123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- /*
- * Copyright (C) 2011 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "rsMatrix2x2.h"
- #include "rsMatrix3x3.h"
- #include "rsMatrix4x4.h"
- #include "stdlib.h"
- #include "string.h"
- #include "math.h"
- namespace android {
- namespace renderscript {
- //////////////////////////////////////////////////////////////////////////////
- // Heavy math functions
- //////////////////////////////////////////////////////////////////////////////
- // Returns true if the matrix was successfully inversed
- bool Matrix4x4::inverse() {
- rs_matrix4x4 result;
- int i, j;
- for (i = 0; i < 4; ++i) {
- for (j = 0; j < 4; ++j) {
- // computeCofactor for int i, int j
- int c0 = (i+1) % 4;
- int c1 = (i+2) % 4;
- int c2 = (i+3) % 4;
- int r0 = (j+1) % 4;
- int r1 = (j+2) % 4;
- int r2 = (j+3) % 4;
- float minor =
- (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1]))
- - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0]))
- + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0]));
- float cofactor = (i+j) & 1 ? -minor : minor;
- result.m[4*i + j] = cofactor;
- }
- }
- // Dot product of 0th column of source and 0th row of result
- float det = m[0]*result.m[0] + m[4]*result.m[1] +
- m[8]*result.m[2] + m[12]*result.m[3];
- if (fabs(det) < 1e-6) {
- return false;
- }
- det = 1.0f / det;
- for (i = 0; i < 16; ++i) {
- m[i] = result.m[i] * det;
- }
- return true;
- }
- // Returns true if the matrix was successfully inversed
- bool Matrix4x4::inverseTranspose() {
- rs_matrix4x4 result;
- int i, j;
- for (i = 0; i < 4; ++i) {
- for (j = 0; j < 4; ++j) {
- // computeCofactor for int i, int j
- int c0 = (i+1) % 4;
- int c1 = (i+2) % 4;
- int c2 = (i+3) % 4;
- int r0 = (j+1) % 4;
- int r1 = (j+2) % 4;
- int r2 = (j+3) % 4;
- float minor = (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1]))
- - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0]))
- + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0]));
- float cofactor = (i+j) & 1 ? -minor : minor;
- result.m[4*j + i] = cofactor;
- }
- }
- // Dot product of 0th column of source and 0th column of result
- float det = m[0]*result.m[0] + m[4]*result.m[4] +
- m[8]*result.m[8] + m[12]*result.m[12];
- if (fabs(det) < 1e-6) {
- return false;
- }
- det = 1.0f / det;
- for (i = 0; i < 16; ++i) {
- m[i] = result.m[i] * det;
- }
- return true;
- }
- void Matrix4x4::transpose() {
- int i, j;
- float temp;
- for (i = 0; i < 3; ++i) {
- for (j = i + 1; j < 4; ++j) {
- temp = m[i*4 + j];
- m[i*4 + j] = m[j*4 + i];
- m[j*4 + i] = temp;
- }
- }
- }
- ///////////////////////////////////////////////////////////////////////////////////
- void Matrix4x4::loadIdentity() {
- m[0] = 1.f;
- m[1] = 0.f;
- m[2] = 0.f;
- m[3] = 0.f;
- m[4] = 0.f;
- m[5] = 1.f;
- m[6] = 0.f;
- m[7] = 0.f;
- m[8] = 0.f;
- m[9] = 0.f;
- m[10] = 1.f;
- m[11] = 0.f;
- m[12] = 0.f;
- m[13] = 0.f;
- m[14] = 0.f;
- m[15] = 1.f;
- }
- void Matrix4x4::load(const float *v) {
- memcpy(m, v, sizeof(m));
- }
- void Matrix4x4::load(const rs_matrix4x4 *v) {
- memcpy(m, v->m, sizeof(m));
- }
- void Matrix4x4::load(const rs_matrix3x3 *v) {
- m[0] = v->m[0];
- m[1] = v->m[1];
- m[2] = v->m[2];
- m[3] = 0.f;
- m[4] = v->m[3];
- m[5] = v->m[4];
- m[6] = v->m[5];
- m[7] = 0.f;
- m[8] = v->m[6];
- m[9] = v->m[7];
- m[10] = v->m[8];
- m[11] = 0.f;
- m[12] = 0.f;
- m[13] = 0.f;
- m[14] = 0.f;
- m[15] = 1.f;
- }
- void Matrix4x4::load(const rs_matrix2x2 *v) {
- m[0] = v->m[0];
- m[1] = v->m[1];
- m[2] = 0.f;
- m[3] = 0.f;
- m[4] = v->m[2];
- m[5] = v->m[3];
- m[6] = 0.f;
- m[7] = 0.f;
- m[8] = 0.f;
- m[9] = 0.f;
- m[10] = 1.f;
- m[11] = 0.f;
- m[12] = 0.f;
- m[13] = 0.f;
- m[14] = 0.f;
- m[15] = 1.f;
- }
- void Matrix4x4::loadRotate(float rot, float x, float y, float z) {
- float c, s;
- m[3] = 0;
- m[7] = 0;
- m[11]= 0;
- m[12]= 0;
- m[13]= 0;
- m[14]= 0;
- m[15]= 1;
- rot *= float(M_PI / 180.0f);
- c = cosf(rot);
- s = sinf(rot);
- const float len = x*x + y*y + z*z;
- if (len != 1) {
- const float recipLen = 1.f / sqrtf(len);
- x *= recipLen;
- y *= recipLen;
- z *= recipLen;
- }
- const float nc = 1.0f - c;
- const float xy = x * y;
- const float yz = y * z;
- const float zx = z * x;
- const float xs = x * s;
- const float ys = y * s;
- const float zs = z * s;
- m[ 0] = x*x*nc + c;
- m[ 4] = xy*nc - zs;
- m[ 8] = zx*nc + ys;
- m[ 1] = xy*nc + zs;
- m[ 5] = y*y*nc + c;
- m[ 9] = yz*nc - xs;
- m[ 2] = zx*nc - ys;
- m[ 6] = yz*nc + xs;
- m[10] = z*z*nc + c;
- }
- void Matrix4x4::loadScale(float x, float y, float z) {
- loadIdentity();
- set(0, 0, x);
- set(1, 1, y);
- set(2, 2, z);
- }
- void Matrix4x4::loadTranslate(float x, float y, float z) {
- loadIdentity();
- m[12] = x;
- m[13] = y;
- m[14] = z;
- }
- void Matrix4x4::loadMultiply(const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs) {
- // Use a temporary variable to support the case where one of the inputs
- // is also the destination, e.g. left.loadMultiply(left, right);
- Matrix4x4 temp;
- for (int i=0 ; i<4 ; i++) {
- float ri0 = 0;
- float ri1 = 0;
- float ri2 = 0;
- float ri3 = 0;
- for (int j=0 ; j<4 ; j++) {
- const float rhs_ij = ((const Matrix4x4 *)rhs)->get(i,j);
- ri0 += ((const Matrix4x4 *)lhs)->get(j,0) * rhs_ij;
- ri1 += ((const Matrix4x4 *)lhs)->get(j,1) * rhs_ij;
- ri2 += ((const Matrix4x4 *)lhs)->get(j,2) * rhs_ij;
- ri3 += ((const Matrix4x4 *)lhs)->get(j,3) * rhs_ij;
- }
- temp.set(i,0, ri0);
- temp.set(i,1, ri1);
- temp.set(i,2, ri2);
- temp.set(i,3, ri3);
- }
- load(&temp);
- }
- void Matrix4x4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
- loadIdentity();
- m[0] = 2.f / (right - left);
- m[5] = 2.f / (top - bottom);
- m[10]= -2.f / (far - near);
- m[12]= -(right + left) / (right - left);
- m[13]= -(top + bottom) / (top - bottom);
- m[14]= -(far + near) / (far - near);
- }
- void Matrix4x4::loadFrustum(float left, float right, float bottom, float top, float near, float far) {
- loadIdentity();
- m[0] = 2.f * near / (right - left);
- m[5] = 2.f * near / (top - bottom);
- m[8] = (right + left) / (right - left);
- m[9] = (top + bottom) / (top - bottom);
- m[10]= -(far + near) / (far - near);
- m[11]= -1.f;
- m[14]= -2.f * far * near / (far - near);
- m[15]= 0.f;
- }
- void Matrix4x4::loadPerspective(float fovy, float aspect, float near, float far) {
- float top = near * tan((float) (fovy * M_PI / 360.0f));
- float bottom = -top;
- float left = bottom * aspect;
- float right = top * aspect;
- loadFrustum(left, right, bottom, top, near, far);
- }
- // Note: This assumes that the input vector (in) is of length 3.
- void Matrix4x4::vectorMultiply(float *out, const float *in) const {
- out[0] = (m[0] * in[0]) + (m[4] * in[1]) + (m[8] * in[2]) + m[12];
- out[1] = (m[1] * in[0]) + (m[5] * in[1]) + (m[9] * in[2]) + m[13];
- out[2] = (m[2] * in[0]) + (m[6] * in[1]) + (m[10] * in[2]) + m[14];
- out[3] = (m[3] * in[0]) + (m[7] * in[1]) + (m[11] * in[2]) + m[15];
- }
- void Matrix4x4::logv(const char *s) const {
- ALOGV("%s {%f, %f, %f, %f", s, m[0], m[4], m[8], m[12]);
- ALOGV("%s %f, %f, %f, %f", s, m[1], m[5], m[9], m[13]);
- ALOGV("%s %f, %f, %f, %f", s, m[2], m[6], m[10], m[14]);
- ALOGV("%s %f, %f, %f, %f}", s, m[3], m[7], m[11], m[15]);
- }
- } // namespace renderscript
- } // namespace android
|