Input) \
- ACTION(Weights) \
- ACTION(RecurrentWeights) \
- ACTION(Bias) \
- ACTION(HiddenStateIn)
- // For all output and intermediate states
- #define FOR_ALL_OUTPUT_TENSORS(ACTION) \
- ACTION(HiddenStateOut) \
- ACTION(Output)
- class BasicRNNOpModel {
- public:
- BasicRNNOpModel(uint32_t batches, uint32_t units, uint32_t size)
- : batches_(batches),
- units_(units),
- input_size_(size),
- activation_(kActivationRelu) {
- std::vector<uint32_t> inputs;
- OperandType InputTy(Type::TENSOR_FLOAT32, {batches_, input_size_});
- inputs.push_back(model_.addOperand(&InputTy));
- OperandType WeightTy(Type::TENSOR_FLOAT32, {units_, input_size_});
- inputs.push_back(model_.addOperand(&WeightTy));
- OperandType RecurrentWeightTy(Type::TENSOR_FLOAT32, {units_, units_});
- inputs.push_back(model_.addOperand(&RecurrentWeightTy));
- OperandType BiasTy(Type::TENSOR_FLOAT32, {units_});
- inputs.push_back(model_.addOperand(&BiasTy));
- OperandType HiddenStateTy(Type::TENSOR_FLOAT32, {batches_, units_});
- inputs.push_back(model_.addOperand(&HiddenStateTy));
- OperandType ActionParamTy(Type::INT32, {});
- inputs.push_back(model_.addOperand(&ActionParamTy));
- std::vector<uint32_t> outputs;
- outputs.push_back(model_.addOperand(&HiddenStateTy));
- OperandType OutputTy(Type::TENSOR_FLOAT32, {batches_, units_});
- outputs.push_back(model_.addOperand(&OutputTy));
- Input_.insert(Input_.end(), batches_ * input_size_, 0.f);
- HiddenStateIn_.insert(HiddenStateIn_.end(), batches_ * units_, 0.f);
- HiddenStateOut_.insert(HiddenStateOut_.end(), batches_ * units_, 0.f);
- Output_.insert(Output_.end(), batches_ * units_, 0.f);
- model_.addOperation(ANEURALNETWORKS_RNN, inputs, outputs);
- model_.identifyInputsAndOutputs(inputs, outputs);
- model_.finish();
- }
- #define DefineSetter(X) \
- void Set##X(const std::vector<float>& f) { \
- X##_.insert(X##_.end(), f.begin(), f.end()); \
- }
- FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineSetter);
- #undef DefineSetter
- void SetInput(int offset, float* begin, float* end) {
- for (; begin != end; begin++, offset++) {
- Input_[offset] = *begin;
- }
- }
- void ResetHiddenState() {
- std::fill(HiddenStateIn_.begin(), HiddenStateIn_.end(), 0.f);
- std::fill(HiddenStateOut_.begin(), HiddenStateOut_.end(), 0.f);
- }
- const std::vector<float>& GetOutput() const { return Output_; }
- uint32_t input_size() const { return input_size_; }
- uint32_t num_units() const { return units_; }
- uint32_t num_batches() const { return batches_; }
- void Invoke() {
- ASSERT_TRUE(model_.isValid());
- HiddenStateIn_.swap(HiddenStateOut_);
- Compilation compilation(&model_);
- compilation.finish();
- Execution execution(&compilation);
- #define SetInputOrWeight(X) \
- ASSERT_EQ(execution.setInput(RNN::k##X##Tensor, X##_.data(), \
- sizeof(float) * X##_.size()), \
- Result::NO_ERROR);
- FOR_ALL_INPUT_AND_WEIGHT_TENSORS(SetInputOrWeight);
- #undef SetInputOrWeight
- #define SetOutput(X) \
- ASSERT_EQ(execution.setOutput(RNN::k##X##Tensor, X##_.data(), \
- sizeof(float) * X##_.size()), \
- Result::NO_ERROR);
- FOR_ALL_OUTPUT_TENSORS(SetOutput);
- #undef SetOutput
- ASSERT_EQ(execution.setInput(RNN::kActivationParam, &activation_,
- sizeof(activation_)),
- Result::NO_ERROR);
- ASSERT_EQ(execution.compute(), Result::NO_ERROR);
- }
- private:
- Model model_;
- const uint32_t batches_;
- const uint32_t units_;
- const uint32_t input_size_;
- const int activation_;
- #define DefineTensor(X) std::vector<float> X##_;
- FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineTensor);
- FOR_ALL_OUTPUT_TENSORS(DefineTensor);
- #undef DefineTensor
- };
- TEST(RNNOpTest, BlackBoxTest) {
- BasicRNNOpModel rnn(2, 16, 8);
- rnn.SetWeights(
- {0.461459, 0.153381, 0.529743, -0.00371218, 0.676267, -0.211346,
- 0.317493, 0.969689, -0.343251, 0.186423, 0.398151, 0.152399,
- 0.448504, 0.317662, 0.523556, -0.323514, 0.480877, 0.333113,
- -0.757714, -0.674487, -0.643585, 0.217766, -0.0251462, 0.79512,
- -0.595574, -0.422444, 0.371572, -0.452178, -0.556069, -0.482188,
- -0.685456, -0.727851, 0.841829, 0.551535, -0.232336, 0.729158,
- -0.00294906, -0.69754, 0.766073, -0.178424, 0.369513, -0.423241,
- 0.548547, -0.0152023, -0.757482, -0.85491, 0.251331, -0.989183,
- 0.306261, -0.340716, 0.886103, -0.0726757, -0.723523, -0.784303,
- 0.0354295, 0.566564, -0.485469, -0.620498, 0.832546, 0.697884,
- -0.279115, 0.294415, -0.584313, 0.548772, 0.0648819, 0.968726,
- 0.723834, -0.0080452, -0.350386, -0.272803, 0.115121, -0.412644,
- -0.824713, -0.992843, -0.592904, -0.417893, 0.863791, -0.423461,
- -0.147601, -0.770664, -0.479006, 0.654782, 0.587314, -0.639158,
- 0.816969, -0.337228, 0.659878, 0.73107, 0.754768, -0.337042,
- 0.0960841, 0.368357, 0.244191, -0.817703, -0.211223, 0.442012,
- 0.37225, -0.623598, -0.405423, 0.455101, 0.673656, -0.145345,
- -0.511346, -0.901675, -0.81252, -0.127006, 0.809865, -0.721884,
- 0.636255, 0.868989, -0.347973, -0.10179, -0.777449, 0.917274,
- 0.819286, 0.206218, -0.00785118, 0.167141, 0.45872, 0.972934,
- -0.276798, 0.837861, 0.747958, -0.0151566, -0.330057, -0.469077,
- 0.277308, 0.415818});
- rnn.SetBias({0.065691948, -0.69055247, 0.1107955, -0.97084129, -0.23957068,
- -0.23566568, -0.389184, 0.47481549, -0.4791103, 0.29931796,
- 0.10463274, 0.83918178, 0.37197268, 0.61957061, 0.3956964,
- -0.37609905});
- rnn.SetRecurrentWeights({0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0.1});
- rnn.ResetHiddenState();
- const int input_sequence_size = sizeof(rnn_input) / sizeof(float) /
- (rnn.input_size() * rnn.num_batches());
- for (int i = 0; i < input_sequence_size; i++) {
- float* batch_start = rnn_input + i * rnn.input_size();
- float* batch_end = batch_start + rnn.input_size();
- rnn.SetInput(0, batch_start, batch_end);
- rnn.SetInput(rnn.input_size(), batch_start, batch_end);
- rnn.Invoke();
- float* golden_start = rnn_golden_output + i * rnn.num_units();
- float* golden_end = golden_start + rnn.num_units();
- std::vector<float> expected;
- expected.insert(expected.end(), golden_start, golden_end);
- expected.insert(expected.end(), golden_start, golden_end);
- EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(expected)));
- }
- }
- } // namespace wrapper
- } // namespace nn
- } // namespace android
|