123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 |
- /*
- * linux/arch/unicore32/include/asm/cacheflush.h
- *
- * Code specific to PKUnity SoC and UniCore ISA
- *
- * Copyright (C) 2001-2010 GUAN Xue-tao
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #ifndef __UNICORE_CACHEFLUSH_H__
- #define __UNICORE_CACHEFLUSH_H__
- #include <linux/mm.h>
- #include <asm/shmparam.h>
- #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
- /*
- * This flag is used to indicate that the page pointed to by a pte is clean
- * and does not require cleaning before returning it to the user.
- */
- #define PG_dcache_clean PG_arch_1
- /*
- * MM Cache Management
- * ===================
- *
- * The arch/unicore32/mm/cache.S files implement these methods.
- *
- * Start addresses are inclusive and end addresses are exclusive;
- * start addresses should be rounded down, end addresses up.
- *
- * See Documentation/cachetlb.txt for more information.
- * Please note that the implementation of these, and the required
- * effects are cache-type (VIVT/VIPT/PIPT) specific.
- *
- * flush_icache_all()
- *
- * Unconditionally clean and invalidate the entire icache.
- * Currently only needed for cache-v6.S and cache-v7.S, see
- * __flush_icache_all for the generic implementation.
- *
- * flush_kern_all()
- *
- * Unconditionally clean and invalidate the entire cache.
- *
- * flush_user_all()
- *
- * Clean and invalidate all user space cache entries
- * before a change of page tables.
- *
- * flush_user_range(start, end, flags)
- *
- * Clean and invalidate a range of cache entries in the
- * specified address space before a change of page tables.
- * - start - user start address (inclusive, page aligned)
- * - end - user end address (exclusive, page aligned)
- * - flags - vma->vm_flags field
- *
- * coherent_kern_range(start, end)
- *
- * Ensure coherency between the Icache and the Dcache in the
- * region described by start, end. If you have non-snooping
- * Harvard caches, you need to implement this function.
- * - start - virtual start address
- * - end - virtual end address
- *
- * coherent_user_range(start, end)
- *
- * Ensure coherency between the Icache and the Dcache in the
- * region described by start, end. If you have non-snooping
- * Harvard caches, you need to implement this function.
- * - start - virtual start address
- * - end - virtual end address
- *
- * flush_kern_dcache_area(kaddr, size)
- *
- * Ensure that the data held in page is written back.
- * - kaddr - page address
- * - size - region size
- *
- * DMA Cache Coherency
- * ===================
- *
- * dma_flush_range(start, end)
- *
- * Clean and invalidate the specified virtual address range.
- * - start - virtual start address
- * - end - virtual end address
- */
- extern void __cpuc_flush_icache_all(void);
- extern void __cpuc_flush_kern_all(void);
- extern void __cpuc_flush_user_all(void);
- extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
- extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
- extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
- extern void __cpuc_flush_dcache_area(void *, size_t);
- extern void __cpuc_flush_kern_dcache_area(void *addr, size_t size);
- /*
- * These are private to the dma-mapping API. Do not use directly.
- * Their sole purpose is to ensure that data held in the cache
- * is visible to DMA, or data written by DMA to system memory is
- * visible to the CPU.
- */
- extern void __cpuc_dma_clean_range(unsigned long, unsigned long);
- extern void __cpuc_dma_flush_range(unsigned long, unsigned long);
- /*
- * Copy user data from/to a page which is mapped into a different
- * processes address space. Really, we want to allow our "user
- * space" model to handle this.
- */
- extern void copy_to_user_page(struct vm_area_struct *, struct page *,
- unsigned long, void *, const void *, unsigned long);
- #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
- do { \
- memcpy(dst, src, len); \
- } while (0)
- /*
- * Convert calls to our calling convention.
- */
- /* Invalidate I-cache */
- static inline void __flush_icache_all(void)
- {
- asm("movc p0.c5, %0, #20;\n"
- "nop; nop; nop; nop; nop; nop; nop; nop\n"
- :
- : "r" (0));
- }
- #define flush_cache_all() __cpuc_flush_kern_all()
- extern void flush_cache_mm(struct mm_struct *mm);
- extern void flush_cache_range(struct vm_area_struct *vma,
- unsigned long start, unsigned long end);
- extern void flush_cache_page(struct vm_area_struct *vma,
- unsigned long user_addr, unsigned long pfn);
- #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
- /*
- * flush_cache_user_range is used when we want to ensure that the
- * Harvard caches are synchronised for the user space address range.
- * This is used for the UniCore private sys_cacheflush system call.
- */
- #define flush_cache_user_range(vma, start, end) \
- __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
- /*
- * Perform necessary cache operations to ensure that data previously
- * stored within this range of addresses can be executed by the CPU.
- */
- #define flush_icache_range(s, e) __cpuc_coherent_kern_range(s, e)
- /*
- * Perform necessary cache operations to ensure that the TLB will
- * see data written in the specified area.
- */
- #define clean_dcache_area(start, size) cpu_dcache_clean_area(start, size)
- /*
- * flush_dcache_page is used when the kernel has written to the page
- * cache page at virtual address page->virtual.
- *
- * If this page isn't mapped (ie, page_mapping == NULL), or it might
- * have userspace mappings, then we _must_ always clean + invalidate
- * the dcache entries associated with the kernel mapping.
- *
- * Otherwise we can defer the operation, and clean the cache when we are
- * about to change to user space. This is the same method as used on SPARC64.
- * See update_mmu_cache for the user space part.
- */
- #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
- extern void flush_dcache_page(struct page *);
- #define flush_dcache_mmap_lock(mapping) \
- spin_lock_irq(&(mapping)->tree_lock)
- #define flush_dcache_mmap_unlock(mapping) \
- spin_unlock_irq(&(mapping)->tree_lock)
- #define flush_icache_user_range(vma, page, addr, len) \
- flush_dcache_page(page)
- /*
- * We don't appear to need to do anything here. In fact, if we did, we'd
- * duplicate cache flushing elsewhere performed by flush_dcache_page().
- */
- #define flush_icache_page(vma, page) do { } while (0)
- /*
- * flush_cache_vmap() is used when creating mappings (eg, via vmap,
- * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
- * caches, since the direct-mappings of these pages may contain cached
- * data, we need to do a full cache flush to ensure that writebacks
- * don't corrupt data placed into these pages via the new mappings.
- */
- static inline void flush_cache_vmap(unsigned long start, unsigned long end)
- {
- }
- static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
- {
- }
- #endif
|