123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454 |
- Intel Integrated Sensor Hub (ISH)
- ===============================
- A sensor hub enables the ability to offload sensor polling and algorithm
- processing to a dedicated low power co-processor. This allows the core
- processor to go into low power modes more often, resulting in the increased
- battery life.
- There are many vendors providing external sensor hubs confirming to HID
- Sensor usage tables, and used in several tablets, 2 in 1 convertible laptops
- and embedded products. Linux had this support since Linux 3.9.
- Intel® introduced integrated sensor hubs as a part of the SoC starting from
- Cherry Trail and now supported on multiple generations of CPU packages. There
- are many commercial devices already shipped with Integrated Sensor Hubs (ISH).
- These ISH also comply to HID sensor specification, but the difference is the
- transport protocol used for communication. The current external sensor hubs
- mainly use HID over i2C or USB. But ISH doesn't use either i2c or USB.
- 1. Overview
- Using a analogy with a usbhid implementation, the ISH follows a similar model
- for a very high speed communication:
- ----------------- ----------------------
- | USB HID | --> | ISH HID |
- ----------------- ----------------------
- ----------------- ----------------------
- | USB protocol | --> | ISH Transport |
- ----------------- ----------------------
- ----------------- ----------------------
- | EHCI/XHCI | --> | ISH IPC |
- ----------------- ----------------------
- PCI PCI
- ----------------- ----------------------
- |Host controller| --> | ISH processor |
- ----------------- ----------------------
- USB Link
- ----------------- ----------------------
- | USB End points| --> | ISH Clients |
- ----------------- ----------------------
- Like USB protocol provides a method for device enumeration, link management
- and user data encapsulation, the ISH also provides similar services. But it is
- very light weight tailored to manage and communicate with ISH client
- applications implemented in the firmware.
- The ISH allows multiple sensor management applications executing in the
- firmware. Like USB endpoints the messaging can be to/from a client. As part of
- enumeration process, these clients are identified. These clients can be simple
- HID sensor applications, sensor calibration application or senor firmware
- update application.
- The implementation model is similar, like USB bus, ISH transport is also
- implemented as a bus. Each client application executing in the ISH processor
- is registered as a device on this bus. The driver, which binds each device
- (ISH HID driver) identifies the device type and registers with the hid core.
- 2. ISH Implementation: Block Diagram
- ---------------------------
- | User Space Applications |
- ---------------------------
- ----------------IIO ABI----------------
- --------------------------
- | IIO Sensor Drivers |
- --------------------------
- --------------------------
- | IIO core |
- --------------------------
- --------------------------
- | HID Sensor Hub MFD |
- --------------------------
- --------------------------
- | HID Core |
- --------------------------
- --------------------------
- | HID over ISH Client |
- --------------------------
- --------------------------
- | ISH Transport (ISHTP) |
- --------------------------
- --------------------------
- | IPC Drivers |
- --------------------------
- OS
- ---------------- PCI -----------------
- Hardware + Firmware
- ----------------------------
- | ISH Hardware/Firmware(FW) |
- ----------------------------
- 3. High level processing in above blocks
- 3.1 Hardware Interface
- The ISH is exposed as "Non-VGA unclassified PCI device" to the host. The PCI
- product and vendor IDs are changed from different generations of processors. So
- the source code which enumerate drivers needs to update from generation to
- generation.
- 3.2 Inter Processor Communication (IPC) driver
- Location: drivers/hid/intel-ish-hid/ipc
- The IPC message used memory mapped I/O. The registers are defined in
- hw-ish-regs.h.
- 3.2.1 IPC/FW message types
- There are two types of messages, one for management of link and other messages
- are to and from transport layers.
- TX and RX of Transport messages
- A set of memory mapped register offers support of multi byte messages TX and
- RX (E.g.IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer maintains
- internal queues to sequence messages and send them in order to the FW.
- Optionally the caller can register handler to get notification of completion.
- A door bell mechanism is used in messaging to trigger processing in host and
- client firmware side. When ISH interrupt handler is called, the ISH2HOST
- doorbell register is used by host drivers to determine that the interrupt
- is for ISH.
- Each side has 32 32-bit message registers and a 32-bit doorbell. Doorbell
- register has the following format:
- Bits 0..6: fragment length (7 bits are used)
- Bits 10..13: encapsulated protocol
- Bits 16..19: management command (for IPC management protocol)
- Bit 31: doorbell trigger (signal H/W interrupt to the other side)
- Other bits are reserved, should be 0.
- 3.2.2 Transport layer interface
- To abstract HW level IPC communication, a set of callbacks are registered.
- The transport layer uses them to send and receive messages.
- Refer to struct ishtp_hw_ops for callbacks.
- 3.3 ISH Transport layer
- Location: drivers/hid/intel-ish-hid/ishtp/
- 3.3.1 A Generic Transport Layer
- The transport layer is a bi-directional protocol, which defines:
- - Set of commands to start, stop, connect, disconnect and flow control
- (ishtp/hbm.h) for details
- - A flow control mechanism to avoid buffer overflows
- This protocol resembles bus messages described in the following document:
- http://www.intel.com/content/dam/www/public/us/en/documents/technical-\
- specifications/dcmi-hi-1-0-spec.pdf "Chapter 7: Bus Message Layer"
- 3.3.2 Connection and Flow Control Mechanism
- Each FW client and a protocol is identified by an UUID. In order to communicate
- to a FW client, a connection must be established using connect request and
- response bus messages. If successful, a pair (host_client_id and fw_client_id)
- will identify the connection.
- Once connection is established, peers send each other flow control bus messages
- independently. Every peer may send a message only if it has received a
- flow-control credit before. Once it sent a message, it may not send another one
- before receiving the next flow control credit.
- Either side can send disconnect request bus message to end communication. Also
- the link will be dropped if major FW reset occurs.
- 3.3.3 Peer to Peer data transfer
- Peer to Peer data transfer can happen with or without using DMA. Depending on
- the sensor bandwidth requirement DMA can be enabled by using module parameter
- ishtp_use_dma under intel_ishtp.
- Each side (host and FW) manages its DMA transfer memory independently. When an
- ISHTP client from either host or FW side wants to send something, it decides
- whether to send over IPC or over DMA; for each transfer the decision is
- independent. The sending side sends DMA_XFER message when the message is in
- the respective host buffer (TX when host client sends, RX when FW client
- sends). The recipient of DMA message responds with DMA_XFER_ACK, indicating
- the sender that the memory region for that message may be reused.
- DMA initialization is started with host sending DMA_ALLOC_NOTIFY bus message
- (that includes RX buffer) and FW responds with DMA_ALLOC_NOTIFY_ACK.
- Additionally to DMA address communication, this sequence checks capabilities:
- if thw host doesn't support DMA, then it won't send DMA allocation, so FW can't
- send DMA; if FW doesn't support DMA then it won't respond with
- DMA_ALLOC_NOTIFY_ACK, in which case host will not use DMA transfers.
- Here ISH acts as busmaster DMA controller. Hence when host sends DMA_XFER,
- it's request to do host->ISH DMA transfer; when FW sends DMA_XFER, it means
- that it already did DMA and the message resides at host. Thus, DMA_XFER
- and DMA_XFER_ACK act as ownership indicators.
- At initial state all outgoing memory belongs to the sender (TX to host, RX to
- FW), DMA_XFER transfers ownership on the region that contains ISHTP message to
- the receiving side, DMA_XFER_ACK returns ownership to the sender. A sender
- needs not wait for previous DMA_XFER to be ack'ed, and may send another message
- as long as remaining continuous memory in its ownership is enough.
- In principle, multiple DMA_XFER and DMA_XFER_ACK messages may be sent at once
- (up to IPC MTU), thus allowing for interrupt throttling.
- Currently, ISH FW decides to send over DMA if ISHTP message is more than 3 IPC
- fragments and via IPC otherwise.
- 3.3.4 Ring Buffers
- When a client initiate a connection, a ring or RX and TX buffers are allocated.
- The size of ring can be specified by the client. HID client set 16 and 32 for
- TX and RX buffers respectively. On send request from client, the data to be
- sent is copied to one of the send ring buffer and scheduled to be sent using
- bus message protocol. These buffers are required because the FW may have not
- have processed the last message and may not have enough flow control credits
- to send. Same thing holds true on receive side and flow control is required.
- 3.3.5 Host Enumeration
- The host enumeration bus command allow discovery of clients present in the FW.
- There can be multiple sensor clients and clients for calibration function.
- To ease in implantation and allow independent driver handle each client
- this transport layer takes advantage of Linux Bus driver model. Each
- client is registered as device on the the transport bus (ishtp bus).
- Enumeration sequence of messages:
- - Host sends HOST_START_REQ_CMD, indicating that host ISHTP layer is up.
- - FW responds with HOST_START_RES_CMD
- - Host sends HOST_ENUM_REQ_CMD (enumerate FW clients)
- - FW responds with HOST_ENUM_RES_CMD that includes bitmap of available FW
- client IDs
- - For each FW ID found in that bitmap host sends
- HOST_CLIENT_PROPERTIES_REQ_CMD
- - FW responds with HOST_CLIENT_PROPERTIES_RES_CMD. Properties include UUID,
- max ISHTP message size, etc.
- - Once host received properties for that last discovered client, it considers
- ISHTP device fully functional (and allocates DMA buffers)
- 3.4 HID over ISH Client
- Location: drivers/hid/intel-ish-hid
- The ISHTP client driver is responsible for:
- - enumerate HID devices under FW ISH client
- - Get Report descriptor
- - Register with HID core as a LL driver
- - Process Get/Set feature request
- - Get input reports
- 3.5 HID Sensor Hub MFD and IIO sensor drivers
- The functionality in these drivers is the same as an external sensor hub.
- Refer to
- Documentation/hid/hid-sensor.txt for HID sensor
- Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space
- 3.6 End to End HID transport Sequence Diagram
- HID-ISH-CLN ISHTP IPC HW
- | | | |
- | | |-----WAKE UP------------------>|
- | | | |
- | | |-----HOST READY--------------->|
- | | | |
- | | |<----MNG_RESET_NOTIFY_ACK----- |
- | | | |
- | |<----ISHTP_START------ | |
- | | | |
- | |<-----------------HOST_START_RES_CMD-------------------|
- | | | |
- | |------------------QUERY_SUBSCRIBER-------------------->|
- | | | |
- | |------------------HOST_ENUM_REQ_CMD------------------->|
- | | | |
- | |<-----------------HOST_ENUM_RES_CMD--------------------|
- | | | |
- | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
- | | | |
- | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
- | Create new device on in ishtp bus | |
- | | | |
- | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
- | | | |
- | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
- | Create new device on in ishtp bus | |
- | | | |
- | |--Repeat HOST_CLIENT_PROPERTIES_REQ_CMD-till last one--|
- | | | |
- probed()
- |----ishtp_cl_connect-->|----------------- CLIENT_CONNECT_REQ_CMD-------------->|
- | | | |
- | |<----------------CLIENT_CONNECT_RES_CMD----------------|
- | | | |
- |register event callback| | |
- | | | |
- |ishtp_cl_send(
- HOSTIF_DM_ENUM_DEVICES) |----------fill ishtp_msg_hdr struct write to HW----- >|
- | | | |
- | | |<-----IRQ(IPC_PROTOCOL_ISHTP---|
- | | | |
- |<--ENUM_DEVICE RSP-----| | |
- | | | |
- for each enumerated device
- |ishtp_cl_send(
- HOSTIF_GET_HID_DESCRIPTOR |----------fill ishtp_msg_hdr struct write to HW--- >|
- | | | |
- ...Response
- | | | |
- for each enumerated device
- |ishtp_cl_send(
- HOSTIF_GET_REPORT_DESCRIPTOR |----------fill ishtp_msg_hdr struct write to HW- >|
- | | | |
- | | | |
- hid_allocate_device
- | | | |
- hid_add_device | | |
- | | | |
- 3.7 ISH Debugging
- To debug ISH, event tracing mechanism is used. To enable debug logs
- echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable
- cat sys/kernel/debug/tracing/trace
- 3.8 ISH IIO sysfs Example on Lenovo thinkpad Yoga 260
- root@otcpl-ThinkPad-Yoga-260:~# tree -l /sys/bus/iio/devices/
- /sys/bus/iio/devices/
- ├── iio:device0 -> ../../../devices/0044:8086:22D8.0001/HID-SENSOR-200073.9.auto/iio:device0
- │ ├── buffer
- │ │ ├── enable
- │ │ ├── length
- │ │ └── watermark
- ...
- │ ├── in_accel_hysteresis
- │ ├── in_accel_offset
- │ ├── in_accel_sampling_frequency
- │ ├── in_accel_scale
- │ ├── in_accel_x_raw
- │ ├── in_accel_y_raw
- │ ├── in_accel_z_raw
- │ ├── name
- │ ├── scan_elements
- │ │ ├── in_accel_x_en
- │ │ ├── in_accel_x_index
- │ │ ├── in_accel_x_type
- │ │ ├── in_accel_y_en
- │ │ ├── in_accel_y_index
- │ │ ├── in_accel_y_type
- │ │ ├── in_accel_z_en
- │ │ ├── in_accel_z_index
- │ │ └── in_accel_z_type
- ...
- │ │ ├── devices
- │ │ │ │ ├── buffer
- │ │ │ │ │ ├── enable
- │ │ │ │ │ ├── length
- │ │ │ │ │ └── watermark
- │ │ │ │ ├── dev
- │ │ │ │ ├── in_intensity_both_raw
- │ │ │ │ ├── in_intensity_hysteresis
- │ │ │ │ ├── in_intensity_offset
- │ │ │ │ ├── in_intensity_sampling_frequency
- │ │ │ │ ├── in_intensity_scale
- │ │ │ │ ├── name
- │ │ │ │ ├── scan_elements
- │ │ │ │ │ ├── in_intensity_both_en
- │ │ │ │ │ ├── in_intensity_both_index
- │ │ │ │ │ └── in_intensity_both_type
- │ │ │ │ ├── trigger
- │ │ │ │ │ └── current_trigger
- ...
- │ │ │ │ ├── buffer
- │ │ │ │ │ ├── enable
- │ │ │ │ │ ├── length
- │ │ │ │ │ └── watermark
- │ │ │ │ ├── dev
- │ │ │ │ ├── in_magn_hysteresis
- │ │ │ │ ├── in_magn_offset
- │ │ │ │ ├── in_magn_sampling_frequency
- │ │ │ │ ├── in_magn_scale
- │ │ │ │ ├── in_magn_x_raw
- │ │ │ │ ├── in_magn_y_raw
- │ │ │ │ ├── in_magn_z_raw
- │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_raw
- │ │ │ │ ├── in_rot_hysteresis
- │ │ │ │ ├── in_rot_offset
- │ │ │ │ ├── in_rot_sampling_frequency
- │ │ │ │ ├── in_rot_scale
- │ │ │ │ ├── name
- ...
- │ │ │ │ ├── scan_elements
- │ │ │ │ │ ├── in_magn_x_en
- │ │ │ │ │ ├── in_magn_x_index
- │ │ │ │ │ ├── in_magn_x_type
- │ │ │ │ │ ├── in_magn_y_en
- │ │ │ │ │ ├── in_magn_y_index
- │ │ │ │ │ ├── in_magn_y_type
- │ │ │ │ │ ├── in_magn_z_en
- │ │ │ │ │ ├── in_magn_z_index
- │ │ │ │ │ ├── in_magn_z_type
- │ │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_en
- │ │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_index
- │ │ │ │ │ └── in_rot_from_north_magnetic_tilt_comp_type
- │ │ │ │ ├── trigger
- │ │ │ │ │ └── current_trigger
- ...
- │ │ │ │ ├── buffer
- │ │ │ │ │ ├── enable
- │ │ │ │ │ ├── length
- │ │ │ │ │ └── watermark
- │ │ │ │ ├── dev
- │ │ │ │ ├── in_anglvel_hysteresis
- │ │ │ │ ├── in_anglvel_offset
- │ │ │ │ ├── in_anglvel_sampling_frequency
- │ │ │ │ ├── in_anglvel_scale
- │ │ │ │ ├── in_anglvel_x_raw
- │ │ │ │ ├── in_anglvel_y_raw
- │ │ │ │ ├── in_anglvel_z_raw
- │ │ │ │ ├── name
- │ │ │ │ ├── scan_elements
- │ │ │ │ │ ├── in_anglvel_x_en
- │ │ │ │ │ ├── in_anglvel_x_index
- │ │ │ │ │ ├── in_anglvel_x_type
- │ │ │ │ │ ├── in_anglvel_y_en
- │ │ │ │ │ ├── in_anglvel_y_index
- │ │ │ │ │ ├── in_anglvel_y_type
- │ │ │ │ │ ├── in_anglvel_z_en
- │ │ │ │ │ ├── in_anglvel_z_index
- │ │ │ │ │ └── in_anglvel_z_type
- │ │ │ │ ├── trigger
- │ │ │ │ │ └── current_trigger
- ...
- │ │ │ │ ├── buffer
- │ │ │ │ │ ├── enable
- │ │ │ │ │ ├── length
- │ │ │ │ │ └── watermark
- │ │ │ │ ├── dev
- │ │ │ │ ├── in_anglvel_hysteresis
- │ │ │ │ ├── in_anglvel_offset
- │ │ │ │ ├── in_anglvel_sampling_frequency
- │ │ │ │ ├── in_anglvel_scale
- │ │ │ │ ├── in_anglvel_x_raw
- │ │ │ │ ├── in_anglvel_y_raw
- │ │ │ │ ├── in_anglvel_z_raw
- │ │ │ │ ├── name
- │ │ │ │ ├── scan_elements
- │ │ │ │ │ ├── in_anglvel_x_en
- │ │ │ │ │ ├── in_anglvel_x_index
- │ │ │ │ │ ├── in_anglvel_x_type
- │ │ │ │ │ ├── in_anglvel_y_en
- │ │ │ │ │ ├── in_anglvel_y_index
- │ │ │ │ │ ├── in_anglvel_y_type
- │ │ │ │ │ ├── in_anglvel_z_en
- │ │ │ │ │ ├── in_anglvel_z_index
- │ │ │ │ │ └── in_anglvel_z_type
- │ │ │ │ ├── trigger
- │ │ │ │ │ └── current_trigger
- ...
|