ptp_clock.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. /*
  2. * PTP 1588 clock support
  3. *
  4. * Copyright (C) 2010 OMICRON electronics GmbH
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/idr.h>
  21. #include <linux/device.h>
  22. #include <linux/err.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/posix-clock.h>
  27. #include <linux/pps_kernel.h>
  28. #include <linux/slab.h>
  29. #include <linux/syscalls.h>
  30. #include <linux/uaccess.h>
  31. #include "ptp_private.h"
  32. #define PTP_MAX_ALARMS 4
  33. #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
  34. #define PTP_PPS_EVENT PPS_CAPTUREASSERT
  35. #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
  36. /* private globals */
  37. static dev_t ptp_devt;
  38. static struct class *ptp_class;
  39. static DEFINE_IDA(ptp_clocks_map);
  40. /* time stamp event queue operations */
  41. static inline int queue_free(struct timestamp_event_queue *q)
  42. {
  43. return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
  44. }
  45. static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
  46. struct ptp_clock_event *src)
  47. {
  48. struct ptp_extts_event *dst;
  49. unsigned long flags;
  50. s64 seconds;
  51. u32 remainder;
  52. seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
  53. spin_lock_irqsave(&queue->lock, flags);
  54. dst = &queue->buf[queue->tail];
  55. dst->index = src->index;
  56. dst->t.sec = seconds;
  57. dst->t.nsec = remainder;
  58. if (!queue_free(queue))
  59. queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
  60. queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
  61. spin_unlock_irqrestore(&queue->lock, flags);
  62. }
  63. static s32 scaled_ppm_to_ppb(long ppm)
  64. {
  65. /*
  66. * The 'freq' field in the 'struct timex' is in parts per
  67. * million, but with a 16 bit binary fractional field.
  68. *
  69. * We want to calculate
  70. *
  71. * ppb = scaled_ppm * 1000 / 2^16
  72. *
  73. * which simplifies to
  74. *
  75. * ppb = scaled_ppm * 125 / 2^13
  76. */
  77. s64 ppb = 1 + ppm;
  78. ppb *= 125;
  79. ppb >>= 13;
  80. return (s32) ppb;
  81. }
  82. /* posix clock implementation */
  83. static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
  84. {
  85. tp->tv_sec = 0;
  86. tp->tv_nsec = 1;
  87. return 0;
  88. }
  89. static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
  90. {
  91. struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  92. return ptp->info->settime64(ptp->info, tp);
  93. }
  94. static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
  95. {
  96. struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  97. int err;
  98. err = ptp->info->gettime64(ptp->info, tp);
  99. return err;
  100. }
  101. static int ptp_clock_adjtime(struct posix_clock *pc, struct timex *tx)
  102. {
  103. struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  104. struct ptp_clock_info *ops;
  105. int err = -EOPNOTSUPP;
  106. ops = ptp->info;
  107. if (tx->modes & ADJ_SETOFFSET) {
  108. struct timespec64 ts;
  109. ktime_t kt;
  110. s64 delta;
  111. ts.tv_sec = tx->time.tv_sec;
  112. ts.tv_nsec = tx->time.tv_usec;
  113. if (!(tx->modes & ADJ_NANO))
  114. ts.tv_nsec *= 1000;
  115. if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
  116. return -EINVAL;
  117. kt = timespec64_to_ktime(ts);
  118. delta = ktime_to_ns(kt);
  119. err = ops->adjtime(ops, delta);
  120. } else if (tx->modes & ADJ_FREQUENCY) {
  121. s32 ppb = scaled_ppm_to_ppb(tx->freq);
  122. if (ppb > ops->max_adj || ppb < -ops->max_adj)
  123. return -ERANGE;
  124. err = ops->adjfreq(ops, ppb);
  125. ptp->dialed_frequency = tx->freq;
  126. } else if (tx->modes == 0) {
  127. tx->freq = ptp->dialed_frequency;
  128. err = 0;
  129. }
  130. return err;
  131. }
  132. static struct posix_clock_operations ptp_clock_ops = {
  133. .owner = THIS_MODULE,
  134. .clock_adjtime = ptp_clock_adjtime,
  135. .clock_gettime = ptp_clock_gettime,
  136. .clock_getres = ptp_clock_getres,
  137. .clock_settime = ptp_clock_settime,
  138. .ioctl = ptp_ioctl,
  139. .open = ptp_open,
  140. .poll = ptp_poll,
  141. .read = ptp_read,
  142. };
  143. static void delete_ptp_clock(struct posix_clock *pc)
  144. {
  145. struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  146. mutex_destroy(&ptp->tsevq_mux);
  147. mutex_destroy(&ptp->pincfg_mux);
  148. ida_simple_remove(&ptp_clocks_map, ptp->index);
  149. kfree(ptp);
  150. }
  151. /* public interface */
  152. struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
  153. struct device *parent)
  154. {
  155. struct ptp_clock *ptp;
  156. int err = 0, index, major = MAJOR(ptp_devt);
  157. if (info->n_alarm > PTP_MAX_ALARMS)
  158. return ERR_PTR(-EINVAL);
  159. /* Initialize a clock structure. */
  160. err = -ENOMEM;
  161. ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
  162. if (ptp == NULL)
  163. goto no_memory;
  164. index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
  165. if (index < 0) {
  166. err = index;
  167. goto no_slot;
  168. }
  169. ptp->clock.ops = ptp_clock_ops;
  170. ptp->clock.release = delete_ptp_clock;
  171. ptp->info = info;
  172. ptp->devid = MKDEV(major, index);
  173. ptp->index = index;
  174. spin_lock_init(&ptp->tsevq.lock);
  175. mutex_init(&ptp->tsevq_mux);
  176. mutex_init(&ptp->pincfg_mux);
  177. init_waitqueue_head(&ptp->tsev_wq);
  178. /* Create a new device in our class. */
  179. ptp->dev = device_create(ptp_class, parent, ptp->devid, ptp,
  180. "ptp%d", ptp->index);
  181. if (IS_ERR(ptp->dev))
  182. goto no_device;
  183. dev_set_drvdata(ptp->dev, ptp);
  184. err = ptp_populate_sysfs(ptp);
  185. if (err)
  186. goto no_sysfs;
  187. /* Register a new PPS source. */
  188. if (info->pps) {
  189. struct pps_source_info pps;
  190. memset(&pps, 0, sizeof(pps));
  191. snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
  192. pps.mode = PTP_PPS_MODE;
  193. pps.owner = info->owner;
  194. ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
  195. if (!ptp->pps_source) {
  196. pr_err("failed to register pps source\n");
  197. goto no_pps;
  198. }
  199. }
  200. /* Create a posix clock. */
  201. err = posix_clock_register(&ptp->clock, ptp->devid);
  202. if (err) {
  203. pr_err("failed to create posix clock\n");
  204. goto no_clock;
  205. }
  206. return ptp;
  207. no_clock:
  208. if (ptp->pps_source)
  209. pps_unregister_source(ptp->pps_source);
  210. no_pps:
  211. ptp_cleanup_sysfs(ptp);
  212. no_sysfs:
  213. device_destroy(ptp_class, ptp->devid);
  214. no_device:
  215. mutex_destroy(&ptp->tsevq_mux);
  216. mutex_destroy(&ptp->pincfg_mux);
  217. ida_simple_remove(&ptp_clocks_map, index);
  218. no_slot:
  219. kfree(ptp);
  220. no_memory:
  221. return ERR_PTR(err);
  222. }
  223. EXPORT_SYMBOL(ptp_clock_register);
  224. int ptp_clock_unregister(struct ptp_clock *ptp)
  225. {
  226. ptp->defunct = 1;
  227. wake_up_interruptible(&ptp->tsev_wq);
  228. /* Release the clock's resources. */
  229. if (ptp->pps_source)
  230. pps_unregister_source(ptp->pps_source);
  231. ptp_cleanup_sysfs(ptp);
  232. device_destroy(ptp_class, ptp->devid);
  233. posix_clock_unregister(&ptp->clock);
  234. return 0;
  235. }
  236. EXPORT_SYMBOL(ptp_clock_unregister);
  237. void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
  238. {
  239. struct pps_event_time evt;
  240. switch (event->type) {
  241. case PTP_CLOCK_ALARM:
  242. break;
  243. case PTP_CLOCK_EXTTS:
  244. enqueue_external_timestamp(&ptp->tsevq, event);
  245. wake_up_interruptible(&ptp->tsev_wq);
  246. break;
  247. case PTP_CLOCK_PPS:
  248. pps_get_ts(&evt);
  249. pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
  250. break;
  251. case PTP_CLOCK_PPSUSR:
  252. pps_event(ptp->pps_source, &event->pps_times,
  253. PTP_PPS_EVENT, NULL);
  254. break;
  255. }
  256. }
  257. EXPORT_SYMBOL(ptp_clock_event);
  258. int ptp_clock_index(struct ptp_clock *ptp)
  259. {
  260. return ptp->index;
  261. }
  262. EXPORT_SYMBOL(ptp_clock_index);
  263. int ptp_find_pin(struct ptp_clock *ptp,
  264. enum ptp_pin_function func, unsigned int chan)
  265. {
  266. struct ptp_pin_desc *pin = NULL;
  267. int i;
  268. mutex_lock(&ptp->pincfg_mux);
  269. for (i = 0; i < ptp->info->n_pins; i++) {
  270. if (ptp->info->pin_config[i].func == func &&
  271. ptp->info->pin_config[i].chan == chan) {
  272. pin = &ptp->info->pin_config[i];
  273. break;
  274. }
  275. }
  276. mutex_unlock(&ptp->pincfg_mux);
  277. return pin ? i : -1;
  278. }
  279. EXPORT_SYMBOL(ptp_find_pin);
  280. /* module operations */
  281. static void __exit ptp_exit(void)
  282. {
  283. class_destroy(ptp_class);
  284. unregister_chrdev_region(ptp_devt, MINORMASK + 1);
  285. ida_destroy(&ptp_clocks_map);
  286. }
  287. static int __init ptp_init(void)
  288. {
  289. int err;
  290. ptp_class = class_create(THIS_MODULE, "ptp");
  291. if (IS_ERR(ptp_class)) {
  292. pr_err("ptp: failed to allocate class\n");
  293. return PTR_ERR(ptp_class);
  294. }
  295. err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
  296. if (err < 0) {
  297. pr_err("ptp: failed to allocate device region\n");
  298. goto no_region;
  299. }
  300. ptp_class->dev_groups = ptp_groups;
  301. pr_info("PTP clock support registered\n");
  302. return 0;
  303. no_region:
  304. class_destroy(ptp_class);
  305. return err;
  306. }
  307. subsys_initcall(ptp_init);
  308. module_exit(ptp_exit);
  309. MODULE_AUTHOR("Richard Cochran <[email protected]>");
  310. MODULE_DESCRIPTION("PTP clocks support");
  311. MODULE_LICENSE("GPL");