123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- /*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "CpuOperationUtils.h"
- #include "OperationResolver.h"
- #include "OperationsUtils.h"
- #include <cfloat>
- #include <cmath>
- #include "Tracing.h"
- namespace android {
- namespace nn {
- namespace roi_pooling {
- constexpr char kOperationName[] = "ROI_POOLING";
- constexpr uint32_t kNumInputs = 8;
- constexpr uint32_t kInputTensor = 0;
- constexpr uint32_t kRoiTensor = 1;
- constexpr uint32_t kBatchSplitTensor = 2;
- constexpr uint32_t kOutputHeightScalar = 3;
- constexpr uint32_t kOutputWidthScalar = 4;
- constexpr uint32_t kHeightStrideSalar = 5;
- constexpr uint32_t kWidthStrideScalar = 6;
- constexpr uint32_t kLayoutScalar = 7;
- constexpr uint32_t kNumOutputs = 1;
- constexpr uint32_t kOutputTensor = 0;
- namespace {
- template <typename T_Input, typename T_Roi>
- inline bool roiPoolingNhwc(const T_Input* inputData, const Shape& inputShape, const T_Roi* roiData,
- const Shape& roiShape, const int32_t* batchSplitData,
- const Shape& batchSplitShape, float heightStride, float widthStride,
- T_Input* outputData, const Shape& outputShape) {
- NNTRACE_TRANS("RoiPooling");
- const uint32_t kRoiDim = 4;
- const T_Roi heightScale = 1.0f / heightStride;
- const T_Roi widthScale = 1.0f / widthStride;
- uint32_t numBatches = getSizeOfDimension(inputShape, 0);
- uint32_t inHeight = getSizeOfDimension(inputShape, 1);
- uint32_t inWidth = getSizeOfDimension(inputShape, 2);
- uint32_t inDepth = getSizeOfDimension(inputShape, 3);
- uint32_t outHeight = getSizeOfDimension(outputShape, 1);
- uint32_t outWidth = getSizeOfDimension(outputShape, 2);
- uint32_t numRois = getSizeOfDimension(roiShape, 0);
- uint32_t roiInfoLength = getSizeOfDimension(roiShape, 1);
- T_Input* outPtr = outputData;
- const T_Roi* roiDataEnd = roiData + numRois * roiInfoLength;
- uint32_t roiIndex = 0;
- for (const T_Roi* roiInfo = roiData; roiInfo < roiDataEnd; roiInfo += kRoiDim, roiIndex++) {
- uint32_t batchId = batchSplitData[roiIndex];
- // Check for malformed data
- // 1. invalid batch id
- // 2. Region out of bound: x1|x2|y1|y2 < 0 || x1|x2 > inWidth || y1|y2 > inHeight
- // 3. Invalid region: x2 < x1 || y2 < y1
- NN_RET_CHECK_GE(batchId, 0);
- NN_RET_CHECK_LT(batchId, numBatches);
- NN_RET_CHECK(roiInfo[0] >= 0);
- NN_RET_CHECK(roiInfo[1] >= 0);
- NN_RET_CHECK(roiInfo[2] >= 0);
- NN_RET_CHECK(roiInfo[3] >= 0);
- NN_RET_CHECK(roiInfo[0] * widthScale <= inWidth);
- NN_RET_CHECK(roiInfo[1] * heightScale <= inHeight);
- NN_RET_CHECK(roiInfo[2] * widthScale <= inWidth);
- NN_RET_CHECK(roiInfo[3] * heightScale <= inHeight);
- NN_RET_CHECK(roiInfo[0] <= roiInfo[2]);
- NN_RET_CHECK(roiInfo[1] <= roiInfo[3]);
- int32_t wRoiStart = std::round(static_cast<float>(roiInfo[0] * widthScale));
- int32_t hRoiStart = std::round(static_cast<float>(roiInfo[1] * heightScale));
- int32_t wRoiEnd = std::round(static_cast<float>(roiInfo[2] * widthScale));
- int32_t hRoiEnd = std::round(static_cast<float>(roiInfo[3] * heightScale));
- // Rois with width/height < 1 are considered malformed and are forced to be 1
- T_Roi roiWidth = static_cast<T_Roi>(std::max(wRoiEnd - wRoiStart + 1, 1));
- T_Roi roiHeight = static_cast<T_Roi>(std::max(hRoiEnd - hRoiStart + 1, 1));
- T_Roi wStepSize = roiWidth / static_cast<T_Roi>(outWidth);
- T_Roi hStepSize = roiHeight / static_cast<T_Roi>(outHeight);
- const T_Input* batchBase = inputData + batchId * inHeight * inWidth * inDepth;
- for (uint32_t i = 0; i < outHeight; i++) {
- for (uint32_t j = 0; j < outWidth; j++) {
- // Take floor on start, ceil on end, start included, end excluded, i.e. [start, end)
- // end is guaranteed to larger than start by at least 1
- uint32_t wStart = std::floor(static_cast<float>(wStepSize * j + wRoiStart));
- uint32_t wEnd = std::ceil(static_cast<float>(wStepSize * (j + 1) + wRoiStart));
- uint32_t hStart = std::floor(static_cast<float>(hStepSize * i + hRoiStart));
- uint32_t hEnd = std::ceil(static_cast<float>(hStepSize * (i + 1) + hRoiStart));
- wStart = std::min(wStart, inWidth);
- wEnd = std::min(wEnd, inWidth);
- hStart = std::min(hStart, inHeight);
- hEnd = std::min(hEnd, inHeight);
- for (uint32_t k = 0; k < inDepth; k++) {
- T_Input maxValue = static_cast<T_Input>(inputShape.offset);
- bool first = true;
- for (uint32_t h = hStart; h < hEnd; h++) {
- for (uint32_t w = wStart; w < wEnd; w++) {
- T_Input inputValue = batchBase[h * inWidth * inDepth + w * inDepth + k];
- if (first || inputValue > maxValue) {
- maxValue = inputValue;
- first = false;
- }
- }
- }
- outPtr[k] = maxValue;
- }
- outPtr += inDepth;
- }
- }
- }
- return true;
- }
- template <typename T_Input, typename T_Roi>
- inline bool roiPooling(const T_Input* inputData, const Shape& inputShape, const T_Roi* roiData,
- const Shape& roiShape, const int32_t* batchSplitData,
- const Shape& batchSplitShape, float heightStride, float widthStride,
- bool useNchw, T_Input* outputData, const Shape& outputShape) {
- InputWithLayout<T_Input> input(useNchw);
- OutputWithLayout<T_Input> output(useNchw);
- NN_RET_CHECK(input.initialize(inputData, inputShape));
- NN_RET_CHECK(output.initialize(outputData, outputShape));
- NN_RET_CHECK(roiPoolingNhwc(input.getNhwcBuffer(), input.getNhwcShape(), roiData, roiShape,
- batchSplitData, batchSplitShape, heightStride, widthStride,
- output.getNhwcBuffer(), output.getNhwcShape()));
- NN_RET_CHECK(output.commit());
- return true;
- }
- template <>
- inline bool roiPooling<uint8_t, uint16_t>(const uint8_t* inputData, const Shape& inputShape,
- const uint16_t* roiData, const Shape& roiShape,
- const int32_t* batchSplitData,
- const Shape& batchSplitShape, float heightStride,
- float widthStride, bool useNchw, uint8_t* outputData,
- const Shape& outputShape) {
- std::vector<float> roi_float32(getNumberOfElements(roiShape));
- convertQuantToFloat32(roiData, roiShape.scale, roiShape.offset, &roi_float32);
- NN_RET_CHECK(roiPooling(inputData, inputShape, roi_float32.data(), roiShape, batchSplitData,
- batchSplitShape, heightStride, widthStride, useNchw, outputData,
- outputShape));
- return true;
- }
- } // namespace
- bool validate(const IOperationValidationContext* context) {
- NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
- NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
- std::vector<OperandType> inExpectedTypes;
- auto inputType = context->getInputType(kInputTensor);
- if (inputType == OperandType::TENSOR_FLOAT32) {
- inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
- OperandType::TENSOR_INT32, OperandType::INT32,
- OperandType::INT32, OperandType::FLOAT32,
- OperandType::FLOAT32, OperandType::BOOL};
- } else if (inputType == OperandType::TENSOR_FLOAT16) {
- inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16,
- OperandType::TENSOR_INT32, OperandType::INT32,
- OperandType::INT32, OperandType::FLOAT16,
- OperandType::FLOAT16, OperandType::BOOL};
- } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
- inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM,
- OperandType::TENSOR_QUANT16_ASYMM,
- OperandType::TENSOR_INT32,
- OperandType::INT32,
- OperandType::INT32,
- OperandType::FLOAT32,
- OperandType::FLOAT32,
- OperandType::BOOL};
- } else {
- LOG(ERROR) << "Unsupported input tensor type for operation " << kOperationName;
- return false;
- }
- NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
- NN_RET_CHECK(validateOutputTypes(context, {inputType}));
- return validateHalVersion(context, HalVersion::V1_2);
- }
- bool prepare(IOperationExecutionContext* context) {
- bool useNchw = context->getInputValue<bool>(kLayoutScalar);
- Shape input = context->getInputShape(kInputTensor);
- Shape roiShape = context->getInputShape(kRoiTensor);
- Shape batchSplitShape = context->getInputShape(kBatchSplitTensor);
- NN_RET_CHECK_EQ(getNumberOfDimensions(input), 4);
- NN_RET_CHECK_EQ(getNumberOfDimensions(roiShape), 2);
- uint32_t numBatches = getSizeOfDimension(input, 0);
- uint32_t inHeight = getSizeOfDimension(input, useNchw ? 2 : 1);
- uint32_t inWidth = getSizeOfDimension(input, useNchw ? 3 : 2);
- uint32_t inDepth = getSizeOfDimension(input, useNchw ? 1 : 3);
- uint32_t numRois = getSizeOfDimension(roiShape, 0);
- NN_RET_CHECK_EQ(getSizeOfDimension(roiShape, 1), 4);
- NN_RET_CHECK_EQ(getSizeOfDimension(batchSplitShape, 0), numRois);
- auto outputHeight = context->getInputValue<int32_t>(kOutputHeightScalar);
- auto outputWidth = context->getInputValue<int32_t>(kOutputWidthScalar);
- float heightStride, widthStride;
- if (context->getInputType(kInputTensor) == OperandType::TENSOR_FLOAT16) {
- heightStride = context->getInputValue<_Float16>(kHeightStrideSalar);
- widthStride = context->getInputValue<_Float16>(kWidthStrideScalar);
- } else {
- heightStride = context->getInputValue<float>(kHeightStrideSalar);
- widthStride = context->getInputValue<float>(kWidthStrideScalar);
- }
- NN_RET_CHECK_GT(outputHeight, 0);
- NN_RET_CHECK_GT(outputWidth, 0);
- NN_RET_CHECK_GT(heightStride, 0);
- NN_RET_CHECK_GT(widthStride, 0);
- if (roiShape.type == OperandType::TENSOR_QUANT16_ASYMM) {
- NN_RET_CHECK_EQ(roiShape.scale, 0.125f);
- NN_RET_CHECK_EQ(roiShape.offset, 0);
- }
- Shape output = input;
- if (useNchw) {
- output.dimensions = {numRois, inDepth, static_cast<uint32_t>(outputHeight),
- static_cast<uint32_t>(outputWidth)};
- } else {
- output.dimensions = {numRois, static_cast<uint32_t>(outputHeight),
- static_cast<uint32_t>(outputWidth), inDepth};
- }
- return context->setOutputShape(kOutputTensor, output);
- }
- bool execute(IOperationExecutionContext* context) {
- switch (context->getInputType(kInputTensor)) {
- case OperandType::TENSOR_FLOAT16:
- return roiPooling(context->getInputBuffer<_Float16>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<_Float16>(kRoiTensor),
- context->getInputShape(kRoiTensor),
- context->getInputBuffer<int32_t>(kBatchSplitTensor),
- context->getInputShape(kBatchSplitTensor),
- context->getInputValue<_Float16>(kHeightStrideSalar),
- context->getInputValue<_Float16>(kWidthStrideScalar),
- context->getInputValue<bool>(kLayoutScalar),
- context->getOutputBuffer<_Float16>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_FLOAT32:
- return roiPooling(context->getInputBuffer<float>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<float>(kRoiTensor),
- context->getInputShape(kRoiTensor),
- context->getInputBuffer<int32_t>(kBatchSplitTensor),
- context->getInputShape(kBatchSplitTensor),
- context->getInputValue<float>(kHeightStrideSalar),
- context->getInputValue<float>(kWidthStrideScalar),
- context->getInputValue<bool>(kLayoutScalar),
- context->getOutputBuffer<float>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- case OperandType::TENSOR_QUANT8_ASYMM:
- return roiPooling(context->getInputBuffer<uint8_t>(kInputTensor),
- context->getInputShape(kInputTensor),
- context->getInputBuffer<uint16_t>(kRoiTensor),
- context->getInputShape(kRoiTensor),
- context->getInputBuffer<int32_t>(kBatchSplitTensor),
- context->getInputShape(kBatchSplitTensor),
- context->getInputValue<float>(kHeightStrideSalar),
- context->getInputValue<float>(kWidthStrideScalar),
- context->getInputValue<bool>(kLayoutScalar),
- context->getOutputBuffer<uint8_t>(kOutputTensor),
- context->getOutputShape(kOutputTensor));
- default:
- NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
- }
- }
- } // namespace roi_pooling
- NN_REGISTER_OPERATION(ROI_POOLING, roi_pooling::kOperationName, roi_pooling::validate,
- roi_pooling::prepare, roi_pooling::execute);
- } // namespace nn
- } // namespace android
|