static-keys.txt 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. Static Keys
  2. -----------
  3. DEPRECATED API:
  4. The use of 'struct static_key' directly, is now DEPRECATED. In addition
  5. static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following:
  6. struct static_key false = STATIC_KEY_INIT_FALSE;
  7. struct static_key true = STATIC_KEY_INIT_TRUE;
  8. static_key_true()
  9. static_key_false()
  10. The updated API replacements are:
  11. DEFINE_STATIC_KEY_TRUE(key);
  12. DEFINE_STATIC_KEY_FALSE(key);
  13. DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
  14. DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
  15. static_branch_likely()
  16. static_branch_unlikely()
  17. 0) Abstract
  18. Static keys allows the inclusion of seldom used features in
  19. performance-sensitive fast-path kernel code, via a GCC feature and a code
  20. patching technique. A quick example:
  21. DEFINE_STATIC_KEY_FALSE(key);
  22. ...
  23. if (static_branch_unlikely(&key))
  24. do unlikely code
  25. else
  26. do likely code
  27. ...
  28. static_branch_enable(&key);
  29. ...
  30. static_branch_disable(&key);
  31. ...
  32. The static_branch_unlikely() branch will be generated into the code with as little
  33. impact to the likely code path as possible.
  34. 1) Motivation
  35. Currently, tracepoints are implemented using a conditional branch. The
  36. conditional check requires checking a global variable for each tracepoint.
  37. Although the overhead of this check is small, it increases when the memory
  38. cache comes under pressure (memory cache lines for these global variables may
  39. be shared with other memory accesses). As we increase the number of tracepoints
  40. in the kernel this overhead may become more of an issue. In addition,
  41. tracepoints are often dormant (disabled) and provide no direct kernel
  42. functionality. Thus, it is highly desirable to reduce their impact as much as
  43. possible. Although tracepoints are the original motivation for this work, other
  44. kernel code paths should be able to make use of the static keys facility.
  45. 2) Solution
  46. gcc (v4.5) adds a new 'asm goto' statement that allows branching to a label:
  47. http://gcc.gnu.org/ml/gcc-patches/2009-07/msg01556.html
  48. Using the 'asm goto', we can create branches that are either taken or not taken
  49. by default, without the need to check memory. Then, at run-time, we can patch
  50. the branch site to change the branch direction.
  51. For example, if we have a simple branch that is disabled by default:
  52. if (static_branch_unlikely(&key))
  53. printk("I am the true branch\n");
  54. Thus, by default the 'printk' will not be emitted. And the code generated will
  55. consist of a single atomic 'no-op' instruction (5 bytes on x86), in the
  56. straight-line code path. When the branch is 'flipped', we will patch the
  57. 'no-op' in the straight-line codepath with a 'jump' instruction to the
  58. out-of-line true branch. Thus, changing branch direction is expensive but
  59. branch selection is basically 'free'. That is the basic tradeoff of this
  60. optimization.
  61. This lowlevel patching mechanism is called 'jump label patching', and it gives
  62. the basis for the static keys facility.
  63. 3) Static key label API, usage and examples:
  64. In order to make use of this optimization you must first define a key:
  65. DEFINE_STATIC_KEY_TRUE(key);
  66. or:
  67. DEFINE_STATIC_KEY_FALSE(key);
  68. The key must be global, that is, it can't be allocated on the stack or dynamically
  69. allocated at run-time.
  70. The key is then used in code as:
  71. if (static_branch_unlikely(&key))
  72. do unlikely code
  73. else
  74. do likely code
  75. Or:
  76. if (static_branch_likely(&key))
  77. do likely code
  78. else
  79. do unlikely code
  80. Keys defined via DEFINE_STATIC_KEY_TRUE(), or DEFINE_STATIC_KEY_FALSE, may
  81. be used in either static_branch_likely() or static_branch_unlikely()
  82. statemnts.
  83. Branch(es) can be set true via:
  84. static_branch_enable(&key);
  85. or false via:
  86. static_branch_disable(&key);
  87. The branch(es) can then be switched via reference counts:
  88. static_branch_inc(&key);
  89. ...
  90. static_branch_dec(&key);
  91. Thus, 'static_branch_inc()' means 'make the branch true', and
  92. 'static_branch_dec()' means 'make the branch false' with appropriate
  93. reference counting. For example, if the key is initialized true, a
  94. static_branch_dec(), will switch the branch to false. And a subsequent
  95. static_branch_inc(), will change the branch back to true. Likewise, if the
  96. key is initialized false, a 'static_branch_inc()', will change the branch to
  97. true. And then a 'static_branch_dec()', will again make the branch false.
  98. Where an array of keys is required, it can be defined as:
  99. DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
  100. or:
  101. DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
  102. 4) Architecture level code patching interface, 'jump labels'
  103. There are a few functions and macros that architectures must implement in order
  104. to take advantage of this optimization. If there is no architecture support, we
  105. simply fall back to a traditional, load, test, and jump sequence.
  106. * select HAVE_ARCH_JUMP_LABEL, see: arch/x86/Kconfig
  107. * #define JUMP_LABEL_NOP_SIZE, see: arch/x86/include/asm/jump_label.h
  108. * __always_inline bool arch_static_branch(struct static_key *key, bool branch), see:
  109. arch/x86/include/asm/jump_label.h
  110. * __always_inline bool arch_static_branch_jump(struct static_key *key, bool branch),
  111. see: arch/x86/include/asm/jump_label.h
  112. * void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type),
  113. see: arch/x86/kernel/jump_label.c
  114. * __init_or_module void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type),
  115. see: arch/x86/kernel/jump_label.c
  116. * struct jump_entry, see: arch/x86/include/asm/jump_label.h
  117. 5) Static keys / jump label analysis, results (x86_64):
  118. As an example, let's add the following branch to 'getppid()', such that the
  119. system call now looks like:
  120. SYSCALL_DEFINE0(getppid)
  121. {
  122. int pid;
  123. + if (static_branch_unlikely(&key))
  124. + printk("I am the true branch\n");
  125. rcu_read_lock();
  126. pid = task_tgid_vnr(rcu_dereference(current->real_parent));
  127. rcu_read_unlock();
  128. return pid;
  129. }
  130. The resulting instructions with jump labels generated by GCC is:
  131. ffffffff81044290 <sys_getppid>:
  132. ffffffff81044290: 55 push %rbp
  133. ffffffff81044291: 48 89 e5 mov %rsp,%rbp
  134. ffffffff81044294: e9 00 00 00 00 jmpq ffffffff81044299 <sys_getppid+0x9>
  135. ffffffff81044299: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
  136. ffffffff810442a0: 00 00
  137. ffffffff810442a2: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
  138. ffffffff810442a9: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
  139. ffffffff810442b0: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
  140. ffffffff810442b7: e8 f4 d9 00 00 callq ffffffff81051cb0 <pid_vnr>
  141. ffffffff810442bc: 5d pop %rbp
  142. ffffffff810442bd: 48 98 cltq
  143. ffffffff810442bf: c3 retq
  144. ffffffff810442c0: 48 c7 c7 e3 54 98 81 mov $0xffffffff819854e3,%rdi
  145. ffffffff810442c7: 31 c0 xor %eax,%eax
  146. ffffffff810442c9: e8 71 13 6d 00 callq ffffffff8171563f <printk>
  147. ffffffff810442ce: eb c9 jmp ffffffff81044299 <sys_getppid+0x9>
  148. Without the jump label optimization it looks like:
  149. ffffffff810441f0 <sys_getppid>:
  150. ffffffff810441f0: 8b 05 8a 52 d8 00 mov 0xd8528a(%rip),%eax # ffffffff81dc9480 <key>
  151. ffffffff810441f6: 55 push %rbp
  152. ffffffff810441f7: 48 89 e5 mov %rsp,%rbp
  153. ffffffff810441fa: 85 c0 test %eax,%eax
  154. ffffffff810441fc: 75 27 jne ffffffff81044225 <sys_getppid+0x35>
  155. ffffffff810441fe: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
  156. ffffffff81044205: 00 00
  157. ffffffff81044207: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
  158. ffffffff8104420e: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
  159. ffffffff81044215: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
  160. ffffffff8104421c: e8 2f da 00 00 callq ffffffff81051c50 <pid_vnr>
  161. ffffffff81044221: 5d pop %rbp
  162. ffffffff81044222: 48 98 cltq
  163. ffffffff81044224: c3 retq
  164. ffffffff81044225: 48 c7 c7 13 53 98 81 mov $0xffffffff81985313,%rdi
  165. ffffffff8104422c: 31 c0 xor %eax,%eax
  166. ffffffff8104422e: e8 60 0f 6d 00 callq ffffffff81715193 <printk>
  167. ffffffff81044233: eb c9 jmp ffffffff810441fe <sys_getppid+0xe>
  168. ffffffff81044235: 66 66 2e 0f 1f 84 00 data32 nopw %cs:0x0(%rax,%rax,1)
  169. ffffffff8104423c: 00 00 00 00
  170. Thus, the disable jump label case adds a 'mov', 'test' and 'jne' instruction
  171. vs. the jump label case just has a 'no-op' or 'jmp 0'. (The jmp 0, is patched
  172. to a 5 byte atomic no-op instruction at boot-time.) Thus, the disabled jump
  173. label case adds:
  174. 6 (mov) + 2 (test) + 2 (jne) = 10 - 5 (5 byte jump 0) = 5 addition bytes.
  175. If we then include the padding bytes, the jump label code saves, 16 total bytes
  176. of instruction memory for this small function. In this case the non-jump label
  177. function is 80 bytes long. Thus, we have saved 20% of the instruction
  178. footprint. We can in fact improve this even further, since the 5-byte no-op
  179. really can be a 2-byte no-op since we can reach the branch with a 2-byte jmp.
  180. However, we have not yet implemented optimal no-op sizes (they are currently
  181. hard-coded).
  182. Since there are a number of static key API uses in the scheduler paths,
  183. 'pipe-test' (also known as 'perf bench sched pipe') can be used to show the
  184. performance improvement. Testing done on 3.3.0-rc2:
  185. jump label disabled:
  186. Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
  187. 855.700314 task-clock # 0.534 CPUs utilized ( +- 0.11% )
  188. 200,003 context-switches # 0.234 M/sec ( +- 0.00% )
  189. 0 CPU-migrations # 0.000 M/sec ( +- 39.58% )
  190. 487 page-faults # 0.001 M/sec ( +- 0.02% )
  191. 1,474,374,262 cycles # 1.723 GHz ( +- 0.17% )
  192. <not supported> stalled-cycles-frontend
  193. <not supported> stalled-cycles-backend
  194. 1,178,049,567 instructions # 0.80 insns per cycle ( +- 0.06% )
  195. 208,368,926 branches # 243.507 M/sec ( +- 0.06% )
  196. 5,569,188 branch-misses # 2.67% of all branches ( +- 0.54% )
  197. 1.601607384 seconds time elapsed ( +- 0.07% )
  198. jump label enabled:
  199. Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
  200. 841.043185 task-clock # 0.533 CPUs utilized ( +- 0.12% )
  201. 200,004 context-switches # 0.238 M/sec ( +- 0.00% )
  202. 0 CPU-migrations # 0.000 M/sec ( +- 40.87% )
  203. 487 page-faults # 0.001 M/sec ( +- 0.05% )
  204. 1,432,559,428 cycles # 1.703 GHz ( +- 0.18% )
  205. <not supported> stalled-cycles-frontend
  206. <not supported> stalled-cycles-backend
  207. 1,175,363,994 instructions # 0.82 insns per cycle ( +- 0.04% )
  208. 206,859,359 branches # 245.956 M/sec ( +- 0.04% )
  209. 4,884,119 branch-misses # 2.36% of all branches ( +- 0.85% )
  210. 1.579384366 seconds time elapsed
  211. The percentage of saved branches is .7%, and we've saved 12% on
  212. 'branch-misses'. This is where we would expect to get the most savings, since
  213. this optimization is about reducing the number of branches. In addition, we've
  214. saved .2% on instructions, and 2.8% on cycles and 1.4% on elapsed time.