rtc-ab-b5ze-s3.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035
  1. /*
  2. * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
  3. * I2C RTC / Alarm chip
  4. *
  5. * Copyright (C) 2014, Arnaud EBALARD <[email protected]>
  6. *
  7. * Detailed datasheet of the chip is available here:
  8. *
  9. * http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
  10. *
  11. * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or
  16. * (at your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. * GNU General Public License for more details.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/mutex.h>
  25. #include <linux/rtc.h>
  26. #include <linux/i2c.h>
  27. #include <linux/bcd.h>
  28. #include <linux/of.h>
  29. #include <linux/regmap.h>
  30. #include <linux/interrupt.h>
  31. #define DRV_NAME "rtc-ab-b5ze-s3"
  32. /* Control section */
  33. #define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */
  34. #define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */
  35. #define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */
  36. #define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */
  37. #define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */
  38. #define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */
  39. #define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */
  40. #define ABB5ZES3_REG_CTRL1_CAP BIT(7)
  41. #define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */
  42. #define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */
  43. #define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */
  44. #define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */
  45. #define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */
  46. #define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */
  47. #define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */
  48. #define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */
  49. #define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */
  50. #define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */
  51. #define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */
  52. #define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */
  53. #define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */
  54. #define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */
  55. #define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */
  56. #define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */
  57. #define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */
  58. #define ABB5ZES3_CTRL_SEC_LEN 3
  59. /* RTC section */
  60. #define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */
  61. #define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */
  62. #define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */
  63. #define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */
  64. #define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */
  65. #define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */
  66. #define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */
  67. #define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */
  68. #define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */
  69. #define ABB5ZES3_RTC_SEC_LEN 7
  70. /* Alarm section (enable bits are all active low) */
  71. #define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */
  72. #define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */
  73. #define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */
  74. #define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */
  75. #define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */
  76. #define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */
  77. #define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */
  78. #define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */
  79. #define ABB5ZES3_ALRM_SEC_LEN 4
  80. /* Frequency offset section */
  81. #define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */
  82. #define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */
  83. /* CLOCKOUT section */
  84. #define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */
  85. #define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */
  86. #define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */
  87. #define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */
  88. #define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */
  89. #define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */
  90. #define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */
  91. #define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */
  92. #define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */
  93. /* Timer A Section */
  94. #define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */
  95. #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */
  96. #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */
  97. #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */
  98. #define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */
  99. #define ABB5ZES3_TIMA_SEC_LEN 2
  100. /* Timer B Section */
  101. #define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */
  102. #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
  103. #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
  104. #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
  105. #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
  106. #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
  107. #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
  108. #define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */
  109. #define ABB5ZES3_TIMB_SEC_LEN 2
  110. #define ABB5ZES3_MEM_MAP_LEN 0x14
  111. struct abb5zes3_rtc_data {
  112. struct rtc_device *rtc;
  113. struct regmap *regmap;
  114. struct mutex lock;
  115. int irq;
  116. bool battery_low;
  117. bool timer_alarm; /* current alarm is via timer A */
  118. };
  119. /*
  120. * Try and match register bits w/ fixed null values to see whether we
  121. * are dealing with an ABB5ZES3. Note: this function is called early
  122. * during init and hence does need mutex protection.
  123. */
  124. static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
  125. {
  126. u8 regs[ABB5ZES3_MEM_MAP_LEN];
  127. static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
  128. 0x80, 0xc0, 0xc0, 0xf8,
  129. 0xe0, 0x00, 0x00, 0x40,
  130. 0x40, 0x78, 0x00, 0x00,
  131. 0xf8, 0x00, 0x88, 0x00 };
  132. int ret, i;
  133. ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
  134. if (ret)
  135. return ret;
  136. for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
  137. if (regs[i] & mask[i]) /* check if bits are cleared */
  138. return -ENODEV;
  139. }
  140. return 0;
  141. }
  142. /* Clear alarm status bit. */
  143. static int _abb5zes3_rtc_clear_alarm(struct device *dev)
  144. {
  145. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  146. int ret;
  147. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
  148. ABB5ZES3_REG_CTRL2_AF, 0);
  149. if (ret)
  150. dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
  151. return ret;
  152. }
  153. /* Enable or disable alarm (i.e. alarm interrupt generation) */
  154. static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
  155. {
  156. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  157. int ret;
  158. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
  159. ABB5ZES3_REG_CTRL1_AIE,
  160. enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
  161. if (ret)
  162. dev_err(dev, "%s: writing alarm INT failed (%d)\n",
  163. __func__, ret);
  164. return ret;
  165. }
  166. /* Enable or disable timer (watchdog timer A interrupt generation) */
  167. static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
  168. {
  169. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  170. int ret;
  171. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
  172. ABB5ZES3_REG_CTRL2_WTAIE,
  173. enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
  174. if (ret)
  175. dev_err(dev, "%s: writing timer INT failed (%d)\n",
  176. __func__, ret);
  177. return ret;
  178. }
  179. /*
  180. * Note: we only read, so regmap inner lock protection is sufficient, i.e.
  181. * we do not need driver's main lock protection.
  182. */
  183. static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
  184. {
  185. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  186. u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
  187. int ret;
  188. /*
  189. * As we need to read CTRL1 register anyway to access 24/12h
  190. * mode bit, we do a single bulk read of both control and RTC
  191. * sections (they are consecutive). This also ease indexing
  192. * of register values after bulk read.
  193. */
  194. ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
  195. sizeof(regs));
  196. if (ret) {
  197. dev_err(dev, "%s: reading RTC time failed (%d)\n",
  198. __func__, ret);
  199. goto err;
  200. }
  201. /* If clock integrity is not guaranteed, do not return a time value */
  202. if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) {
  203. ret = -ENODATA;
  204. goto err;
  205. }
  206. tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
  207. tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
  208. if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
  209. tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
  210. if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
  211. tm->tm_hour += 12;
  212. } else { /* 24hr mode */
  213. tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
  214. }
  215. tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
  216. tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
  217. tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
  218. tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
  219. ret = rtc_valid_tm(tm);
  220. err:
  221. return ret;
  222. }
  223. static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
  224. {
  225. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  226. u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
  227. int ret;
  228. /*
  229. * Year register is 8-bit wide and bcd-coded, i.e records values
  230. * between 0 and 99. tm_year is an offset from 1900 and we are
  231. * interested in the 2000-2099 range, so any value less than 100
  232. * is invalid.
  233. */
  234. if (tm->tm_year < 100)
  235. return -EINVAL;
  236. regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
  237. regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
  238. regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
  239. regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
  240. regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
  241. regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
  242. regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
  243. mutex_lock(&data->lock);
  244. ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
  245. regs + ABB5ZES3_REG_RTC_SC,
  246. ABB5ZES3_RTC_SEC_LEN);
  247. mutex_unlock(&data->lock);
  248. return ret;
  249. }
  250. /*
  251. * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
  252. * given number of seconds.
  253. */
  254. static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
  255. {
  256. *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
  257. *timer_a = secs;
  258. }
  259. /*
  260. * Return current number of seconds in Timer A. As we only use
  261. * timer A with a 1Hz freq, this is what we expect to have.
  262. */
  263. static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
  264. {
  265. if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
  266. return -EINVAL;
  267. *secs = timer_a;
  268. return 0;
  269. }
  270. /*
  271. * Read alarm currently configured via a watchdog timer using timer A. This
  272. * is done by reading current RTC time and adding remaining timer time.
  273. */
  274. static int _abb5zes3_rtc_read_timer(struct device *dev,
  275. struct rtc_wkalrm *alarm)
  276. {
  277. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  278. struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
  279. u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
  280. unsigned long rtc_secs;
  281. unsigned int reg;
  282. u8 timer_secs;
  283. int ret;
  284. /*
  285. * Instead of doing two separate calls, because they are consecutive,
  286. * we grab both clockout register and Timer A section. The latter is
  287. * used to decide if timer A is enabled (as a watchdog timer).
  288. */
  289. ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
  290. ABB5ZES3_TIMA_SEC_LEN + 1);
  291. if (ret) {
  292. dev_err(dev, "%s: reading Timer A section failed (%d)\n",
  293. __func__, ret);
  294. goto err;
  295. }
  296. /* get current time ... */
  297. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  298. if (ret)
  299. goto err;
  300. /* ... convert to seconds ... */
  301. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  302. if (ret)
  303. goto err;
  304. /* ... add remaining timer A time ... */
  305. ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
  306. if (ret)
  307. goto err;
  308. /* ... and convert back. */
  309. rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm);
  310. ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
  311. if (ret) {
  312. dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
  313. __func__, ret);
  314. goto err;
  315. }
  316. alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
  317. err:
  318. return ret;
  319. }
  320. /* Read alarm currently configured via a RTC alarm registers. */
  321. static int _abb5zes3_rtc_read_alarm(struct device *dev,
  322. struct rtc_wkalrm *alarm)
  323. {
  324. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  325. struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
  326. unsigned long rtc_secs, alarm_secs;
  327. u8 regs[ABB5ZES3_ALRM_SEC_LEN];
  328. unsigned int reg;
  329. int ret;
  330. ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
  331. ABB5ZES3_ALRM_SEC_LEN);
  332. if (ret) {
  333. dev_err(dev, "%s: reading alarm section failed (%d)\n",
  334. __func__, ret);
  335. goto err;
  336. }
  337. alarm_tm->tm_sec = 0;
  338. alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f);
  339. alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
  340. alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
  341. alarm_tm->tm_wday = -1;
  342. /*
  343. * The alarm section does not store year/month. We use the ones in rtc
  344. * section as a basis and increment month and then year if needed to get
  345. * alarm after current time.
  346. */
  347. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  348. if (ret)
  349. goto err;
  350. alarm_tm->tm_year = rtc_tm.tm_year;
  351. alarm_tm->tm_mon = rtc_tm.tm_mon;
  352. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  353. if (ret)
  354. goto err;
  355. ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
  356. if (ret)
  357. goto err;
  358. if (alarm_secs < rtc_secs) {
  359. if (alarm_tm->tm_mon == 11) {
  360. alarm_tm->tm_mon = 0;
  361. alarm_tm->tm_year += 1;
  362. } else {
  363. alarm_tm->tm_mon += 1;
  364. }
  365. }
  366. ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
  367. if (ret) {
  368. dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
  369. __func__, ret);
  370. goto err;
  371. }
  372. alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
  373. err:
  374. return ret;
  375. }
  376. /*
  377. * As the Alarm mechanism supported by the chip is only accurate to the
  378. * minute, we use the watchdog timer mechanism provided by timer A
  379. * (up to 256 seconds w/ a second accuracy) for low alarm values (below
  380. * 4 minutes). Otherwise, we use the common alarm mechanism provided
  381. * by the chip. In order for that to work, we keep track of currently
  382. * configured timer type via 'timer_alarm' flag in our private data
  383. * structure.
  384. */
  385. static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
  386. {
  387. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  388. int ret;
  389. mutex_lock(&data->lock);
  390. if (data->timer_alarm)
  391. ret = _abb5zes3_rtc_read_timer(dev, alarm);
  392. else
  393. ret = _abb5zes3_rtc_read_alarm(dev, alarm);
  394. mutex_unlock(&data->lock);
  395. return ret;
  396. }
  397. /*
  398. * Set alarm using chip alarm mechanism. It is only accurate to the
  399. * minute (not the second). The function expects alarm interrupt to
  400. * be disabled.
  401. */
  402. static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
  403. {
  404. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  405. struct rtc_time *alarm_tm = &alarm->time;
  406. unsigned long rtc_secs, alarm_secs;
  407. u8 regs[ABB5ZES3_ALRM_SEC_LEN];
  408. struct rtc_time rtc_tm;
  409. int ret, enable = 1;
  410. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  411. if (ret)
  412. goto err;
  413. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  414. if (ret)
  415. goto err;
  416. ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
  417. if (ret)
  418. goto err;
  419. /* If alarm time is before current time, disable the alarm */
  420. if (!alarm->enabled || alarm_secs <= rtc_secs) {
  421. enable = 0;
  422. } else {
  423. /*
  424. * Chip only support alarms up to one month in the future. Let's
  425. * return an error if we get something after that limit.
  426. * Comparison is done by incrementing rtc_tm month field by one
  427. * and checking alarm value is still below.
  428. */
  429. if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
  430. rtc_tm.tm_mon = 0;
  431. rtc_tm.tm_year += 1;
  432. } else {
  433. rtc_tm.tm_mon += 1;
  434. }
  435. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  436. if (ret)
  437. goto err;
  438. if (alarm_secs > rtc_secs) {
  439. dev_err(dev, "%s: alarm maximum is one month in the "
  440. "future (%d)\n", __func__, ret);
  441. ret = -EINVAL;
  442. goto err;
  443. }
  444. }
  445. /*
  446. * Program all alarm registers but DW one. For each register, setting
  447. * MSB to 0 enables associated alarm.
  448. */
  449. regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
  450. regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
  451. regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
  452. regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
  453. ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
  454. ABB5ZES3_ALRM_SEC_LEN);
  455. if (ret < 0) {
  456. dev_err(dev, "%s: writing ALARM section failed (%d)\n",
  457. __func__, ret);
  458. goto err;
  459. }
  460. /* Record currently configured alarm is not a timer */
  461. data->timer_alarm = 0;
  462. /* Enable or disable alarm interrupt generation */
  463. ret = _abb5zes3_rtc_update_alarm(dev, enable);
  464. err:
  465. return ret;
  466. }
  467. /*
  468. * Set alarm using timer watchdog (via timer A) mechanism. The function expects
  469. * timer A interrupt to be disabled.
  470. */
  471. static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
  472. u8 secs)
  473. {
  474. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  475. u8 regs[ABB5ZES3_TIMA_SEC_LEN];
  476. u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
  477. int ret = 0;
  478. /* Program given number of seconds to Timer A registers */
  479. sec_to_timer_a(secs, &regs[0], &regs[1]);
  480. ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
  481. ABB5ZES3_TIMA_SEC_LEN);
  482. if (ret < 0) {
  483. dev_err(dev, "%s: writing timer section failed\n", __func__);
  484. goto err;
  485. }
  486. /* Configure Timer A as a watchdog timer */
  487. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
  488. mask, ABB5ZES3_REG_TIM_CLK_TAC1);
  489. if (ret)
  490. dev_err(dev, "%s: failed to update timer\n", __func__);
  491. /* Record currently configured alarm is a timer */
  492. data->timer_alarm = 1;
  493. /* Enable or disable timer interrupt generation */
  494. ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled);
  495. err:
  496. return ret;
  497. }
  498. /*
  499. * The chip has an alarm which is only accurate to the minute. In order to
  500. * handle alarms below that limit, we use the watchdog timer function of
  501. * timer A. More precisely, the timer method is used for alarms below 240
  502. * seconds.
  503. */
  504. static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
  505. {
  506. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  507. struct rtc_time *alarm_tm = &alarm->time;
  508. unsigned long rtc_secs, alarm_secs;
  509. struct rtc_time rtc_tm;
  510. int ret;
  511. mutex_lock(&data->lock);
  512. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  513. if (ret)
  514. goto err;
  515. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  516. if (ret)
  517. goto err;
  518. ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
  519. if (ret)
  520. goto err;
  521. /* Let's first disable both the alarm and the timer interrupts */
  522. ret = _abb5zes3_rtc_update_alarm(dev, false);
  523. if (ret < 0) {
  524. dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
  525. ret);
  526. goto err;
  527. }
  528. ret = _abb5zes3_rtc_update_timer(dev, false);
  529. if (ret < 0) {
  530. dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
  531. ret);
  532. goto err;
  533. }
  534. data->timer_alarm = 0;
  535. /*
  536. * Let's now configure the alarm; if we are expected to ring in
  537. * more than 240s, then we setup an alarm. Otherwise, a timer.
  538. */
  539. if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
  540. ret = _abb5zes3_rtc_set_timer(dev, alarm,
  541. alarm_secs - rtc_secs);
  542. else
  543. ret = _abb5zes3_rtc_set_alarm(dev, alarm);
  544. err:
  545. mutex_unlock(&data->lock);
  546. if (ret)
  547. dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
  548. ret);
  549. return ret;
  550. }
  551. /* Enable or disable battery low irq generation */
  552. static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
  553. bool enable)
  554. {
  555. return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
  556. ABB5ZES3_REG_CTRL3_BLIE,
  557. enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
  558. }
  559. /*
  560. * Check current RTC status and enable/disable what needs to be. Return 0 if
  561. * everything went ok and a negative value upon error. Note: this function
  562. * is called early during init and hence does need mutex protection.
  563. */
  564. static int abb5zes3_rtc_check_setup(struct device *dev)
  565. {
  566. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  567. struct regmap *regmap = data->regmap;
  568. unsigned int reg;
  569. int ret;
  570. u8 mask;
  571. /*
  572. * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
  573. * is disabled here to prevent polluting the interrupt line and
  574. * uselessly triggering the IRQ handler we install for alarm and battery
  575. * low events. Note: this is done before clearing int. status below
  576. * in this function.
  577. * We also disable all timers and set timer interrupt to permanent (not
  578. * pulsed).
  579. */
  580. mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
  581. ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
  582. ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
  583. ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
  584. ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
  585. ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
  586. ABB5ZES3_REG_TIM_CLK_COF2);
  587. if (ret < 0) {
  588. dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
  589. __func__, ret);
  590. return ret;
  591. }
  592. /*
  593. * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
  594. * individually by clearing/setting MSB of each associated register. So,
  595. * we set all alarm enable bits to disable current alarm setting.
  596. */
  597. mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
  598. ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
  599. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
  600. if (ret < 0) {
  601. dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
  602. __func__, ret);
  603. return ret;
  604. }
  605. /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
  606. mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
  607. ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
  608. ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
  609. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
  610. if (ret < 0) {
  611. dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
  612. __func__, ret);
  613. return ret;
  614. }
  615. /*
  616. * Set Control 2 register (timer int. disabled, alarm status cleared).
  617. * WTAF is read-only and cleared automatically by reading the register.
  618. */
  619. mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
  620. ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
  621. ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
  622. ABB5ZES3_REG_CTRL2_CTAF);
  623. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
  624. if (ret < 0) {
  625. dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
  626. __func__, ret);
  627. return ret;
  628. }
  629. /*
  630. * Enable battery low detection function and battery switchover function
  631. * (standard mode). Disable associated interrupts. Clear battery
  632. * switchover flag but not battery low flag. The latter is checked
  633. * later below.
  634. */
  635. mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
  636. ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
  637. ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
  638. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
  639. if (ret < 0) {
  640. dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
  641. __func__, ret);
  642. return ret;
  643. }
  644. /* Check oscillator integrity flag */
  645. ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
  646. if (ret < 0) {
  647. dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
  648. __func__, ret);
  649. return ret;
  650. }
  651. if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
  652. dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
  653. "or has been interrupted.\n");
  654. dev_err(dev, "change battery (if not already done) and "
  655. "then set time to reset osc. failure flag.\n");
  656. }
  657. /*
  658. * Check battery low flag at startup: this allows reporting battery
  659. * is low at startup when IRQ line is not connected. Note: we record
  660. * current status to avoid reenabling this interrupt later in probe
  661. * function if battery is low.
  662. */
  663. ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
  664. if (ret < 0) {
  665. dev_err(dev, "%s: unable to read battery low flag (%d)\n",
  666. __func__, ret);
  667. return ret;
  668. }
  669. data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
  670. if (data->battery_low) {
  671. dev_err(dev, "RTC battery is low; please, consider "
  672. "changing it!\n");
  673. ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
  674. if (ret)
  675. dev_err(dev, "%s: disabling battery low interrupt "
  676. "generation failed (%d)\n", __func__, ret);
  677. }
  678. return ret;
  679. }
  680. static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
  681. unsigned int enable)
  682. {
  683. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  684. int ret = 0;
  685. if (rtc_data->irq) {
  686. mutex_lock(&rtc_data->lock);
  687. if (rtc_data->timer_alarm)
  688. ret = _abb5zes3_rtc_update_timer(dev, enable);
  689. else
  690. ret = _abb5zes3_rtc_update_alarm(dev, enable);
  691. mutex_unlock(&rtc_data->lock);
  692. }
  693. return ret;
  694. }
  695. static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
  696. {
  697. struct i2c_client *client = data;
  698. struct device *dev = &client->dev;
  699. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  700. struct rtc_device *rtc = rtc_data->rtc;
  701. u8 regs[ABB5ZES3_CTRL_SEC_LEN];
  702. int ret, handled = IRQ_NONE;
  703. ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
  704. ABB5ZES3_CTRL_SEC_LEN);
  705. if (ret) {
  706. dev_err(dev, "%s: unable to read control section (%d)!\n",
  707. __func__, ret);
  708. return handled;
  709. }
  710. /*
  711. * Check battery low detection flag and disable battery low interrupt
  712. * generation if flag is set (interrupt can only be cleared when
  713. * battery is replaced).
  714. */
  715. if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
  716. dev_err(dev, "RTC battery is low; please change it!\n");
  717. _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
  718. handled = IRQ_HANDLED;
  719. }
  720. /* Check alarm flag */
  721. if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
  722. dev_dbg(dev, "RTC alarm!\n");
  723. rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
  724. /* Acknowledge and disable the alarm */
  725. _abb5zes3_rtc_clear_alarm(dev);
  726. _abb5zes3_rtc_update_alarm(dev, 0);
  727. handled = IRQ_HANDLED;
  728. }
  729. /* Check watchdog Timer A flag */
  730. if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
  731. dev_dbg(dev, "RTC timer!\n");
  732. rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
  733. /*
  734. * Acknowledge and disable the alarm. Note: WTAF
  735. * flag had been cleared when reading CTRL2
  736. */
  737. _abb5zes3_rtc_update_timer(dev, 0);
  738. rtc_data->timer_alarm = 0;
  739. handled = IRQ_HANDLED;
  740. }
  741. return handled;
  742. }
  743. static const struct rtc_class_ops rtc_ops = {
  744. .read_time = _abb5zes3_rtc_read_time,
  745. .set_time = abb5zes3_rtc_set_time,
  746. .read_alarm = abb5zes3_rtc_read_alarm,
  747. .set_alarm = abb5zes3_rtc_set_alarm,
  748. .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
  749. };
  750. static const struct regmap_config abb5zes3_rtc_regmap_config = {
  751. .reg_bits = 8,
  752. .val_bits = 8,
  753. };
  754. static int abb5zes3_probe(struct i2c_client *client,
  755. const struct i2c_device_id *id)
  756. {
  757. struct abb5zes3_rtc_data *data = NULL;
  758. struct device *dev = &client->dev;
  759. struct regmap *regmap;
  760. int ret;
  761. if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
  762. I2C_FUNC_SMBUS_BYTE_DATA |
  763. I2C_FUNC_SMBUS_I2C_BLOCK)) {
  764. ret = -ENODEV;
  765. goto err;
  766. }
  767. regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
  768. if (IS_ERR(regmap)) {
  769. ret = PTR_ERR(regmap);
  770. dev_err(dev, "%s: regmap allocation failed: %d\n",
  771. __func__, ret);
  772. goto err;
  773. }
  774. ret = abb5zes3_i2c_validate_chip(regmap);
  775. if (ret)
  776. goto err;
  777. data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
  778. if (!data) {
  779. ret = -ENOMEM;
  780. goto err;
  781. }
  782. mutex_init(&data->lock);
  783. data->regmap = regmap;
  784. dev_set_drvdata(dev, data);
  785. ret = abb5zes3_rtc_check_setup(dev);
  786. if (ret)
  787. goto err;
  788. if (client->irq > 0) {
  789. ret = devm_request_threaded_irq(dev, client->irq, NULL,
  790. _abb5zes3_rtc_interrupt,
  791. IRQF_SHARED|IRQF_ONESHOT,
  792. DRV_NAME, client);
  793. if (!ret) {
  794. device_init_wakeup(dev, true);
  795. data->irq = client->irq;
  796. dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
  797. client->irq);
  798. } else {
  799. dev_err(dev, "%s: irq %d unavailable (%d)\n",
  800. __func__, client->irq, ret);
  801. goto err;
  802. }
  803. }
  804. data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops,
  805. THIS_MODULE);
  806. ret = PTR_ERR_OR_ZERO(data->rtc);
  807. if (ret) {
  808. dev_err(dev, "%s: unable to register RTC device (%d)\n",
  809. __func__, ret);
  810. goto err;
  811. }
  812. /* Enable battery low detection interrupt if battery not already low */
  813. if (!data->battery_low && data->irq) {
  814. ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
  815. if (ret) {
  816. dev_err(dev, "%s: enabling battery low interrupt "
  817. "generation failed (%d)\n", __func__, ret);
  818. goto err;
  819. }
  820. }
  821. err:
  822. if (ret && data && data->irq)
  823. device_init_wakeup(dev, false);
  824. return ret;
  825. }
  826. static int abb5zes3_remove(struct i2c_client *client)
  827. {
  828. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
  829. if (rtc_data->irq > 0)
  830. device_init_wakeup(&client->dev, false);
  831. return 0;
  832. }
  833. #ifdef CONFIG_PM_SLEEP
  834. static int abb5zes3_rtc_suspend(struct device *dev)
  835. {
  836. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  837. if (device_may_wakeup(dev))
  838. return enable_irq_wake(rtc_data->irq);
  839. return 0;
  840. }
  841. static int abb5zes3_rtc_resume(struct device *dev)
  842. {
  843. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  844. if (device_may_wakeup(dev))
  845. return disable_irq_wake(rtc_data->irq);
  846. return 0;
  847. }
  848. #endif
  849. static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
  850. abb5zes3_rtc_resume);
  851. #ifdef CONFIG_OF
  852. static const struct of_device_id abb5zes3_dt_match[] = {
  853. { .compatible = "abracon,abb5zes3" },
  854. { },
  855. };
  856. MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
  857. #endif
  858. static const struct i2c_device_id abb5zes3_id[] = {
  859. { "abb5zes3", 0 },
  860. { }
  861. };
  862. MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
  863. static struct i2c_driver abb5zes3_driver = {
  864. .driver = {
  865. .name = DRV_NAME,
  866. .pm = &abb5zes3_rtc_pm_ops,
  867. .of_match_table = of_match_ptr(abb5zes3_dt_match),
  868. },
  869. .probe = abb5zes3_probe,
  870. .remove = abb5zes3_remove,
  871. .id_table = abb5zes3_id,
  872. };
  873. module_i2c_driver(abb5zes3_driver);
  874. MODULE_AUTHOR("Arnaud EBALARD <[email protected]>");
  875. MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
  876. MODULE_LICENSE("GPL");