disk-io.c 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #include "tree-checker.h"
  53. #ifdef CONFIG_X86
  54. #include <asm/cpufeature.h>
  55. #endif
  56. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  57. BTRFS_HEADER_FLAG_RELOC |\
  58. BTRFS_SUPER_FLAG_ERROR |\
  59. BTRFS_SUPER_FLAG_SEEDING |\
  60. BTRFS_SUPER_FLAG_METADUMP |\
  61. BTRFS_SUPER_FLAG_METADUMP_V2)
  62. static const struct extent_io_ops btree_extent_io_ops;
  63. static void end_workqueue_fn(struct btrfs_work *work);
  64. static void free_fs_root(struct btrfs_root *root);
  65. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  66. int read_only);
  67. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  68. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  69. struct btrfs_root *root);
  70. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  71. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  72. struct extent_io_tree *dirty_pages,
  73. int mark);
  74. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  75. struct extent_io_tree *pinned_extents);
  76. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  77. static void btrfs_error_commit_super(struct btrfs_root *root);
  78. /*
  79. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  80. * is complete. This is used during reads to verify checksums, and it is used
  81. * by writes to insert metadata for new file extents after IO is complete.
  82. */
  83. struct btrfs_end_io_wq {
  84. struct bio *bio;
  85. bio_end_io_t *end_io;
  86. void *private;
  87. struct btrfs_fs_info *info;
  88. int error;
  89. enum btrfs_wq_endio_type metadata;
  90. struct list_head list;
  91. struct btrfs_work work;
  92. };
  93. static struct kmem_cache *btrfs_end_io_wq_cache;
  94. int __init btrfs_end_io_wq_init(void)
  95. {
  96. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  97. sizeof(struct btrfs_end_io_wq),
  98. 0,
  99. SLAB_MEM_SPREAD,
  100. NULL);
  101. if (!btrfs_end_io_wq_cache)
  102. return -ENOMEM;
  103. return 0;
  104. }
  105. void btrfs_end_io_wq_exit(void)
  106. {
  107. kmem_cache_destroy(btrfs_end_io_wq_cache);
  108. }
  109. /*
  110. * async submit bios are used to offload expensive checksumming
  111. * onto the worker threads. They checksum file and metadata bios
  112. * just before they are sent down the IO stack.
  113. */
  114. struct async_submit_bio {
  115. struct inode *inode;
  116. struct bio *bio;
  117. struct list_head list;
  118. extent_submit_bio_hook_t *submit_bio_start;
  119. extent_submit_bio_hook_t *submit_bio_done;
  120. int mirror_num;
  121. unsigned long bio_flags;
  122. /*
  123. * bio_offset is optional, can be used if the pages in the bio
  124. * can't tell us where in the file the bio should go
  125. */
  126. u64 bio_offset;
  127. struct btrfs_work work;
  128. int error;
  129. };
  130. /*
  131. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  132. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  133. * the level the eb occupies in the tree.
  134. *
  135. * Different roots are used for different purposes and may nest inside each
  136. * other and they require separate keysets. As lockdep keys should be
  137. * static, assign keysets according to the purpose of the root as indicated
  138. * by btrfs_root->objectid. This ensures that all special purpose roots
  139. * have separate keysets.
  140. *
  141. * Lock-nesting across peer nodes is always done with the immediate parent
  142. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  143. * subclass to avoid triggering lockdep warning in such cases.
  144. *
  145. * The key is set by the readpage_end_io_hook after the buffer has passed
  146. * csum validation but before the pages are unlocked. It is also set by
  147. * btrfs_init_new_buffer on freshly allocated blocks.
  148. *
  149. * We also add a check to make sure the highest level of the tree is the
  150. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  151. * needs update as well.
  152. */
  153. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  154. # if BTRFS_MAX_LEVEL != 8
  155. # error
  156. # endif
  157. static struct btrfs_lockdep_keyset {
  158. u64 id; /* root objectid */
  159. const char *name_stem; /* lock name stem */
  160. char names[BTRFS_MAX_LEVEL + 1][20];
  161. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  162. } btrfs_lockdep_keysets[] = {
  163. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  164. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  165. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  166. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  167. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  168. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  169. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  170. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  171. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  172. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  173. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  174. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  175. { .id = 0, .name_stem = "tree" },
  176. };
  177. void __init btrfs_init_lockdep(void)
  178. {
  179. int i, j;
  180. /* initialize lockdep class names */
  181. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  182. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  183. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  184. snprintf(ks->names[j], sizeof(ks->names[j]),
  185. "btrfs-%s-%02d", ks->name_stem, j);
  186. }
  187. }
  188. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  189. int level)
  190. {
  191. struct btrfs_lockdep_keyset *ks;
  192. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  193. /* find the matching keyset, id 0 is the default entry */
  194. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  195. if (ks->id == objectid)
  196. break;
  197. lockdep_set_class_and_name(&eb->lock,
  198. &ks->keys[level], ks->names[level]);
  199. }
  200. #endif
  201. /*
  202. * extents on the btree inode are pretty simple, there's one extent
  203. * that covers the entire device
  204. */
  205. static struct extent_map *btree_get_extent(struct inode *inode,
  206. struct page *page, size_t pg_offset, u64 start, u64 len,
  207. int create)
  208. {
  209. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  210. struct extent_map *em;
  211. int ret;
  212. read_lock(&em_tree->lock);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (em) {
  215. em->bdev =
  216. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  217. read_unlock(&em_tree->lock);
  218. goto out;
  219. }
  220. read_unlock(&em_tree->lock);
  221. em = alloc_extent_map();
  222. if (!em) {
  223. em = ERR_PTR(-ENOMEM);
  224. goto out;
  225. }
  226. em->start = 0;
  227. em->len = (u64)-1;
  228. em->block_len = (u64)-1;
  229. em->block_start = 0;
  230. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  231. write_lock(&em_tree->lock);
  232. ret = add_extent_mapping(em_tree, em, 0);
  233. if (ret == -EEXIST) {
  234. free_extent_map(em);
  235. em = lookup_extent_mapping(em_tree, start, len);
  236. if (!em)
  237. em = ERR_PTR(-EIO);
  238. } else if (ret) {
  239. free_extent_map(em);
  240. em = ERR_PTR(ret);
  241. }
  242. write_unlock(&em_tree->lock);
  243. out:
  244. return em;
  245. }
  246. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  247. {
  248. return btrfs_crc32c(seed, data, len);
  249. }
  250. void btrfs_csum_final(u32 crc, char *result)
  251. {
  252. put_unaligned_le32(~crc, result);
  253. }
  254. /*
  255. * compute the csum for a btree block, and either verify it or write it
  256. * into the csum field of the block.
  257. */
  258. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  259. struct extent_buffer *buf,
  260. int verify)
  261. {
  262. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  263. char *result = NULL;
  264. unsigned long len;
  265. unsigned long cur_len;
  266. unsigned long offset = BTRFS_CSUM_SIZE;
  267. char *kaddr;
  268. unsigned long map_start;
  269. unsigned long map_len;
  270. int err;
  271. u32 crc = ~(u32)0;
  272. unsigned long inline_result;
  273. len = buf->len - offset;
  274. while (len > 0) {
  275. err = map_private_extent_buffer(buf, offset, 32,
  276. &kaddr, &map_start, &map_len);
  277. if (err)
  278. return err;
  279. cur_len = min(len, map_len - (offset - map_start));
  280. crc = btrfs_csum_data(kaddr + offset - map_start,
  281. crc, cur_len);
  282. len -= cur_len;
  283. offset += cur_len;
  284. }
  285. if (csum_size > sizeof(inline_result)) {
  286. result = kzalloc(csum_size, GFP_NOFS);
  287. if (!result)
  288. return -ENOMEM;
  289. } else {
  290. result = (char *)&inline_result;
  291. }
  292. btrfs_csum_final(crc, result);
  293. if (verify) {
  294. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  295. u32 val;
  296. u32 found = 0;
  297. memcpy(&found, result, csum_size);
  298. read_extent_buffer(buf, &val, 0, csum_size);
  299. btrfs_warn_rl(fs_info,
  300. "%s checksum verify failed on %llu wanted %X found %X level %d",
  301. fs_info->sb->s_id, buf->start,
  302. val, found, btrfs_header_level(buf));
  303. if (result != (char *)&inline_result)
  304. kfree(result);
  305. return -EUCLEAN;
  306. }
  307. } else {
  308. write_extent_buffer(buf, result, 0, csum_size);
  309. }
  310. if (result != (char *)&inline_result)
  311. kfree(result);
  312. return 0;
  313. }
  314. /*
  315. * we can't consider a given block up to date unless the transid of the
  316. * block matches the transid in the parent node's pointer. This is how we
  317. * detect blocks that either didn't get written at all or got written
  318. * in the wrong place.
  319. */
  320. static int verify_parent_transid(struct extent_io_tree *io_tree,
  321. struct extent_buffer *eb, u64 parent_transid,
  322. int atomic)
  323. {
  324. struct extent_state *cached_state = NULL;
  325. int ret;
  326. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  327. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  328. return 0;
  329. if (atomic)
  330. return -EAGAIN;
  331. if (need_lock) {
  332. btrfs_tree_read_lock(eb);
  333. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  334. }
  335. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  336. &cached_state);
  337. if (extent_buffer_uptodate(eb) &&
  338. btrfs_header_generation(eb) == parent_transid) {
  339. ret = 0;
  340. goto out;
  341. }
  342. btrfs_err_rl(eb->fs_info,
  343. "parent transid verify failed on %llu wanted %llu found %llu",
  344. eb->start,
  345. parent_transid, btrfs_header_generation(eb));
  346. ret = 1;
  347. /*
  348. * Things reading via commit roots that don't have normal protection,
  349. * like send, can have a really old block in cache that may point at a
  350. * block that has been freed and re-allocated. So don't clear uptodate
  351. * if we find an eb that is under IO (dirty/writeback) because we could
  352. * end up reading in the stale data and then writing it back out and
  353. * making everybody very sad.
  354. */
  355. if (!extent_buffer_under_io(eb))
  356. clear_extent_buffer_uptodate(eb);
  357. out:
  358. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  359. &cached_state, GFP_NOFS);
  360. if (need_lock)
  361. btrfs_tree_read_unlock_blocking(eb);
  362. return ret;
  363. }
  364. /*
  365. * Return 0 if the superblock checksum type matches the checksum value of that
  366. * algorithm. Pass the raw disk superblock data.
  367. */
  368. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  369. char *raw_disk_sb)
  370. {
  371. struct btrfs_super_block *disk_sb =
  372. (struct btrfs_super_block *)raw_disk_sb;
  373. u16 csum_type = btrfs_super_csum_type(disk_sb);
  374. int ret = 0;
  375. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  376. u32 crc = ~(u32)0;
  377. const int csum_size = sizeof(crc);
  378. char result[csum_size];
  379. /*
  380. * The super_block structure does not span the whole
  381. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  382. * is filled with zeros and is included in the checksum.
  383. */
  384. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  385. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  386. btrfs_csum_final(crc, result);
  387. if (memcmp(raw_disk_sb, result, csum_size))
  388. ret = 1;
  389. }
  390. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  391. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  392. csum_type);
  393. ret = 1;
  394. }
  395. return ret;
  396. }
  397. /*
  398. * helper to read a given tree block, doing retries as required when
  399. * the checksums don't match and we have alternate mirrors to try.
  400. */
  401. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  402. struct extent_buffer *eb,
  403. u64 parent_transid)
  404. {
  405. struct extent_io_tree *io_tree;
  406. int failed = 0;
  407. int ret;
  408. int num_copies = 0;
  409. int mirror_num = 0;
  410. int failed_mirror = 0;
  411. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  412. while (1) {
  413. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  414. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  415. btree_get_extent, mirror_num);
  416. if (!ret) {
  417. if (!verify_parent_transid(io_tree, eb,
  418. parent_transid, 0))
  419. break;
  420. else
  421. ret = -EIO;
  422. }
  423. num_copies = btrfs_num_copies(root->fs_info,
  424. eb->start, eb->len);
  425. if (num_copies == 1)
  426. break;
  427. if (!failed_mirror) {
  428. failed = 1;
  429. failed_mirror = eb->read_mirror;
  430. }
  431. mirror_num++;
  432. if (mirror_num == failed_mirror)
  433. mirror_num++;
  434. if (mirror_num > num_copies)
  435. break;
  436. }
  437. if (failed && !ret && failed_mirror)
  438. repair_eb_io_failure(root, eb, failed_mirror);
  439. return ret;
  440. }
  441. /*
  442. * checksum a dirty tree block before IO. This has extra checks to make sure
  443. * we only fill in the checksum field in the first page of a multi-page block
  444. */
  445. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  446. {
  447. u64 start = page_offset(page);
  448. u64 found_start;
  449. struct extent_buffer *eb;
  450. eb = (struct extent_buffer *)page->private;
  451. if (page != eb->pages[0])
  452. return 0;
  453. found_start = btrfs_header_bytenr(eb);
  454. /*
  455. * Please do not consolidate these warnings into a single if.
  456. * It is useful to know what went wrong.
  457. */
  458. if (WARN_ON(found_start != start))
  459. return -EUCLEAN;
  460. if (WARN_ON(!PageUptodate(page)))
  461. return -EUCLEAN;
  462. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  463. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  464. return csum_tree_block(fs_info, eb, 0);
  465. }
  466. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  467. struct extent_buffer *eb)
  468. {
  469. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  470. u8 fsid[BTRFS_UUID_SIZE];
  471. int ret = 1;
  472. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  473. while (fs_devices) {
  474. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  475. ret = 0;
  476. break;
  477. }
  478. fs_devices = fs_devices->seed;
  479. }
  480. return ret;
  481. }
  482. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  483. u64 phy_offset, struct page *page,
  484. u64 start, u64 end, int mirror)
  485. {
  486. u64 found_start;
  487. int found_level;
  488. struct extent_buffer *eb;
  489. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  490. struct btrfs_fs_info *fs_info = root->fs_info;
  491. int ret = 0;
  492. int reads_done;
  493. if (!page->private)
  494. goto out;
  495. eb = (struct extent_buffer *)page->private;
  496. /* the pending IO might have been the only thing that kept this buffer
  497. * in memory. Make sure we have a ref for all this other checks
  498. */
  499. extent_buffer_get(eb);
  500. reads_done = atomic_dec_and_test(&eb->io_pages);
  501. if (!reads_done)
  502. goto err;
  503. eb->read_mirror = mirror;
  504. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  505. ret = -EIO;
  506. goto err;
  507. }
  508. found_start = btrfs_header_bytenr(eb);
  509. if (found_start != eb->start) {
  510. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  511. found_start, eb->start);
  512. ret = -EIO;
  513. goto err;
  514. }
  515. if (check_tree_block_fsid(fs_info, eb)) {
  516. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  517. eb->start);
  518. ret = -EIO;
  519. goto err;
  520. }
  521. found_level = btrfs_header_level(eb);
  522. if (found_level >= BTRFS_MAX_LEVEL) {
  523. btrfs_err(fs_info, "bad tree block level %d",
  524. (int)btrfs_header_level(eb));
  525. ret = -EIO;
  526. goto err;
  527. }
  528. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  529. eb, found_level);
  530. ret = csum_tree_block(fs_info, eb, 1);
  531. if (ret)
  532. goto err;
  533. /*
  534. * If this is a leaf block and it is corrupt, set the corrupt bit so
  535. * that we don't try and read the other copies of this block, just
  536. * return -EIO.
  537. */
  538. if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
  539. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  540. ret = -EIO;
  541. }
  542. if (found_level > 0 && btrfs_check_node(root, eb))
  543. ret = -EIO;
  544. if (!ret)
  545. set_extent_buffer_uptodate(eb);
  546. err:
  547. if (reads_done &&
  548. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  549. btree_readahead_hook(fs_info, eb, eb->start, ret);
  550. if (ret) {
  551. /*
  552. * our io error hook is going to dec the io pages
  553. * again, we have to make sure it has something
  554. * to decrement
  555. */
  556. atomic_inc(&eb->io_pages);
  557. clear_extent_buffer_uptodate(eb);
  558. }
  559. free_extent_buffer(eb);
  560. out:
  561. return ret;
  562. }
  563. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  564. {
  565. struct extent_buffer *eb;
  566. eb = (struct extent_buffer *)page->private;
  567. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  568. eb->read_mirror = failed_mirror;
  569. atomic_dec(&eb->io_pages);
  570. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  571. btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
  572. return -EIO; /* we fixed nothing */
  573. }
  574. static void end_workqueue_bio(struct bio *bio)
  575. {
  576. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  577. struct btrfs_fs_info *fs_info;
  578. struct btrfs_workqueue *wq;
  579. btrfs_work_func_t func;
  580. fs_info = end_io_wq->info;
  581. end_io_wq->error = bio->bi_error;
  582. if (bio_op(bio) == REQ_OP_WRITE) {
  583. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  584. wq = fs_info->endio_meta_write_workers;
  585. func = btrfs_endio_meta_write_helper;
  586. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  587. wq = fs_info->endio_freespace_worker;
  588. func = btrfs_freespace_write_helper;
  589. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  590. wq = fs_info->endio_raid56_workers;
  591. func = btrfs_endio_raid56_helper;
  592. } else {
  593. wq = fs_info->endio_write_workers;
  594. func = btrfs_endio_write_helper;
  595. }
  596. } else {
  597. if (unlikely(end_io_wq->metadata ==
  598. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  599. wq = fs_info->endio_repair_workers;
  600. func = btrfs_endio_repair_helper;
  601. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  602. wq = fs_info->endio_raid56_workers;
  603. func = btrfs_endio_raid56_helper;
  604. } else if (end_io_wq->metadata) {
  605. wq = fs_info->endio_meta_workers;
  606. func = btrfs_endio_meta_helper;
  607. } else {
  608. wq = fs_info->endio_workers;
  609. func = btrfs_endio_helper;
  610. }
  611. }
  612. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  613. btrfs_queue_work(wq, &end_io_wq->work);
  614. }
  615. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  616. enum btrfs_wq_endio_type metadata)
  617. {
  618. struct btrfs_end_io_wq *end_io_wq;
  619. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  620. if (!end_io_wq)
  621. return -ENOMEM;
  622. end_io_wq->private = bio->bi_private;
  623. end_io_wq->end_io = bio->bi_end_io;
  624. end_io_wq->info = info;
  625. end_io_wq->error = 0;
  626. end_io_wq->bio = bio;
  627. end_io_wq->metadata = metadata;
  628. bio->bi_private = end_io_wq;
  629. bio->bi_end_io = end_workqueue_bio;
  630. return 0;
  631. }
  632. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  633. {
  634. unsigned long limit = min_t(unsigned long,
  635. info->thread_pool_size,
  636. info->fs_devices->open_devices);
  637. return 256 * limit;
  638. }
  639. static void run_one_async_start(struct btrfs_work *work)
  640. {
  641. struct async_submit_bio *async;
  642. int ret;
  643. async = container_of(work, struct async_submit_bio, work);
  644. ret = async->submit_bio_start(async->inode, async->bio,
  645. async->mirror_num, async->bio_flags,
  646. async->bio_offset);
  647. if (ret)
  648. async->error = ret;
  649. }
  650. static void run_one_async_done(struct btrfs_work *work)
  651. {
  652. struct btrfs_fs_info *fs_info;
  653. struct async_submit_bio *async;
  654. int limit;
  655. async = container_of(work, struct async_submit_bio, work);
  656. fs_info = BTRFS_I(async->inode)->root->fs_info;
  657. limit = btrfs_async_submit_limit(fs_info);
  658. limit = limit * 2 / 3;
  659. /*
  660. * atomic_dec_return implies a barrier for waitqueue_active
  661. */
  662. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  663. waitqueue_active(&fs_info->async_submit_wait))
  664. wake_up(&fs_info->async_submit_wait);
  665. /* If an error occurred we just want to clean up the bio and move on */
  666. if (async->error) {
  667. async->bio->bi_error = async->error;
  668. bio_endio(async->bio);
  669. return;
  670. }
  671. async->submit_bio_done(async->inode, async->bio, async->mirror_num,
  672. async->bio_flags, async->bio_offset);
  673. }
  674. static void run_one_async_free(struct btrfs_work *work)
  675. {
  676. struct async_submit_bio *async;
  677. async = container_of(work, struct async_submit_bio, work);
  678. kfree(async);
  679. }
  680. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  681. struct bio *bio, int mirror_num,
  682. unsigned long bio_flags,
  683. u64 bio_offset,
  684. extent_submit_bio_hook_t *submit_bio_start,
  685. extent_submit_bio_hook_t *submit_bio_done)
  686. {
  687. struct async_submit_bio *async;
  688. async = kmalloc(sizeof(*async), GFP_NOFS);
  689. if (!async)
  690. return -ENOMEM;
  691. async->inode = inode;
  692. async->bio = bio;
  693. async->mirror_num = mirror_num;
  694. async->submit_bio_start = submit_bio_start;
  695. async->submit_bio_done = submit_bio_done;
  696. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  697. run_one_async_done, run_one_async_free);
  698. async->bio_flags = bio_flags;
  699. async->bio_offset = bio_offset;
  700. async->error = 0;
  701. atomic_inc(&fs_info->nr_async_submits);
  702. if (bio->bi_opf & REQ_SYNC)
  703. btrfs_set_work_high_priority(&async->work);
  704. btrfs_queue_work(fs_info->workers, &async->work);
  705. while (atomic_read(&fs_info->async_submit_draining) &&
  706. atomic_read(&fs_info->nr_async_submits)) {
  707. wait_event(fs_info->async_submit_wait,
  708. (atomic_read(&fs_info->nr_async_submits) == 0));
  709. }
  710. return 0;
  711. }
  712. static int btree_csum_one_bio(struct bio *bio)
  713. {
  714. struct bio_vec *bvec;
  715. struct btrfs_root *root;
  716. int i, ret = 0;
  717. bio_for_each_segment_all(bvec, bio, i) {
  718. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  719. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  720. if (ret)
  721. break;
  722. }
  723. return ret;
  724. }
  725. static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
  726. int mirror_num, unsigned long bio_flags,
  727. u64 bio_offset)
  728. {
  729. /*
  730. * when we're called for a write, we're already in the async
  731. * submission context. Just jump into btrfs_map_bio
  732. */
  733. return btree_csum_one_bio(bio);
  734. }
  735. static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
  736. int mirror_num, unsigned long bio_flags,
  737. u64 bio_offset)
  738. {
  739. int ret;
  740. /*
  741. * when we're called for a write, we're already in the async
  742. * submission context. Just jump into btrfs_map_bio
  743. */
  744. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
  745. if (ret) {
  746. bio->bi_error = ret;
  747. bio_endio(bio);
  748. }
  749. return ret;
  750. }
  751. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  752. {
  753. if (bio_flags & EXTENT_BIO_TREE_LOG)
  754. return 0;
  755. #ifdef CONFIG_X86
  756. if (static_cpu_has(X86_FEATURE_XMM4_2))
  757. return 0;
  758. #endif
  759. return 1;
  760. }
  761. static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
  762. int mirror_num, unsigned long bio_flags,
  763. u64 bio_offset)
  764. {
  765. int async = check_async_write(inode, bio_flags);
  766. int ret;
  767. if (bio_op(bio) != REQ_OP_WRITE) {
  768. /*
  769. * called for a read, do the setup so that checksum validation
  770. * can happen in the async kernel threads
  771. */
  772. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  773. bio, BTRFS_WQ_ENDIO_METADATA);
  774. if (ret)
  775. goto out_w_error;
  776. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
  777. } else if (!async) {
  778. ret = btree_csum_one_bio(bio);
  779. if (ret)
  780. goto out_w_error;
  781. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
  782. } else {
  783. /*
  784. * kthread helpers are used to submit writes so that
  785. * checksumming can happen in parallel across all CPUs
  786. */
  787. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  788. inode, bio, mirror_num, 0,
  789. bio_offset,
  790. __btree_submit_bio_start,
  791. __btree_submit_bio_done);
  792. }
  793. if (ret)
  794. goto out_w_error;
  795. return 0;
  796. out_w_error:
  797. bio->bi_error = ret;
  798. bio_endio(bio);
  799. return ret;
  800. }
  801. #ifdef CONFIG_MIGRATION
  802. static int btree_migratepage(struct address_space *mapping,
  803. struct page *newpage, struct page *page,
  804. enum migrate_mode mode)
  805. {
  806. /*
  807. * we can't safely write a btree page from here,
  808. * we haven't done the locking hook
  809. */
  810. if (PageDirty(page))
  811. return -EAGAIN;
  812. /*
  813. * Buffers may be managed in a filesystem specific way.
  814. * We must have no buffers or drop them.
  815. */
  816. if (page_has_private(page) &&
  817. !try_to_release_page(page, GFP_KERNEL))
  818. return -EAGAIN;
  819. return migrate_page(mapping, newpage, page, mode);
  820. }
  821. #endif
  822. static int btree_writepages(struct address_space *mapping,
  823. struct writeback_control *wbc)
  824. {
  825. struct btrfs_fs_info *fs_info;
  826. int ret;
  827. if (wbc->sync_mode == WB_SYNC_NONE) {
  828. if (wbc->for_kupdate)
  829. return 0;
  830. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  831. /* this is a bit racy, but that's ok */
  832. ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  833. BTRFS_DIRTY_METADATA_THRESH,
  834. fs_info->dirty_metadata_batch);
  835. if (ret < 0)
  836. return 0;
  837. }
  838. return btree_write_cache_pages(mapping, wbc);
  839. }
  840. static int btree_readpage(struct file *file, struct page *page)
  841. {
  842. struct extent_io_tree *tree;
  843. tree = &BTRFS_I(page->mapping->host)->io_tree;
  844. return extent_read_full_page(tree, page, btree_get_extent, 0);
  845. }
  846. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  847. {
  848. if (PageWriteback(page) || PageDirty(page))
  849. return 0;
  850. return try_release_extent_buffer(page);
  851. }
  852. static void btree_invalidatepage(struct page *page, unsigned int offset,
  853. unsigned int length)
  854. {
  855. struct extent_io_tree *tree;
  856. tree = &BTRFS_I(page->mapping->host)->io_tree;
  857. extent_invalidatepage(tree, page, offset);
  858. btree_releasepage(page, GFP_NOFS);
  859. if (PagePrivate(page)) {
  860. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  861. "page private not zero on page %llu",
  862. (unsigned long long)page_offset(page));
  863. ClearPagePrivate(page);
  864. set_page_private(page, 0);
  865. put_page(page);
  866. }
  867. }
  868. static int btree_set_page_dirty(struct page *page)
  869. {
  870. #ifdef DEBUG
  871. struct extent_buffer *eb;
  872. BUG_ON(!PagePrivate(page));
  873. eb = (struct extent_buffer *)page->private;
  874. BUG_ON(!eb);
  875. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  876. BUG_ON(!atomic_read(&eb->refs));
  877. btrfs_assert_tree_locked(eb);
  878. #endif
  879. return __set_page_dirty_nobuffers(page);
  880. }
  881. static const struct address_space_operations btree_aops = {
  882. .readpage = btree_readpage,
  883. .writepages = btree_writepages,
  884. .releasepage = btree_releasepage,
  885. .invalidatepage = btree_invalidatepage,
  886. #ifdef CONFIG_MIGRATION
  887. .migratepage = btree_migratepage,
  888. #endif
  889. .set_page_dirty = btree_set_page_dirty,
  890. };
  891. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  892. {
  893. struct extent_buffer *buf = NULL;
  894. struct inode *btree_inode = root->fs_info->btree_inode;
  895. buf = btrfs_find_create_tree_block(root, bytenr);
  896. if (IS_ERR(buf))
  897. return;
  898. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  899. buf, WAIT_NONE, btree_get_extent, 0);
  900. free_extent_buffer(buf);
  901. }
  902. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  903. int mirror_num, struct extent_buffer **eb)
  904. {
  905. struct extent_buffer *buf = NULL;
  906. struct inode *btree_inode = root->fs_info->btree_inode;
  907. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  908. int ret;
  909. buf = btrfs_find_create_tree_block(root, bytenr);
  910. if (IS_ERR(buf))
  911. return 0;
  912. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  913. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  914. btree_get_extent, mirror_num);
  915. if (ret) {
  916. free_extent_buffer(buf);
  917. return ret;
  918. }
  919. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  920. free_extent_buffer(buf);
  921. return -EIO;
  922. } else if (extent_buffer_uptodate(buf)) {
  923. *eb = buf;
  924. } else {
  925. free_extent_buffer(buf);
  926. }
  927. return 0;
  928. }
  929. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  930. u64 bytenr)
  931. {
  932. return find_extent_buffer(fs_info, bytenr);
  933. }
  934. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  935. u64 bytenr)
  936. {
  937. if (btrfs_is_testing(root->fs_info))
  938. return alloc_test_extent_buffer(root->fs_info, bytenr,
  939. root->nodesize);
  940. return alloc_extent_buffer(root->fs_info, bytenr);
  941. }
  942. int btrfs_write_tree_block(struct extent_buffer *buf)
  943. {
  944. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  945. buf->start + buf->len - 1);
  946. }
  947. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  948. {
  949. return filemap_fdatawait_range(buf->pages[0]->mapping,
  950. buf->start, buf->start + buf->len - 1);
  951. }
  952. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  953. u64 parent_transid)
  954. {
  955. struct extent_buffer *buf = NULL;
  956. int ret;
  957. buf = btrfs_find_create_tree_block(root, bytenr);
  958. if (IS_ERR(buf))
  959. return buf;
  960. ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
  961. if (ret) {
  962. free_extent_buffer(buf);
  963. return ERR_PTR(ret);
  964. }
  965. return buf;
  966. }
  967. void clean_tree_block(struct btrfs_trans_handle *trans,
  968. struct btrfs_fs_info *fs_info,
  969. struct extent_buffer *buf)
  970. {
  971. if (btrfs_header_generation(buf) ==
  972. fs_info->running_transaction->transid) {
  973. btrfs_assert_tree_locked(buf);
  974. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  975. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  976. -buf->len,
  977. fs_info->dirty_metadata_batch);
  978. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  979. btrfs_set_lock_blocking(buf);
  980. clear_extent_buffer_dirty(buf);
  981. }
  982. }
  983. }
  984. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  985. {
  986. struct btrfs_subvolume_writers *writers;
  987. int ret;
  988. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  989. if (!writers)
  990. return ERR_PTR(-ENOMEM);
  991. ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
  992. if (ret < 0) {
  993. kfree(writers);
  994. return ERR_PTR(ret);
  995. }
  996. init_waitqueue_head(&writers->wait);
  997. return writers;
  998. }
  999. static void
  1000. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1001. {
  1002. percpu_counter_destroy(&writers->counter);
  1003. kfree(writers);
  1004. }
  1005. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1006. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1007. u64 objectid)
  1008. {
  1009. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1010. root->node = NULL;
  1011. root->commit_root = NULL;
  1012. root->sectorsize = sectorsize;
  1013. root->nodesize = nodesize;
  1014. root->stripesize = stripesize;
  1015. root->state = 0;
  1016. root->orphan_cleanup_state = 0;
  1017. root->objectid = objectid;
  1018. root->last_trans = 0;
  1019. root->highest_objectid = 0;
  1020. root->nr_delalloc_inodes = 0;
  1021. root->nr_ordered_extents = 0;
  1022. root->name = NULL;
  1023. root->inode_tree = RB_ROOT;
  1024. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1025. root->block_rsv = NULL;
  1026. root->orphan_block_rsv = NULL;
  1027. INIT_LIST_HEAD(&root->dirty_list);
  1028. INIT_LIST_HEAD(&root->root_list);
  1029. INIT_LIST_HEAD(&root->delalloc_inodes);
  1030. INIT_LIST_HEAD(&root->delalloc_root);
  1031. INIT_LIST_HEAD(&root->ordered_extents);
  1032. INIT_LIST_HEAD(&root->ordered_root);
  1033. INIT_LIST_HEAD(&root->logged_list[0]);
  1034. INIT_LIST_HEAD(&root->logged_list[1]);
  1035. spin_lock_init(&root->orphan_lock);
  1036. spin_lock_init(&root->inode_lock);
  1037. spin_lock_init(&root->delalloc_lock);
  1038. spin_lock_init(&root->ordered_extent_lock);
  1039. spin_lock_init(&root->accounting_lock);
  1040. spin_lock_init(&root->log_extents_lock[0]);
  1041. spin_lock_init(&root->log_extents_lock[1]);
  1042. mutex_init(&root->objectid_mutex);
  1043. mutex_init(&root->log_mutex);
  1044. mutex_init(&root->ordered_extent_mutex);
  1045. mutex_init(&root->delalloc_mutex);
  1046. init_waitqueue_head(&root->log_writer_wait);
  1047. init_waitqueue_head(&root->log_commit_wait[0]);
  1048. init_waitqueue_head(&root->log_commit_wait[1]);
  1049. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1050. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1051. atomic_set(&root->log_commit[0], 0);
  1052. atomic_set(&root->log_commit[1], 0);
  1053. atomic_set(&root->log_writers, 0);
  1054. atomic_set(&root->log_batch, 0);
  1055. atomic_set(&root->orphan_inodes, 0);
  1056. atomic_set(&root->refs, 1);
  1057. atomic_set(&root->will_be_snapshoted, 0);
  1058. atomic_set(&root->qgroup_meta_rsv, 0);
  1059. root->log_transid = 0;
  1060. root->log_transid_committed = -1;
  1061. root->last_log_commit = 0;
  1062. if (!dummy)
  1063. extent_io_tree_init(&root->dirty_log_pages,
  1064. fs_info->btree_inode->i_mapping);
  1065. memset(&root->root_key, 0, sizeof(root->root_key));
  1066. memset(&root->root_item, 0, sizeof(root->root_item));
  1067. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1068. if (!dummy)
  1069. root->defrag_trans_start = fs_info->generation;
  1070. else
  1071. root->defrag_trans_start = 0;
  1072. root->root_key.objectid = objectid;
  1073. root->anon_dev = 0;
  1074. spin_lock_init(&root->root_item_lock);
  1075. }
  1076. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1077. gfp_t flags)
  1078. {
  1079. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1080. if (root)
  1081. root->fs_info = fs_info;
  1082. return root;
  1083. }
  1084. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1085. /* Should only be used by the testing infrastructure */
  1086. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
  1087. u32 sectorsize, u32 nodesize)
  1088. {
  1089. struct btrfs_root *root;
  1090. if (!fs_info)
  1091. return ERR_PTR(-EINVAL);
  1092. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1093. if (!root)
  1094. return ERR_PTR(-ENOMEM);
  1095. /* We don't use the stripesize in selftest, set it as sectorsize */
  1096. __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
  1097. BTRFS_ROOT_TREE_OBJECTID);
  1098. root->alloc_bytenr = 0;
  1099. return root;
  1100. }
  1101. #endif
  1102. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1103. struct btrfs_fs_info *fs_info,
  1104. u64 objectid)
  1105. {
  1106. struct extent_buffer *leaf;
  1107. struct btrfs_root *tree_root = fs_info->tree_root;
  1108. struct btrfs_root *root;
  1109. struct btrfs_key key;
  1110. int ret = 0;
  1111. uuid_le uuid;
  1112. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1113. if (!root)
  1114. return ERR_PTR(-ENOMEM);
  1115. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1116. tree_root->stripesize, root, fs_info, objectid);
  1117. root->root_key.objectid = objectid;
  1118. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1119. root->root_key.offset = 0;
  1120. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1121. if (IS_ERR(leaf)) {
  1122. ret = PTR_ERR(leaf);
  1123. leaf = NULL;
  1124. goto fail;
  1125. }
  1126. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1127. btrfs_set_header_bytenr(leaf, leaf->start);
  1128. btrfs_set_header_generation(leaf, trans->transid);
  1129. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1130. btrfs_set_header_owner(leaf, objectid);
  1131. root->node = leaf;
  1132. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1133. BTRFS_FSID_SIZE);
  1134. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1135. btrfs_header_chunk_tree_uuid(leaf),
  1136. BTRFS_UUID_SIZE);
  1137. btrfs_mark_buffer_dirty(leaf);
  1138. root->commit_root = btrfs_root_node(root);
  1139. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1140. root->root_item.flags = 0;
  1141. root->root_item.byte_limit = 0;
  1142. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1143. btrfs_set_root_generation(&root->root_item, trans->transid);
  1144. btrfs_set_root_level(&root->root_item, 0);
  1145. btrfs_set_root_refs(&root->root_item, 1);
  1146. btrfs_set_root_used(&root->root_item, leaf->len);
  1147. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1148. btrfs_set_root_dirid(&root->root_item, 0);
  1149. uuid_le_gen(&uuid);
  1150. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1151. root->root_item.drop_level = 0;
  1152. key.objectid = objectid;
  1153. key.type = BTRFS_ROOT_ITEM_KEY;
  1154. key.offset = 0;
  1155. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1156. if (ret)
  1157. goto fail;
  1158. btrfs_tree_unlock(leaf);
  1159. return root;
  1160. fail:
  1161. if (leaf) {
  1162. btrfs_tree_unlock(leaf);
  1163. free_extent_buffer(root->commit_root);
  1164. free_extent_buffer(leaf);
  1165. }
  1166. kfree(root);
  1167. return ERR_PTR(ret);
  1168. }
  1169. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1170. struct btrfs_fs_info *fs_info)
  1171. {
  1172. struct btrfs_root *root;
  1173. struct btrfs_root *tree_root = fs_info->tree_root;
  1174. struct extent_buffer *leaf;
  1175. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1176. if (!root)
  1177. return ERR_PTR(-ENOMEM);
  1178. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1179. tree_root->stripesize, root, fs_info,
  1180. BTRFS_TREE_LOG_OBJECTID);
  1181. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1182. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1183. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1184. /*
  1185. * DON'T set REF_COWS for log trees
  1186. *
  1187. * log trees do not get reference counted because they go away
  1188. * before a real commit is actually done. They do store pointers
  1189. * to file data extents, and those reference counts still get
  1190. * updated (along with back refs to the log tree).
  1191. */
  1192. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1193. NULL, 0, 0, 0);
  1194. if (IS_ERR(leaf)) {
  1195. kfree(root);
  1196. return ERR_CAST(leaf);
  1197. }
  1198. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1199. btrfs_set_header_bytenr(leaf, leaf->start);
  1200. btrfs_set_header_generation(leaf, trans->transid);
  1201. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1202. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1203. root->node = leaf;
  1204. write_extent_buffer(root->node, root->fs_info->fsid,
  1205. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1206. btrfs_mark_buffer_dirty(root->node);
  1207. btrfs_tree_unlock(root->node);
  1208. return root;
  1209. }
  1210. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1211. struct btrfs_fs_info *fs_info)
  1212. {
  1213. struct btrfs_root *log_root;
  1214. log_root = alloc_log_tree(trans, fs_info);
  1215. if (IS_ERR(log_root))
  1216. return PTR_ERR(log_root);
  1217. WARN_ON(fs_info->log_root_tree);
  1218. fs_info->log_root_tree = log_root;
  1219. return 0;
  1220. }
  1221. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1222. struct btrfs_root *root)
  1223. {
  1224. struct btrfs_root *log_root;
  1225. struct btrfs_inode_item *inode_item;
  1226. log_root = alloc_log_tree(trans, root->fs_info);
  1227. if (IS_ERR(log_root))
  1228. return PTR_ERR(log_root);
  1229. log_root->last_trans = trans->transid;
  1230. log_root->root_key.offset = root->root_key.objectid;
  1231. inode_item = &log_root->root_item.inode;
  1232. btrfs_set_stack_inode_generation(inode_item, 1);
  1233. btrfs_set_stack_inode_size(inode_item, 3);
  1234. btrfs_set_stack_inode_nlink(inode_item, 1);
  1235. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1236. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1237. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1238. WARN_ON(root->log_root);
  1239. root->log_root = log_root;
  1240. root->log_transid = 0;
  1241. root->log_transid_committed = -1;
  1242. root->last_log_commit = 0;
  1243. return 0;
  1244. }
  1245. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1246. struct btrfs_key *key)
  1247. {
  1248. struct btrfs_root *root;
  1249. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1250. struct btrfs_path *path;
  1251. u64 generation;
  1252. int ret;
  1253. path = btrfs_alloc_path();
  1254. if (!path)
  1255. return ERR_PTR(-ENOMEM);
  1256. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1257. if (!root) {
  1258. ret = -ENOMEM;
  1259. goto alloc_fail;
  1260. }
  1261. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1262. tree_root->stripesize, root, fs_info, key->objectid);
  1263. ret = btrfs_find_root(tree_root, key, path,
  1264. &root->root_item, &root->root_key);
  1265. if (ret) {
  1266. if (ret > 0)
  1267. ret = -ENOENT;
  1268. goto find_fail;
  1269. }
  1270. generation = btrfs_root_generation(&root->root_item);
  1271. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1272. generation);
  1273. if (IS_ERR(root->node)) {
  1274. ret = PTR_ERR(root->node);
  1275. goto find_fail;
  1276. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1277. ret = -EIO;
  1278. free_extent_buffer(root->node);
  1279. goto find_fail;
  1280. }
  1281. root->commit_root = btrfs_root_node(root);
  1282. out:
  1283. btrfs_free_path(path);
  1284. return root;
  1285. find_fail:
  1286. kfree(root);
  1287. alloc_fail:
  1288. root = ERR_PTR(ret);
  1289. goto out;
  1290. }
  1291. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1292. struct btrfs_key *location)
  1293. {
  1294. struct btrfs_root *root;
  1295. root = btrfs_read_tree_root(tree_root, location);
  1296. if (IS_ERR(root))
  1297. return root;
  1298. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1299. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1300. btrfs_check_and_init_root_item(&root->root_item);
  1301. }
  1302. return root;
  1303. }
  1304. int btrfs_init_fs_root(struct btrfs_root *root)
  1305. {
  1306. int ret;
  1307. struct btrfs_subvolume_writers *writers;
  1308. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1309. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1310. GFP_NOFS);
  1311. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1312. ret = -ENOMEM;
  1313. goto fail;
  1314. }
  1315. writers = btrfs_alloc_subvolume_writers();
  1316. if (IS_ERR(writers)) {
  1317. ret = PTR_ERR(writers);
  1318. goto fail;
  1319. }
  1320. root->subv_writers = writers;
  1321. btrfs_init_free_ino_ctl(root);
  1322. spin_lock_init(&root->ino_cache_lock);
  1323. init_waitqueue_head(&root->ino_cache_wait);
  1324. ret = get_anon_bdev(&root->anon_dev);
  1325. if (ret)
  1326. goto fail;
  1327. mutex_lock(&root->objectid_mutex);
  1328. ret = btrfs_find_highest_objectid(root,
  1329. &root->highest_objectid);
  1330. if (ret) {
  1331. mutex_unlock(&root->objectid_mutex);
  1332. goto fail;
  1333. }
  1334. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1335. mutex_unlock(&root->objectid_mutex);
  1336. return 0;
  1337. fail:
  1338. /* the caller is responsible to call free_fs_root */
  1339. return ret;
  1340. }
  1341. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1342. u64 root_id)
  1343. {
  1344. struct btrfs_root *root;
  1345. spin_lock(&fs_info->fs_roots_radix_lock);
  1346. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1347. (unsigned long)root_id);
  1348. spin_unlock(&fs_info->fs_roots_radix_lock);
  1349. return root;
  1350. }
  1351. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1352. struct btrfs_root *root)
  1353. {
  1354. int ret;
  1355. ret = radix_tree_preload(GFP_NOFS);
  1356. if (ret)
  1357. return ret;
  1358. spin_lock(&fs_info->fs_roots_radix_lock);
  1359. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1360. (unsigned long)root->root_key.objectid,
  1361. root);
  1362. if (ret == 0)
  1363. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1364. spin_unlock(&fs_info->fs_roots_radix_lock);
  1365. radix_tree_preload_end();
  1366. return ret;
  1367. }
  1368. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1369. struct btrfs_key *location,
  1370. bool check_ref)
  1371. {
  1372. struct btrfs_root *root;
  1373. struct btrfs_path *path;
  1374. struct btrfs_key key;
  1375. int ret;
  1376. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1377. return fs_info->tree_root;
  1378. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1379. return fs_info->extent_root;
  1380. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1381. return fs_info->chunk_root;
  1382. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1383. return fs_info->dev_root;
  1384. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1385. return fs_info->csum_root;
  1386. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1387. return fs_info->quota_root ? fs_info->quota_root :
  1388. ERR_PTR(-ENOENT);
  1389. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1390. return fs_info->uuid_root ? fs_info->uuid_root :
  1391. ERR_PTR(-ENOENT);
  1392. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1393. return fs_info->free_space_root ? fs_info->free_space_root :
  1394. ERR_PTR(-ENOENT);
  1395. again:
  1396. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1397. if (root) {
  1398. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1399. return ERR_PTR(-ENOENT);
  1400. return root;
  1401. }
  1402. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1403. if (IS_ERR(root))
  1404. return root;
  1405. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1406. ret = -ENOENT;
  1407. goto fail;
  1408. }
  1409. ret = btrfs_init_fs_root(root);
  1410. if (ret)
  1411. goto fail;
  1412. path = btrfs_alloc_path();
  1413. if (!path) {
  1414. ret = -ENOMEM;
  1415. goto fail;
  1416. }
  1417. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1418. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1419. key.offset = location->objectid;
  1420. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1421. btrfs_free_path(path);
  1422. if (ret < 0)
  1423. goto fail;
  1424. if (ret == 0)
  1425. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1426. ret = btrfs_insert_fs_root(fs_info, root);
  1427. if (ret) {
  1428. if (ret == -EEXIST) {
  1429. free_fs_root(root);
  1430. goto again;
  1431. }
  1432. goto fail;
  1433. }
  1434. return root;
  1435. fail:
  1436. free_fs_root(root);
  1437. return ERR_PTR(ret);
  1438. }
  1439. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1440. {
  1441. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1442. int ret = 0;
  1443. struct btrfs_device *device;
  1444. struct backing_dev_info *bdi;
  1445. rcu_read_lock();
  1446. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1447. if (!device->bdev)
  1448. continue;
  1449. bdi = device->bdev->bd_bdi;
  1450. if (bdi_congested(bdi, bdi_bits)) {
  1451. ret = 1;
  1452. break;
  1453. }
  1454. }
  1455. rcu_read_unlock();
  1456. return ret;
  1457. }
  1458. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1459. {
  1460. int err;
  1461. err = bdi_setup_and_register(bdi, "btrfs");
  1462. if (err)
  1463. return err;
  1464. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  1465. bdi->congested_fn = btrfs_congested_fn;
  1466. bdi->congested_data = info;
  1467. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1468. return 0;
  1469. }
  1470. /*
  1471. * called by the kthread helper functions to finally call the bio end_io
  1472. * functions. This is where read checksum verification actually happens
  1473. */
  1474. static void end_workqueue_fn(struct btrfs_work *work)
  1475. {
  1476. struct bio *bio;
  1477. struct btrfs_end_io_wq *end_io_wq;
  1478. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1479. bio = end_io_wq->bio;
  1480. bio->bi_error = end_io_wq->error;
  1481. bio->bi_private = end_io_wq->private;
  1482. bio->bi_end_io = end_io_wq->end_io;
  1483. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1484. bio_endio(bio);
  1485. }
  1486. static int cleaner_kthread(void *arg)
  1487. {
  1488. struct btrfs_root *root = arg;
  1489. int again;
  1490. struct btrfs_trans_handle *trans;
  1491. do {
  1492. again = 0;
  1493. /* Make the cleaner go to sleep early. */
  1494. if (btrfs_need_cleaner_sleep(root))
  1495. goto sleep;
  1496. /*
  1497. * Do not do anything if we might cause open_ctree() to block
  1498. * before we have finished mounting the filesystem.
  1499. */
  1500. if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
  1501. goto sleep;
  1502. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1503. goto sleep;
  1504. /*
  1505. * Avoid the problem that we change the status of the fs
  1506. * during the above check and trylock.
  1507. */
  1508. if (btrfs_need_cleaner_sleep(root)) {
  1509. mutex_unlock(&root->fs_info->cleaner_mutex);
  1510. goto sleep;
  1511. }
  1512. mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
  1513. btrfs_run_delayed_iputs(root);
  1514. mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
  1515. again = btrfs_clean_one_deleted_snapshot(root);
  1516. mutex_unlock(&root->fs_info->cleaner_mutex);
  1517. /*
  1518. * The defragger has dealt with the R/O remount and umount,
  1519. * needn't do anything special here.
  1520. */
  1521. btrfs_run_defrag_inodes(root->fs_info);
  1522. /*
  1523. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1524. * with relocation (btrfs_relocate_chunk) and relocation
  1525. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1526. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1527. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1528. * unused block groups.
  1529. */
  1530. btrfs_delete_unused_bgs(root->fs_info);
  1531. sleep:
  1532. if (!again) {
  1533. set_current_state(TASK_INTERRUPTIBLE);
  1534. if (!kthread_should_stop())
  1535. schedule();
  1536. __set_current_state(TASK_RUNNING);
  1537. }
  1538. } while (!kthread_should_stop());
  1539. /*
  1540. * Transaction kthread is stopped before us and wakes us up.
  1541. * However we might have started a new transaction and COWed some
  1542. * tree blocks when deleting unused block groups for example. So
  1543. * make sure we commit the transaction we started to have a clean
  1544. * shutdown when evicting the btree inode - if it has dirty pages
  1545. * when we do the final iput() on it, eviction will trigger a
  1546. * writeback for it which will fail with null pointer dereferences
  1547. * since work queues and other resources were already released and
  1548. * destroyed by the time the iput/eviction/writeback is made.
  1549. */
  1550. trans = btrfs_attach_transaction(root);
  1551. if (IS_ERR(trans)) {
  1552. if (PTR_ERR(trans) != -ENOENT)
  1553. btrfs_err(root->fs_info,
  1554. "cleaner transaction attach returned %ld",
  1555. PTR_ERR(trans));
  1556. } else {
  1557. int ret;
  1558. ret = btrfs_commit_transaction(trans, root);
  1559. if (ret)
  1560. btrfs_err(root->fs_info,
  1561. "cleaner open transaction commit returned %d",
  1562. ret);
  1563. }
  1564. return 0;
  1565. }
  1566. static int transaction_kthread(void *arg)
  1567. {
  1568. struct btrfs_root *root = arg;
  1569. struct btrfs_trans_handle *trans;
  1570. struct btrfs_transaction *cur;
  1571. u64 transid;
  1572. unsigned long now;
  1573. unsigned long delay;
  1574. bool cannot_commit;
  1575. do {
  1576. cannot_commit = false;
  1577. delay = HZ * root->fs_info->commit_interval;
  1578. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1579. spin_lock(&root->fs_info->trans_lock);
  1580. cur = root->fs_info->running_transaction;
  1581. if (!cur) {
  1582. spin_unlock(&root->fs_info->trans_lock);
  1583. goto sleep;
  1584. }
  1585. now = get_seconds();
  1586. if (cur->state < TRANS_STATE_BLOCKED &&
  1587. (now < cur->start_time ||
  1588. now - cur->start_time < root->fs_info->commit_interval)) {
  1589. spin_unlock(&root->fs_info->trans_lock);
  1590. delay = HZ * 5;
  1591. goto sleep;
  1592. }
  1593. transid = cur->transid;
  1594. spin_unlock(&root->fs_info->trans_lock);
  1595. /* If the file system is aborted, this will always fail. */
  1596. trans = btrfs_attach_transaction(root);
  1597. if (IS_ERR(trans)) {
  1598. if (PTR_ERR(trans) != -ENOENT)
  1599. cannot_commit = true;
  1600. goto sleep;
  1601. }
  1602. if (transid == trans->transid) {
  1603. btrfs_commit_transaction(trans, root);
  1604. } else {
  1605. btrfs_end_transaction(trans, root);
  1606. }
  1607. sleep:
  1608. wake_up_process(root->fs_info->cleaner_kthread);
  1609. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1610. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1611. &root->fs_info->fs_state)))
  1612. btrfs_cleanup_transaction(root);
  1613. set_current_state(TASK_INTERRUPTIBLE);
  1614. if (!kthread_should_stop() &&
  1615. (!btrfs_transaction_blocked(root->fs_info) ||
  1616. cannot_commit))
  1617. schedule_timeout(delay);
  1618. __set_current_state(TASK_RUNNING);
  1619. } while (!kthread_should_stop());
  1620. return 0;
  1621. }
  1622. /*
  1623. * this will find the highest generation in the array of
  1624. * root backups. The index of the highest array is returned,
  1625. * or -1 if we can't find anything.
  1626. *
  1627. * We check to make sure the array is valid by comparing the
  1628. * generation of the latest root in the array with the generation
  1629. * in the super block. If they don't match we pitch it.
  1630. */
  1631. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1632. {
  1633. u64 cur;
  1634. int newest_index = -1;
  1635. struct btrfs_root_backup *root_backup;
  1636. int i;
  1637. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1638. root_backup = info->super_copy->super_roots + i;
  1639. cur = btrfs_backup_tree_root_gen(root_backup);
  1640. if (cur == newest_gen)
  1641. newest_index = i;
  1642. }
  1643. /* check to see if we actually wrapped around */
  1644. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1645. root_backup = info->super_copy->super_roots;
  1646. cur = btrfs_backup_tree_root_gen(root_backup);
  1647. if (cur == newest_gen)
  1648. newest_index = 0;
  1649. }
  1650. return newest_index;
  1651. }
  1652. /*
  1653. * find the oldest backup so we know where to store new entries
  1654. * in the backup array. This will set the backup_root_index
  1655. * field in the fs_info struct
  1656. */
  1657. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1658. u64 newest_gen)
  1659. {
  1660. int newest_index = -1;
  1661. newest_index = find_newest_super_backup(info, newest_gen);
  1662. /* if there was garbage in there, just move along */
  1663. if (newest_index == -1) {
  1664. info->backup_root_index = 0;
  1665. } else {
  1666. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1667. }
  1668. }
  1669. /*
  1670. * copy all the root pointers into the super backup array.
  1671. * this will bump the backup pointer by one when it is
  1672. * done
  1673. */
  1674. static void backup_super_roots(struct btrfs_fs_info *info)
  1675. {
  1676. int next_backup;
  1677. struct btrfs_root_backup *root_backup;
  1678. int last_backup;
  1679. next_backup = info->backup_root_index;
  1680. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1681. BTRFS_NUM_BACKUP_ROOTS;
  1682. /*
  1683. * just overwrite the last backup if we're at the same generation
  1684. * this happens only at umount
  1685. */
  1686. root_backup = info->super_for_commit->super_roots + last_backup;
  1687. if (btrfs_backup_tree_root_gen(root_backup) ==
  1688. btrfs_header_generation(info->tree_root->node))
  1689. next_backup = last_backup;
  1690. root_backup = info->super_for_commit->super_roots + next_backup;
  1691. /*
  1692. * make sure all of our padding and empty slots get zero filled
  1693. * regardless of which ones we use today
  1694. */
  1695. memset(root_backup, 0, sizeof(*root_backup));
  1696. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1697. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1698. btrfs_set_backup_tree_root_gen(root_backup,
  1699. btrfs_header_generation(info->tree_root->node));
  1700. btrfs_set_backup_tree_root_level(root_backup,
  1701. btrfs_header_level(info->tree_root->node));
  1702. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1703. btrfs_set_backup_chunk_root_gen(root_backup,
  1704. btrfs_header_generation(info->chunk_root->node));
  1705. btrfs_set_backup_chunk_root_level(root_backup,
  1706. btrfs_header_level(info->chunk_root->node));
  1707. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1708. btrfs_set_backup_extent_root_gen(root_backup,
  1709. btrfs_header_generation(info->extent_root->node));
  1710. btrfs_set_backup_extent_root_level(root_backup,
  1711. btrfs_header_level(info->extent_root->node));
  1712. /*
  1713. * we might commit during log recovery, which happens before we set
  1714. * the fs_root. Make sure it is valid before we fill it in.
  1715. */
  1716. if (info->fs_root && info->fs_root->node) {
  1717. btrfs_set_backup_fs_root(root_backup,
  1718. info->fs_root->node->start);
  1719. btrfs_set_backup_fs_root_gen(root_backup,
  1720. btrfs_header_generation(info->fs_root->node));
  1721. btrfs_set_backup_fs_root_level(root_backup,
  1722. btrfs_header_level(info->fs_root->node));
  1723. }
  1724. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1725. btrfs_set_backup_dev_root_gen(root_backup,
  1726. btrfs_header_generation(info->dev_root->node));
  1727. btrfs_set_backup_dev_root_level(root_backup,
  1728. btrfs_header_level(info->dev_root->node));
  1729. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1730. btrfs_set_backup_csum_root_gen(root_backup,
  1731. btrfs_header_generation(info->csum_root->node));
  1732. btrfs_set_backup_csum_root_level(root_backup,
  1733. btrfs_header_level(info->csum_root->node));
  1734. btrfs_set_backup_total_bytes(root_backup,
  1735. btrfs_super_total_bytes(info->super_copy));
  1736. btrfs_set_backup_bytes_used(root_backup,
  1737. btrfs_super_bytes_used(info->super_copy));
  1738. btrfs_set_backup_num_devices(root_backup,
  1739. btrfs_super_num_devices(info->super_copy));
  1740. /*
  1741. * if we don't copy this out to the super_copy, it won't get remembered
  1742. * for the next commit
  1743. */
  1744. memcpy(&info->super_copy->super_roots,
  1745. &info->super_for_commit->super_roots,
  1746. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1747. }
  1748. /*
  1749. * this copies info out of the root backup array and back into
  1750. * the in-memory super block. It is meant to help iterate through
  1751. * the array, so you send it the number of backups you've already
  1752. * tried and the last backup index you used.
  1753. *
  1754. * this returns -1 when it has tried all the backups
  1755. */
  1756. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1757. struct btrfs_super_block *super,
  1758. int *num_backups_tried, int *backup_index)
  1759. {
  1760. struct btrfs_root_backup *root_backup;
  1761. int newest = *backup_index;
  1762. if (*num_backups_tried == 0) {
  1763. u64 gen = btrfs_super_generation(super);
  1764. newest = find_newest_super_backup(info, gen);
  1765. if (newest == -1)
  1766. return -1;
  1767. *backup_index = newest;
  1768. *num_backups_tried = 1;
  1769. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1770. /* we've tried all the backups, all done */
  1771. return -1;
  1772. } else {
  1773. /* jump to the next oldest backup */
  1774. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1775. BTRFS_NUM_BACKUP_ROOTS;
  1776. *backup_index = newest;
  1777. *num_backups_tried += 1;
  1778. }
  1779. root_backup = super->super_roots + newest;
  1780. btrfs_set_super_generation(super,
  1781. btrfs_backup_tree_root_gen(root_backup));
  1782. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1783. btrfs_set_super_root_level(super,
  1784. btrfs_backup_tree_root_level(root_backup));
  1785. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1786. /*
  1787. * fixme: the total bytes and num_devices need to match or we should
  1788. * need a fsck
  1789. */
  1790. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1791. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1792. return 0;
  1793. }
  1794. /* helper to cleanup workers */
  1795. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1796. {
  1797. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1798. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1799. btrfs_destroy_workqueue(fs_info->workers);
  1800. btrfs_destroy_workqueue(fs_info->endio_workers);
  1801. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1802. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1803. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1804. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1805. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1806. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1807. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1808. btrfs_destroy_workqueue(fs_info->submit_workers);
  1809. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1810. btrfs_destroy_workqueue(fs_info->caching_workers);
  1811. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1812. btrfs_destroy_workqueue(fs_info->flush_workers);
  1813. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1814. btrfs_destroy_workqueue(fs_info->extent_workers);
  1815. }
  1816. static void free_root_extent_buffers(struct btrfs_root *root)
  1817. {
  1818. if (root) {
  1819. free_extent_buffer(root->node);
  1820. free_extent_buffer(root->commit_root);
  1821. root->node = NULL;
  1822. root->commit_root = NULL;
  1823. }
  1824. }
  1825. /* helper to cleanup tree roots */
  1826. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1827. {
  1828. free_root_extent_buffers(info->tree_root);
  1829. free_root_extent_buffers(info->dev_root);
  1830. free_root_extent_buffers(info->extent_root);
  1831. free_root_extent_buffers(info->csum_root);
  1832. free_root_extent_buffers(info->quota_root);
  1833. free_root_extent_buffers(info->uuid_root);
  1834. if (chunk_root)
  1835. free_root_extent_buffers(info->chunk_root);
  1836. free_root_extent_buffers(info->free_space_root);
  1837. }
  1838. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1839. {
  1840. int ret;
  1841. struct btrfs_root *gang[8];
  1842. int i;
  1843. while (!list_empty(&fs_info->dead_roots)) {
  1844. gang[0] = list_entry(fs_info->dead_roots.next,
  1845. struct btrfs_root, root_list);
  1846. list_del(&gang[0]->root_list);
  1847. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1848. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1849. } else {
  1850. free_extent_buffer(gang[0]->node);
  1851. free_extent_buffer(gang[0]->commit_root);
  1852. btrfs_put_fs_root(gang[0]);
  1853. }
  1854. }
  1855. while (1) {
  1856. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1857. (void **)gang, 0,
  1858. ARRAY_SIZE(gang));
  1859. if (!ret)
  1860. break;
  1861. for (i = 0; i < ret; i++)
  1862. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1863. }
  1864. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1865. btrfs_free_log_root_tree(NULL, fs_info);
  1866. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1867. fs_info->pinned_extents);
  1868. }
  1869. }
  1870. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1871. {
  1872. mutex_init(&fs_info->scrub_lock);
  1873. atomic_set(&fs_info->scrubs_running, 0);
  1874. atomic_set(&fs_info->scrub_pause_req, 0);
  1875. atomic_set(&fs_info->scrubs_paused, 0);
  1876. atomic_set(&fs_info->scrub_cancel_req, 0);
  1877. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1878. fs_info->scrub_workers_refcnt = 0;
  1879. }
  1880. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1881. {
  1882. spin_lock_init(&fs_info->balance_lock);
  1883. mutex_init(&fs_info->balance_mutex);
  1884. atomic_set(&fs_info->balance_running, 0);
  1885. atomic_set(&fs_info->balance_pause_req, 0);
  1886. atomic_set(&fs_info->balance_cancel_req, 0);
  1887. fs_info->balance_ctl = NULL;
  1888. init_waitqueue_head(&fs_info->balance_wait_q);
  1889. }
  1890. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1891. struct btrfs_root *tree_root)
  1892. {
  1893. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1894. set_nlink(fs_info->btree_inode, 1);
  1895. /*
  1896. * we set the i_size on the btree inode to the max possible int.
  1897. * the real end of the address space is determined by all of
  1898. * the devices in the system
  1899. */
  1900. fs_info->btree_inode->i_size = OFFSET_MAX;
  1901. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1902. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1903. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1904. fs_info->btree_inode->i_mapping);
  1905. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1906. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1907. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1908. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1909. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1910. sizeof(struct btrfs_key));
  1911. set_bit(BTRFS_INODE_DUMMY,
  1912. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1913. btrfs_insert_inode_hash(fs_info->btree_inode);
  1914. }
  1915. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1916. {
  1917. fs_info->dev_replace.lock_owner = 0;
  1918. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1919. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1920. rwlock_init(&fs_info->dev_replace.lock);
  1921. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1922. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1923. init_waitqueue_head(&fs_info->replace_wait);
  1924. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1925. }
  1926. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1927. {
  1928. spin_lock_init(&fs_info->qgroup_lock);
  1929. mutex_init(&fs_info->qgroup_ioctl_lock);
  1930. fs_info->qgroup_tree = RB_ROOT;
  1931. fs_info->qgroup_op_tree = RB_ROOT;
  1932. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1933. fs_info->qgroup_seq = 1;
  1934. fs_info->qgroup_ulist = NULL;
  1935. fs_info->qgroup_rescan_running = false;
  1936. mutex_init(&fs_info->qgroup_rescan_lock);
  1937. }
  1938. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1939. struct btrfs_fs_devices *fs_devices)
  1940. {
  1941. int max_active = fs_info->thread_pool_size;
  1942. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1943. fs_info->workers =
  1944. btrfs_alloc_workqueue(fs_info, "worker",
  1945. flags | WQ_HIGHPRI, max_active, 16);
  1946. fs_info->delalloc_workers =
  1947. btrfs_alloc_workqueue(fs_info, "delalloc",
  1948. flags, max_active, 2);
  1949. fs_info->flush_workers =
  1950. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  1951. flags, max_active, 0);
  1952. fs_info->caching_workers =
  1953. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  1954. /*
  1955. * a higher idle thresh on the submit workers makes it much more
  1956. * likely that bios will be send down in a sane order to the
  1957. * devices
  1958. */
  1959. fs_info->submit_workers =
  1960. btrfs_alloc_workqueue(fs_info, "submit", flags,
  1961. min_t(u64, fs_devices->num_devices,
  1962. max_active), 64);
  1963. fs_info->fixup_workers =
  1964. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  1965. /*
  1966. * endios are largely parallel and should have a very
  1967. * low idle thresh
  1968. */
  1969. fs_info->endio_workers =
  1970. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  1971. fs_info->endio_meta_workers =
  1972. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  1973. max_active, 4);
  1974. fs_info->endio_meta_write_workers =
  1975. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  1976. max_active, 2);
  1977. fs_info->endio_raid56_workers =
  1978. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  1979. max_active, 4);
  1980. fs_info->endio_repair_workers =
  1981. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  1982. fs_info->rmw_workers =
  1983. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  1984. fs_info->endio_write_workers =
  1985. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  1986. max_active, 2);
  1987. fs_info->endio_freespace_worker =
  1988. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  1989. max_active, 0);
  1990. fs_info->delayed_workers =
  1991. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  1992. max_active, 0);
  1993. fs_info->readahead_workers =
  1994. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  1995. max_active, 2);
  1996. fs_info->qgroup_rescan_workers =
  1997. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  1998. fs_info->extent_workers =
  1999. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2000. min_t(u64, fs_devices->num_devices,
  2001. max_active), 8);
  2002. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2003. fs_info->submit_workers && fs_info->flush_workers &&
  2004. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2005. fs_info->endio_meta_write_workers &&
  2006. fs_info->endio_repair_workers &&
  2007. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2008. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2009. fs_info->caching_workers && fs_info->readahead_workers &&
  2010. fs_info->fixup_workers && fs_info->delayed_workers &&
  2011. fs_info->extent_workers &&
  2012. fs_info->qgroup_rescan_workers)) {
  2013. return -ENOMEM;
  2014. }
  2015. return 0;
  2016. }
  2017. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2018. struct btrfs_fs_devices *fs_devices)
  2019. {
  2020. int ret;
  2021. struct btrfs_root *tree_root = fs_info->tree_root;
  2022. struct btrfs_root *log_tree_root;
  2023. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2024. u64 bytenr = btrfs_super_log_root(disk_super);
  2025. if (fs_devices->rw_devices == 0) {
  2026. btrfs_warn(fs_info, "log replay required on RO media");
  2027. return -EIO;
  2028. }
  2029. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2030. if (!log_tree_root)
  2031. return -ENOMEM;
  2032. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2033. tree_root->stripesize, log_tree_root, fs_info,
  2034. BTRFS_TREE_LOG_OBJECTID);
  2035. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2036. fs_info->generation + 1);
  2037. if (IS_ERR(log_tree_root->node)) {
  2038. btrfs_warn(fs_info, "failed to read log tree");
  2039. ret = PTR_ERR(log_tree_root->node);
  2040. kfree(log_tree_root);
  2041. return ret;
  2042. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2043. btrfs_err(fs_info, "failed to read log tree");
  2044. free_extent_buffer(log_tree_root->node);
  2045. kfree(log_tree_root);
  2046. return -EIO;
  2047. }
  2048. /* returns with log_tree_root freed on success */
  2049. ret = btrfs_recover_log_trees(log_tree_root);
  2050. if (ret) {
  2051. btrfs_handle_fs_error(tree_root->fs_info, ret,
  2052. "Failed to recover log tree");
  2053. free_extent_buffer(log_tree_root->node);
  2054. kfree(log_tree_root);
  2055. return ret;
  2056. }
  2057. if (fs_info->sb->s_flags & MS_RDONLY) {
  2058. ret = btrfs_commit_super(tree_root);
  2059. if (ret)
  2060. return ret;
  2061. }
  2062. return 0;
  2063. }
  2064. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2065. struct btrfs_root *tree_root)
  2066. {
  2067. struct btrfs_root *root;
  2068. struct btrfs_key location;
  2069. int ret;
  2070. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2071. location.type = BTRFS_ROOT_ITEM_KEY;
  2072. location.offset = 0;
  2073. root = btrfs_read_tree_root(tree_root, &location);
  2074. if (IS_ERR(root))
  2075. return PTR_ERR(root);
  2076. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2077. fs_info->extent_root = root;
  2078. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2079. root = btrfs_read_tree_root(tree_root, &location);
  2080. if (IS_ERR(root))
  2081. return PTR_ERR(root);
  2082. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2083. fs_info->dev_root = root;
  2084. btrfs_init_devices_late(fs_info);
  2085. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2086. root = btrfs_read_tree_root(tree_root, &location);
  2087. if (IS_ERR(root))
  2088. return PTR_ERR(root);
  2089. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2090. fs_info->csum_root = root;
  2091. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2092. root = btrfs_read_tree_root(tree_root, &location);
  2093. if (!IS_ERR(root)) {
  2094. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2095. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2096. fs_info->quota_root = root;
  2097. }
  2098. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2099. root = btrfs_read_tree_root(tree_root, &location);
  2100. if (IS_ERR(root)) {
  2101. ret = PTR_ERR(root);
  2102. if (ret != -ENOENT)
  2103. return ret;
  2104. } else {
  2105. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2106. fs_info->uuid_root = root;
  2107. }
  2108. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2109. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2110. root = btrfs_read_tree_root(tree_root, &location);
  2111. if (IS_ERR(root))
  2112. return PTR_ERR(root);
  2113. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2114. fs_info->free_space_root = root;
  2115. }
  2116. return 0;
  2117. }
  2118. int open_ctree(struct super_block *sb,
  2119. struct btrfs_fs_devices *fs_devices,
  2120. char *options)
  2121. {
  2122. u32 sectorsize;
  2123. u32 nodesize;
  2124. u32 stripesize;
  2125. u64 generation;
  2126. u64 features;
  2127. struct btrfs_key location;
  2128. struct buffer_head *bh;
  2129. struct btrfs_super_block *disk_super;
  2130. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2131. struct btrfs_root *tree_root;
  2132. struct btrfs_root *chunk_root;
  2133. int ret;
  2134. int err = -EINVAL;
  2135. int num_backups_tried = 0;
  2136. int backup_index = 0;
  2137. int max_active;
  2138. int clear_free_space_tree = 0;
  2139. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2140. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2141. if (!tree_root || !chunk_root) {
  2142. err = -ENOMEM;
  2143. goto fail;
  2144. }
  2145. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2146. if (ret) {
  2147. err = ret;
  2148. goto fail;
  2149. }
  2150. ret = setup_bdi(fs_info, &fs_info->bdi);
  2151. if (ret) {
  2152. err = ret;
  2153. goto fail_srcu;
  2154. }
  2155. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2156. if (ret) {
  2157. err = ret;
  2158. goto fail_bdi;
  2159. }
  2160. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2161. (1 + ilog2(nr_cpu_ids));
  2162. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2163. if (ret) {
  2164. err = ret;
  2165. goto fail_dirty_metadata_bytes;
  2166. }
  2167. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2168. if (ret) {
  2169. err = ret;
  2170. goto fail_delalloc_bytes;
  2171. }
  2172. fs_info->btree_inode = new_inode(sb);
  2173. if (!fs_info->btree_inode) {
  2174. err = -ENOMEM;
  2175. goto fail_bio_counter;
  2176. }
  2177. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2178. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2179. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2180. INIT_LIST_HEAD(&fs_info->trans_list);
  2181. INIT_LIST_HEAD(&fs_info->dead_roots);
  2182. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2183. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2184. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2185. spin_lock_init(&fs_info->delalloc_root_lock);
  2186. spin_lock_init(&fs_info->trans_lock);
  2187. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2188. spin_lock_init(&fs_info->delayed_iput_lock);
  2189. spin_lock_init(&fs_info->defrag_inodes_lock);
  2190. spin_lock_init(&fs_info->free_chunk_lock);
  2191. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2192. spin_lock_init(&fs_info->super_lock);
  2193. spin_lock_init(&fs_info->qgroup_op_lock);
  2194. spin_lock_init(&fs_info->buffer_lock);
  2195. spin_lock_init(&fs_info->unused_bgs_lock);
  2196. rwlock_init(&fs_info->tree_mod_log_lock);
  2197. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2198. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2199. mutex_init(&fs_info->reloc_mutex);
  2200. mutex_init(&fs_info->delalloc_root_mutex);
  2201. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2202. seqlock_init(&fs_info->profiles_lock);
  2203. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2204. INIT_LIST_HEAD(&fs_info->space_info);
  2205. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2206. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2207. btrfs_mapping_init(&fs_info->mapping_tree);
  2208. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2209. BTRFS_BLOCK_RSV_GLOBAL);
  2210. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2211. BTRFS_BLOCK_RSV_DELALLOC);
  2212. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2213. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2214. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2215. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2216. BTRFS_BLOCK_RSV_DELOPS);
  2217. atomic_set(&fs_info->nr_async_submits, 0);
  2218. atomic_set(&fs_info->async_delalloc_pages, 0);
  2219. atomic_set(&fs_info->async_submit_draining, 0);
  2220. atomic_set(&fs_info->nr_async_bios, 0);
  2221. atomic_set(&fs_info->defrag_running, 0);
  2222. atomic_set(&fs_info->qgroup_op_seq, 0);
  2223. atomic_set(&fs_info->reada_works_cnt, 0);
  2224. atomic64_set(&fs_info->tree_mod_seq, 0);
  2225. fs_info->fs_frozen = 0;
  2226. fs_info->sb = sb;
  2227. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2228. fs_info->metadata_ratio = 0;
  2229. fs_info->defrag_inodes = RB_ROOT;
  2230. fs_info->free_chunk_space = 0;
  2231. fs_info->tree_mod_log = RB_ROOT;
  2232. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2233. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2234. /* readahead state */
  2235. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2236. spin_lock_init(&fs_info->reada_lock);
  2237. fs_info->thread_pool_size = min_t(unsigned long,
  2238. num_online_cpus() + 2, 8);
  2239. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2240. spin_lock_init(&fs_info->ordered_root_lock);
  2241. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2242. GFP_KERNEL);
  2243. if (!fs_info->delayed_root) {
  2244. err = -ENOMEM;
  2245. goto fail_iput;
  2246. }
  2247. btrfs_init_delayed_root(fs_info->delayed_root);
  2248. btrfs_init_scrub(fs_info);
  2249. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2250. fs_info->check_integrity_print_mask = 0;
  2251. #endif
  2252. btrfs_init_balance(fs_info);
  2253. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2254. sb->s_blocksize = 4096;
  2255. sb->s_blocksize_bits = blksize_bits(4096);
  2256. sb->s_bdi = &fs_info->bdi;
  2257. btrfs_init_btree_inode(fs_info, tree_root);
  2258. spin_lock_init(&fs_info->block_group_cache_lock);
  2259. fs_info->block_group_cache_tree = RB_ROOT;
  2260. fs_info->first_logical_byte = (u64)-1;
  2261. extent_io_tree_init(&fs_info->freed_extents[0],
  2262. fs_info->btree_inode->i_mapping);
  2263. extent_io_tree_init(&fs_info->freed_extents[1],
  2264. fs_info->btree_inode->i_mapping);
  2265. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2266. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2267. mutex_init(&fs_info->ordered_operations_mutex);
  2268. mutex_init(&fs_info->tree_log_mutex);
  2269. mutex_init(&fs_info->chunk_mutex);
  2270. mutex_init(&fs_info->transaction_kthread_mutex);
  2271. mutex_init(&fs_info->cleaner_mutex);
  2272. mutex_init(&fs_info->volume_mutex);
  2273. mutex_init(&fs_info->ro_block_group_mutex);
  2274. init_rwsem(&fs_info->commit_root_sem);
  2275. init_rwsem(&fs_info->cleanup_work_sem);
  2276. init_rwsem(&fs_info->subvol_sem);
  2277. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2278. btrfs_init_dev_replace_locks(fs_info);
  2279. btrfs_init_qgroup(fs_info);
  2280. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2281. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2282. init_waitqueue_head(&fs_info->transaction_throttle);
  2283. init_waitqueue_head(&fs_info->transaction_wait);
  2284. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2285. init_waitqueue_head(&fs_info->async_submit_wait);
  2286. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2287. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2288. if (ret) {
  2289. err = ret;
  2290. goto fail_alloc;
  2291. }
  2292. __setup_root(4096, 4096, 4096, tree_root,
  2293. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2294. invalidate_bdev(fs_devices->latest_bdev);
  2295. /*
  2296. * Read super block and check the signature bytes only
  2297. */
  2298. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2299. if (IS_ERR(bh)) {
  2300. err = PTR_ERR(bh);
  2301. goto fail_alloc;
  2302. }
  2303. /*
  2304. * We want to check superblock checksum, the type is stored inside.
  2305. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2306. */
  2307. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2308. btrfs_err(fs_info, "superblock checksum mismatch");
  2309. err = -EINVAL;
  2310. brelse(bh);
  2311. goto fail_alloc;
  2312. }
  2313. /*
  2314. * super_copy is zeroed at allocation time and we never touch the
  2315. * following bytes up to INFO_SIZE, the checksum is calculated from
  2316. * the whole block of INFO_SIZE
  2317. */
  2318. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2319. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2320. sizeof(*fs_info->super_for_commit));
  2321. brelse(bh);
  2322. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2323. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2324. if (ret) {
  2325. btrfs_err(fs_info, "superblock contains fatal errors");
  2326. err = -EINVAL;
  2327. goto fail_alloc;
  2328. }
  2329. disk_super = fs_info->super_copy;
  2330. if (!btrfs_super_root(disk_super))
  2331. goto fail_alloc;
  2332. /* check FS state, whether FS is broken. */
  2333. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2334. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2335. /*
  2336. * run through our array of backup supers and setup
  2337. * our ring pointer to the oldest one
  2338. */
  2339. generation = btrfs_super_generation(disk_super);
  2340. find_oldest_super_backup(fs_info, generation);
  2341. /*
  2342. * In the long term, we'll store the compression type in the super
  2343. * block, and it'll be used for per file compression control.
  2344. */
  2345. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2346. ret = btrfs_parse_options(tree_root, options, sb->s_flags);
  2347. if (ret) {
  2348. err = ret;
  2349. goto fail_alloc;
  2350. }
  2351. features = btrfs_super_incompat_flags(disk_super) &
  2352. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2353. if (features) {
  2354. btrfs_err(fs_info,
  2355. "cannot mount because of unsupported optional features (%llx)",
  2356. features);
  2357. err = -EINVAL;
  2358. goto fail_alloc;
  2359. }
  2360. features = btrfs_super_incompat_flags(disk_super);
  2361. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2362. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2363. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2364. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2365. btrfs_info(fs_info, "has skinny extents");
  2366. /*
  2367. * flag our filesystem as having big metadata blocks if
  2368. * they are bigger than the page size
  2369. */
  2370. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2371. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2372. btrfs_info(fs_info,
  2373. "flagging fs with big metadata feature");
  2374. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2375. }
  2376. nodesize = btrfs_super_nodesize(disk_super);
  2377. sectorsize = btrfs_super_sectorsize(disk_super);
  2378. stripesize = sectorsize;
  2379. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2380. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2381. /*
  2382. * mixed block groups end up with duplicate but slightly offset
  2383. * extent buffers for the same range. It leads to corruptions
  2384. */
  2385. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2386. (sectorsize != nodesize)) {
  2387. btrfs_err(fs_info,
  2388. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2389. nodesize, sectorsize);
  2390. goto fail_alloc;
  2391. }
  2392. /*
  2393. * Needn't use the lock because there is no other task which will
  2394. * update the flag.
  2395. */
  2396. btrfs_set_super_incompat_flags(disk_super, features);
  2397. features = btrfs_super_compat_ro_flags(disk_super) &
  2398. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2399. if (!(sb->s_flags & MS_RDONLY) && features) {
  2400. btrfs_err(fs_info,
  2401. "cannot mount read-write because of unsupported optional features (%llx)",
  2402. features);
  2403. err = -EINVAL;
  2404. goto fail_alloc;
  2405. }
  2406. max_active = fs_info->thread_pool_size;
  2407. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2408. if (ret) {
  2409. err = ret;
  2410. goto fail_sb_buffer;
  2411. }
  2412. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2413. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2414. SZ_4M / PAGE_SIZE);
  2415. tree_root->nodesize = nodesize;
  2416. tree_root->sectorsize = sectorsize;
  2417. tree_root->stripesize = stripesize;
  2418. sb->s_blocksize = sectorsize;
  2419. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2420. mutex_lock(&fs_info->chunk_mutex);
  2421. ret = btrfs_read_sys_array(tree_root);
  2422. mutex_unlock(&fs_info->chunk_mutex);
  2423. if (ret) {
  2424. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2425. goto fail_sb_buffer;
  2426. }
  2427. generation = btrfs_super_chunk_root_generation(disk_super);
  2428. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2429. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2430. chunk_root->node = read_tree_block(chunk_root,
  2431. btrfs_super_chunk_root(disk_super),
  2432. generation);
  2433. if (IS_ERR(chunk_root->node) ||
  2434. !extent_buffer_uptodate(chunk_root->node)) {
  2435. btrfs_err(fs_info, "failed to read chunk root");
  2436. if (!IS_ERR(chunk_root->node))
  2437. free_extent_buffer(chunk_root->node);
  2438. chunk_root->node = NULL;
  2439. goto fail_tree_roots;
  2440. }
  2441. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2442. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2443. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2444. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2445. ret = btrfs_read_chunk_tree(chunk_root);
  2446. if (ret) {
  2447. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2448. goto fail_tree_roots;
  2449. }
  2450. /*
  2451. * keep the device that is marked to be the target device for the
  2452. * dev_replace procedure
  2453. */
  2454. btrfs_close_extra_devices(fs_devices, 0);
  2455. if (!fs_devices->latest_bdev) {
  2456. btrfs_err(fs_info, "failed to read devices");
  2457. goto fail_tree_roots;
  2458. }
  2459. retry_root_backup:
  2460. generation = btrfs_super_generation(disk_super);
  2461. tree_root->node = read_tree_block(tree_root,
  2462. btrfs_super_root(disk_super),
  2463. generation);
  2464. if (IS_ERR(tree_root->node) ||
  2465. !extent_buffer_uptodate(tree_root->node)) {
  2466. btrfs_warn(fs_info, "failed to read tree root");
  2467. if (!IS_ERR(tree_root->node))
  2468. free_extent_buffer(tree_root->node);
  2469. tree_root->node = NULL;
  2470. goto recovery_tree_root;
  2471. }
  2472. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2473. tree_root->commit_root = btrfs_root_node(tree_root);
  2474. btrfs_set_root_refs(&tree_root->root_item, 1);
  2475. mutex_lock(&tree_root->objectid_mutex);
  2476. ret = btrfs_find_highest_objectid(tree_root,
  2477. &tree_root->highest_objectid);
  2478. if (ret) {
  2479. mutex_unlock(&tree_root->objectid_mutex);
  2480. goto recovery_tree_root;
  2481. }
  2482. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2483. mutex_unlock(&tree_root->objectid_mutex);
  2484. ret = btrfs_read_roots(fs_info, tree_root);
  2485. if (ret)
  2486. goto recovery_tree_root;
  2487. fs_info->generation = generation;
  2488. fs_info->last_trans_committed = generation;
  2489. ret = btrfs_recover_balance(fs_info);
  2490. if (ret) {
  2491. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2492. goto fail_block_groups;
  2493. }
  2494. ret = btrfs_init_dev_stats(fs_info);
  2495. if (ret) {
  2496. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2497. goto fail_block_groups;
  2498. }
  2499. ret = btrfs_init_dev_replace(fs_info);
  2500. if (ret) {
  2501. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2502. goto fail_block_groups;
  2503. }
  2504. btrfs_close_extra_devices(fs_devices, 1);
  2505. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2506. if (ret) {
  2507. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2508. ret);
  2509. goto fail_block_groups;
  2510. }
  2511. ret = btrfs_sysfs_add_device(fs_devices);
  2512. if (ret) {
  2513. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2514. ret);
  2515. goto fail_fsdev_sysfs;
  2516. }
  2517. ret = btrfs_sysfs_add_mounted(fs_info);
  2518. if (ret) {
  2519. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2520. goto fail_fsdev_sysfs;
  2521. }
  2522. ret = btrfs_init_space_info(fs_info);
  2523. if (ret) {
  2524. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2525. goto fail_sysfs;
  2526. }
  2527. ret = btrfs_read_block_groups(fs_info->extent_root);
  2528. if (ret) {
  2529. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2530. goto fail_sysfs;
  2531. }
  2532. fs_info->num_tolerated_disk_barrier_failures =
  2533. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2534. if (fs_info->fs_devices->missing_devices >
  2535. fs_info->num_tolerated_disk_barrier_failures &&
  2536. !(sb->s_flags & MS_RDONLY)) {
  2537. btrfs_warn(fs_info,
  2538. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2539. fs_info->fs_devices->missing_devices,
  2540. fs_info->num_tolerated_disk_barrier_failures);
  2541. goto fail_sysfs;
  2542. }
  2543. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2544. "btrfs-cleaner");
  2545. if (IS_ERR(fs_info->cleaner_kthread))
  2546. goto fail_sysfs;
  2547. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2548. tree_root,
  2549. "btrfs-transaction");
  2550. if (IS_ERR(fs_info->transaction_kthread))
  2551. goto fail_cleaner;
  2552. if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
  2553. !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
  2554. !fs_info->fs_devices->rotating) {
  2555. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2556. btrfs_set_opt(fs_info->mount_opt, SSD);
  2557. }
  2558. /*
  2559. * Mount does not set all options immediately, we can do it now and do
  2560. * not have to wait for transaction commit
  2561. */
  2562. btrfs_apply_pending_changes(fs_info);
  2563. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2564. if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
  2565. ret = btrfsic_mount(tree_root, fs_devices,
  2566. btrfs_test_opt(tree_root->fs_info,
  2567. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2568. 1 : 0,
  2569. fs_info->check_integrity_print_mask);
  2570. if (ret)
  2571. btrfs_warn(fs_info,
  2572. "failed to initialize integrity check module: %d",
  2573. ret);
  2574. }
  2575. #endif
  2576. ret = btrfs_read_qgroup_config(fs_info);
  2577. if (ret)
  2578. goto fail_trans_kthread;
  2579. /* do not make disk changes in broken FS or nologreplay is given */
  2580. if (btrfs_super_log_root(disk_super) != 0 &&
  2581. !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
  2582. ret = btrfs_replay_log(fs_info, fs_devices);
  2583. if (ret) {
  2584. err = ret;
  2585. goto fail_qgroup;
  2586. }
  2587. }
  2588. ret = btrfs_find_orphan_roots(tree_root);
  2589. if (ret)
  2590. goto fail_qgroup;
  2591. if (!(sb->s_flags & MS_RDONLY)) {
  2592. ret = btrfs_cleanup_fs_roots(fs_info);
  2593. if (ret)
  2594. goto fail_qgroup;
  2595. mutex_lock(&fs_info->cleaner_mutex);
  2596. ret = btrfs_recover_relocation(tree_root);
  2597. mutex_unlock(&fs_info->cleaner_mutex);
  2598. if (ret < 0) {
  2599. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2600. ret);
  2601. err = -EINVAL;
  2602. goto fail_qgroup;
  2603. }
  2604. }
  2605. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2606. location.type = BTRFS_ROOT_ITEM_KEY;
  2607. location.offset = 0;
  2608. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2609. if (IS_ERR(fs_info->fs_root)) {
  2610. err = PTR_ERR(fs_info->fs_root);
  2611. goto fail_qgroup;
  2612. }
  2613. if (sb->s_flags & MS_RDONLY)
  2614. return 0;
  2615. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2616. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2617. clear_free_space_tree = 1;
  2618. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2619. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2620. btrfs_warn(fs_info, "free space tree is invalid");
  2621. clear_free_space_tree = 1;
  2622. }
  2623. if (clear_free_space_tree) {
  2624. btrfs_info(fs_info, "clearing free space tree");
  2625. ret = btrfs_clear_free_space_tree(fs_info);
  2626. if (ret) {
  2627. btrfs_warn(fs_info,
  2628. "failed to clear free space tree: %d", ret);
  2629. close_ctree(tree_root);
  2630. return ret;
  2631. }
  2632. }
  2633. if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
  2634. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2635. btrfs_info(fs_info, "creating free space tree");
  2636. ret = btrfs_create_free_space_tree(fs_info);
  2637. if (ret) {
  2638. btrfs_warn(fs_info,
  2639. "failed to create free space tree: %d", ret);
  2640. close_ctree(tree_root);
  2641. return ret;
  2642. }
  2643. }
  2644. down_read(&fs_info->cleanup_work_sem);
  2645. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2646. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2647. up_read(&fs_info->cleanup_work_sem);
  2648. close_ctree(tree_root);
  2649. return ret;
  2650. }
  2651. up_read(&fs_info->cleanup_work_sem);
  2652. ret = btrfs_resume_balance_async(fs_info);
  2653. if (ret) {
  2654. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2655. close_ctree(tree_root);
  2656. return ret;
  2657. }
  2658. ret = btrfs_resume_dev_replace_async(fs_info);
  2659. if (ret) {
  2660. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2661. close_ctree(tree_root);
  2662. return ret;
  2663. }
  2664. btrfs_qgroup_rescan_resume(fs_info);
  2665. if (!fs_info->uuid_root) {
  2666. btrfs_info(fs_info, "creating UUID tree");
  2667. ret = btrfs_create_uuid_tree(fs_info);
  2668. if (ret) {
  2669. btrfs_warn(fs_info,
  2670. "failed to create the UUID tree: %d", ret);
  2671. close_ctree(tree_root);
  2672. return ret;
  2673. }
  2674. } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
  2675. fs_info->generation !=
  2676. btrfs_super_uuid_tree_generation(disk_super)) {
  2677. btrfs_info(fs_info, "checking UUID tree");
  2678. ret = btrfs_check_uuid_tree(fs_info);
  2679. if (ret) {
  2680. btrfs_warn(fs_info,
  2681. "failed to check the UUID tree: %d", ret);
  2682. close_ctree(tree_root);
  2683. return ret;
  2684. }
  2685. } else {
  2686. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2687. }
  2688. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2689. /*
  2690. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2691. * no need to keep the flag
  2692. */
  2693. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2694. return 0;
  2695. fail_qgroup:
  2696. btrfs_free_qgroup_config(fs_info);
  2697. fail_trans_kthread:
  2698. kthread_stop(fs_info->transaction_kthread);
  2699. btrfs_cleanup_transaction(fs_info->tree_root);
  2700. btrfs_free_fs_roots(fs_info);
  2701. fail_cleaner:
  2702. kthread_stop(fs_info->cleaner_kthread);
  2703. /*
  2704. * make sure we're done with the btree inode before we stop our
  2705. * kthreads
  2706. */
  2707. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2708. fail_sysfs:
  2709. btrfs_sysfs_remove_mounted(fs_info);
  2710. fail_fsdev_sysfs:
  2711. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2712. fail_block_groups:
  2713. btrfs_put_block_group_cache(fs_info);
  2714. btrfs_free_block_groups(fs_info);
  2715. fail_tree_roots:
  2716. free_root_pointers(fs_info, 1);
  2717. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2718. fail_sb_buffer:
  2719. btrfs_stop_all_workers(fs_info);
  2720. fail_alloc:
  2721. fail_iput:
  2722. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2723. iput(fs_info->btree_inode);
  2724. fail_bio_counter:
  2725. percpu_counter_destroy(&fs_info->bio_counter);
  2726. fail_delalloc_bytes:
  2727. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2728. fail_dirty_metadata_bytes:
  2729. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2730. fail_bdi:
  2731. bdi_destroy(&fs_info->bdi);
  2732. fail_srcu:
  2733. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2734. fail:
  2735. btrfs_free_stripe_hash_table(fs_info);
  2736. btrfs_close_devices(fs_info->fs_devices);
  2737. return err;
  2738. recovery_tree_root:
  2739. if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
  2740. goto fail_tree_roots;
  2741. free_root_pointers(fs_info, 0);
  2742. /* don't use the log in recovery mode, it won't be valid */
  2743. btrfs_set_super_log_root(disk_super, 0);
  2744. /* we can't trust the free space cache either */
  2745. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2746. ret = next_root_backup(fs_info, fs_info->super_copy,
  2747. &num_backups_tried, &backup_index);
  2748. if (ret == -1)
  2749. goto fail_block_groups;
  2750. goto retry_root_backup;
  2751. }
  2752. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2753. {
  2754. if (uptodate) {
  2755. set_buffer_uptodate(bh);
  2756. } else {
  2757. struct btrfs_device *device = (struct btrfs_device *)
  2758. bh->b_private;
  2759. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2760. "lost page write due to IO error on %s",
  2761. rcu_str_deref(device->name));
  2762. /* note, we don't set_buffer_write_io_error because we have
  2763. * our own ways of dealing with the IO errors
  2764. */
  2765. clear_buffer_uptodate(bh);
  2766. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2767. }
  2768. unlock_buffer(bh);
  2769. put_bh(bh);
  2770. }
  2771. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2772. struct buffer_head **bh_ret)
  2773. {
  2774. struct buffer_head *bh;
  2775. struct btrfs_super_block *super;
  2776. u64 bytenr;
  2777. bytenr = btrfs_sb_offset(copy_num);
  2778. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2779. return -EINVAL;
  2780. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2781. /*
  2782. * If we fail to read from the underlying devices, as of now
  2783. * the best option we have is to mark it EIO.
  2784. */
  2785. if (!bh)
  2786. return -EIO;
  2787. super = (struct btrfs_super_block *)bh->b_data;
  2788. if (btrfs_super_bytenr(super) != bytenr ||
  2789. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2790. brelse(bh);
  2791. return -EINVAL;
  2792. }
  2793. *bh_ret = bh;
  2794. return 0;
  2795. }
  2796. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2797. {
  2798. struct buffer_head *bh;
  2799. struct buffer_head *latest = NULL;
  2800. struct btrfs_super_block *super;
  2801. int i;
  2802. u64 transid = 0;
  2803. int ret = -EINVAL;
  2804. /* we would like to check all the supers, but that would make
  2805. * a btrfs mount succeed after a mkfs from a different FS.
  2806. * So, we need to add a special mount option to scan for
  2807. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2808. */
  2809. for (i = 0; i < 1; i++) {
  2810. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2811. if (ret)
  2812. continue;
  2813. super = (struct btrfs_super_block *)bh->b_data;
  2814. if (!latest || btrfs_super_generation(super) > transid) {
  2815. brelse(latest);
  2816. latest = bh;
  2817. transid = btrfs_super_generation(super);
  2818. } else {
  2819. brelse(bh);
  2820. }
  2821. }
  2822. if (!latest)
  2823. return ERR_PTR(ret);
  2824. return latest;
  2825. }
  2826. /*
  2827. * this should be called twice, once with wait == 0 and
  2828. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2829. * we write are pinned.
  2830. *
  2831. * They are released when wait == 1 is done.
  2832. * max_mirrors must be the same for both runs, and it indicates how
  2833. * many supers on this one device should be written.
  2834. *
  2835. * max_mirrors == 0 means to write them all.
  2836. */
  2837. static int write_dev_supers(struct btrfs_device *device,
  2838. struct btrfs_super_block *sb,
  2839. int do_barriers, int wait, int max_mirrors)
  2840. {
  2841. struct buffer_head *bh;
  2842. int i;
  2843. int ret;
  2844. int errors = 0;
  2845. u32 crc;
  2846. u64 bytenr;
  2847. if (max_mirrors == 0)
  2848. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2849. for (i = 0; i < max_mirrors; i++) {
  2850. bytenr = btrfs_sb_offset(i);
  2851. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2852. device->commit_total_bytes)
  2853. break;
  2854. if (wait) {
  2855. bh = __find_get_block(device->bdev, bytenr / 4096,
  2856. BTRFS_SUPER_INFO_SIZE);
  2857. if (!bh) {
  2858. errors++;
  2859. continue;
  2860. }
  2861. wait_on_buffer(bh);
  2862. if (!buffer_uptodate(bh))
  2863. errors++;
  2864. /* drop our reference */
  2865. brelse(bh);
  2866. /* drop the reference from the wait == 0 run */
  2867. brelse(bh);
  2868. continue;
  2869. } else {
  2870. btrfs_set_super_bytenr(sb, bytenr);
  2871. crc = ~(u32)0;
  2872. crc = btrfs_csum_data((char *)sb +
  2873. BTRFS_CSUM_SIZE, crc,
  2874. BTRFS_SUPER_INFO_SIZE -
  2875. BTRFS_CSUM_SIZE);
  2876. btrfs_csum_final(crc, sb->csum);
  2877. /*
  2878. * one reference for us, and we leave it for the
  2879. * caller
  2880. */
  2881. bh = __getblk(device->bdev, bytenr / 4096,
  2882. BTRFS_SUPER_INFO_SIZE);
  2883. if (!bh) {
  2884. btrfs_err(device->dev_root->fs_info,
  2885. "couldn't get super buffer head for bytenr %llu",
  2886. bytenr);
  2887. errors++;
  2888. continue;
  2889. }
  2890. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2891. /* one reference for submit_bh */
  2892. get_bh(bh);
  2893. set_buffer_uptodate(bh);
  2894. lock_buffer(bh);
  2895. bh->b_end_io = btrfs_end_buffer_write_sync;
  2896. bh->b_private = device;
  2897. }
  2898. /*
  2899. * we fua the first super. The others we allow
  2900. * to go down lazy.
  2901. */
  2902. if (i == 0)
  2903. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
  2904. else
  2905. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
  2906. if (ret)
  2907. errors++;
  2908. }
  2909. return errors < i ? 0 : -1;
  2910. }
  2911. /*
  2912. * endio for the write_dev_flush, this will wake anyone waiting
  2913. * for the barrier when it is done
  2914. */
  2915. static void btrfs_end_empty_barrier(struct bio *bio)
  2916. {
  2917. if (bio->bi_private)
  2918. complete(bio->bi_private);
  2919. bio_put(bio);
  2920. }
  2921. /*
  2922. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2923. * sent down. With wait == 1, it waits for the previous flush.
  2924. *
  2925. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2926. * capable
  2927. */
  2928. static int write_dev_flush(struct btrfs_device *device, int wait)
  2929. {
  2930. struct bio *bio;
  2931. int ret = 0;
  2932. if (device->nobarriers)
  2933. return 0;
  2934. if (wait) {
  2935. bio = device->flush_bio;
  2936. if (!bio)
  2937. return 0;
  2938. wait_for_completion(&device->flush_wait);
  2939. if (bio->bi_error) {
  2940. ret = bio->bi_error;
  2941. btrfs_dev_stat_inc_and_print(device,
  2942. BTRFS_DEV_STAT_FLUSH_ERRS);
  2943. }
  2944. /* drop the reference from the wait == 0 run */
  2945. bio_put(bio);
  2946. device->flush_bio = NULL;
  2947. return ret;
  2948. }
  2949. /*
  2950. * one reference for us, and we leave it for the
  2951. * caller
  2952. */
  2953. device->flush_bio = NULL;
  2954. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2955. if (!bio)
  2956. return -ENOMEM;
  2957. bio->bi_end_io = btrfs_end_empty_barrier;
  2958. bio->bi_bdev = device->bdev;
  2959. bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
  2960. init_completion(&device->flush_wait);
  2961. bio->bi_private = &device->flush_wait;
  2962. device->flush_bio = bio;
  2963. bio_get(bio);
  2964. btrfsic_submit_bio(bio);
  2965. return 0;
  2966. }
  2967. /*
  2968. * send an empty flush down to each device in parallel,
  2969. * then wait for them
  2970. */
  2971. static int barrier_all_devices(struct btrfs_fs_info *info)
  2972. {
  2973. struct list_head *head;
  2974. struct btrfs_device *dev;
  2975. int errors_send = 0;
  2976. int errors_wait = 0;
  2977. int ret;
  2978. /* send down all the barriers */
  2979. head = &info->fs_devices->devices;
  2980. list_for_each_entry_rcu(dev, head, dev_list) {
  2981. if (dev->missing)
  2982. continue;
  2983. if (!dev->bdev) {
  2984. errors_send++;
  2985. continue;
  2986. }
  2987. if (!dev->in_fs_metadata || !dev->writeable)
  2988. continue;
  2989. ret = write_dev_flush(dev, 0);
  2990. if (ret)
  2991. errors_send++;
  2992. }
  2993. /* wait for all the barriers */
  2994. list_for_each_entry_rcu(dev, head, dev_list) {
  2995. if (dev->missing)
  2996. continue;
  2997. if (!dev->bdev) {
  2998. errors_wait++;
  2999. continue;
  3000. }
  3001. if (!dev->in_fs_metadata || !dev->writeable)
  3002. continue;
  3003. ret = write_dev_flush(dev, 1);
  3004. if (ret)
  3005. errors_wait++;
  3006. }
  3007. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3008. errors_wait > info->num_tolerated_disk_barrier_failures)
  3009. return -EIO;
  3010. return 0;
  3011. }
  3012. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3013. {
  3014. int raid_type;
  3015. int min_tolerated = INT_MAX;
  3016. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3017. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3018. min_tolerated = min(min_tolerated,
  3019. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3020. tolerated_failures);
  3021. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3022. if (raid_type == BTRFS_RAID_SINGLE)
  3023. continue;
  3024. if (!(flags & btrfs_raid_group[raid_type]))
  3025. continue;
  3026. min_tolerated = min(min_tolerated,
  3027. btrfs_raid_array[raid_type].
  3028. tolerated_failures);
  3029. }
  3030. if (min_tolerated == INT_MAX) {
  3031. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3032. min_tolerated = 0;
  3033. }
  3034. return min_tolerated;
  3035. }
  3036. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3037. struct btrfs_fs_info *fs_info)
  3038. {
  3039. struct btrfs_ioctl_space_info space;
  3040. struct btrfs_space_info *sinfo;
  3041. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3042. BTRFS_BLOCK_GROUP_SYSTEM,
  3043. BTRFS_BLOCK_GROUP_METADATA,
  3044. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3045. int i;
  3046. int c;
  3047. int num_tolerated_disk_barrier_failures =
  3048. (int)fs_info->fs_devices->num_devices;
  3049. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3050. struct btrfs_space_info *tmp;
  3051. sinfo = NULL;
  3052. rcu_read_lock();
  3053. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3054. if (tmp->flags == types[i]) {
  3055. sinfo = tmp;
  3056. break;
  3057. }
  3058. }
  3059. rcu_read_unlock();
  3060. if (!sinfo)
  3061. continue;
  3062. down_read(&sinfo->groups_sem);
  3063. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3064. u64 flags;
  3065. if (list_empty(&sinfo->block_groups[c]))
  3066. continue;
  3067. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3068. &space);
  3069. if (space.total_bytes == 0 || space.used_bytes == 0)
  3070. continue;
  3071. flags = space.flags;
  3072. num_tolerated_disk_barrier_failures = min(
  3073. num_tolerated_disk_barrier_failures,
  3074. btrfs_get_num_tolerated_disk_barrier_failures(
  3075. flags));
  3076. }
  3077. up_read(&sinfo->groups_sem);
  3078. }
  3079. return num_tolerated_disk_barrier_failures;
  3080. }
  3081. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3082. {
  3083. struct list_head *head;
  3084. struct btrfs_device *dev;
  3085. struct btrfs_super_block *sb;
  3086. struct btrfs_dev_item *dev_item;
  3087. int ret;
  3088. int do_barriers;
  3089. int max_errors;
  3090. int total_errors = 0;
  3091. u64 flags;
  3092. do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
  3093. backup_super_roots(root->fs_info);
  3094. sb = root->fs_info->super_for_commit;
  3095. dev_item = &sb->dev_item;
  3096. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3097. head = &root->fs_info->fs_devices->devices;
  3098. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3099. if (do_barriers) {
  3100. ret = barrier_all_devices(root->fs_info);
  3101. if (ret) {
  3102. mutex_unlock(
  3103. &root->fs_info->fs_devices->device_list_mutex);
  3104. btrfs_handle_fs_error(root->fs_info, ret,
  3105. "errors while submitting device barriers.");
  3106. return ret;
  3107. }
  3108. }
  3109. list_for_each_entry_rcu(dev, head, dev_list) {
  3110. if (!dev->bdev) {
  3111. total_errors++;
  3112. continue;
  3113. }
  3114. if (!dev->in_fs_metadata || !dev->writeable)
  3115. continue;
  3116. btrfs_set_stack_device_generation(dev_item, 0);
  3117. btrfs_set_stack_device_type(dev_item, dev->type);
  3118. btrfs_set_stack_device_id(dev_item, dev->devid);
  3119. btrfs_set_stack_device_total_bytes(dev_item,
  3120. dev->commit_total_bytes);
  3121. btrfs_set_stack_device_bytes_used(dev_item,
  3122. dev->commit_bytes_used);
  3123. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3124. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3125. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3126. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3127. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3128. flags = btrfs_super_flags(sb);
  3129. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3130. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3131. if (ret)
  3132. total_errors++;
  3133. }
  3134. if (total_errors > max_errors) {
  3135. btrfs_err(root->fs_info, "%d errors while writing supers",
  3136. total_errors);
  3137. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3138. /* FUA is masked off if unsupported and can't be the reason */
  3139. btrfs_handle_fs_error(root->fs_info, -EIO,
  3140. "%d errors while writing supers", total_errors);
  3141. return -EIO;
  3142. }
  3143. total_errors = 0;
  3144. list_for_each_entry_rcu(dev, head, dev_list) {
  3145. if (!dev->bdev)
  3146. continue;
  3147. if (!dev->in_fs_metadata || !dev->writeable)
  3148. continue;
  3149. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3150. if (ret)
  3151. total_errors++;
  3152. }
  3153. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3154. if (total_errors > max_errors) {
  3155. btrfs_handle_fs_error(root->fs_info, -EIO,
  3156. "%d errors while writing supers", total_errors);
  3157. return -EIO;
  3158. }
  3159. return 0;
  3160. }
  3161. int write_ctree_super(struct btrfs_trans_handle *trans,
  3162. struct btrfs_root *root, int max_mirrors)
  3163. {
  3164. return write_all_supers(root, max_mirrors);
  3165. }
  3166. /* Drop a fs root from the radix tree and free it. */
  3167. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3168. struct btrfs_root *root)
  3169. {
  3170. spin_lock(&fs_info->fs_roots_radix_lock);
  3171. radix_tree_delete(&fs_info->fs_roots_radix,
  3172. (unsigned long)root->root_key.objectid);
  3173. spin_unlock(&fs_info->fs_roots_radix_lock);
  3174. if (btrfs_root_refs(&root->root_item) == 0)
  3175. synchronize_srcu(&fs_info->subvol_srcu);
  3176. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3177. btrfs_free_log(NULL, root);
  3178. if (root->reloc_root) {
  3179. free_extent_buffer(root->reloc_root->node);
  3180. free_extent_buffer(root->reloc_root->commit_root);
  3181. btrfs_put_fs_root(root->reloc_root);
  3182. root->reloc_root = NULL;
  3183. }
  3184. }
  3185. if (root->free_ino_pinned)
  3186. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3187. if (root->free_ino_ctl)
  3188. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3189. free_fs_root(root);
  3190. }
  3191. static void free_fs_root(struct btrfs_root *root)
  3192. {
  3193. iput(root->ino_cache_inode);
  3194. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3195. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3196. root->orphan_block_rsv = NULL;
  3197. if (root->anon_dev)
  3198. free_anon_bdev(root->anon_dev);
  3199. if (root->subv_writers)
  3200. btrfs_free_subvolume_writers(root->subv_writers);
  3201. free_extent_buffer(root->node);
  3202. free_extent_buffer(root->commit_root);
  3203. kfree(root->free_ino_ctl);
  3204. kfree(root->free_ino_pinned);
  3205. kfree(root->name);
  3206. btrfs_put_fs_root(root);
  3207. }
  3208. void btrfs_free_fs_root(struct btrfs_root *root)
  3209. {
  3210. free_fs_root(root);
  3211. }
  3212. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3213. {
  3214. u64 root_objectid = 0;
  3215. struct btrfs_root *gang[8];
  3216. int i = 0;
  3217. int err = 0;
  3218. unsigned int ret = 0;
  3219. int index;
  3220. while (1) {
  3221. index = srcu_read_lock(&fs_info->subvol_srcu);
  3222. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3223. (void **)gang, root_objectid,
  3224. ARRAY_SIZE(gang));
  3225. if (!ret) {
  3226. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3227. break;
  3228. }
  3229. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3230. for (i = 0; i < ret; i++) {
  3231. /* Avoid to grab roots in dead_roots */
  3232. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3233. gang[i] = NULL;
  3234. continue;
  3235. }
  3236. /* grab all the search result for later use */
  3237. gang[i] = btrfs_grab_fs_root(gang[i]);
  3238. }
  3239. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3240. for (i = 0; i < ret; i++) {
  3241. if (!gang[i])
  3242. continue;
  3243. root_objectid = gang[i]->root_key.objectid;
  3244. err = btrfs_orphan_cleanup(gang[i]);
  3245. if (err)
  3246. break;
  3247. btrfs_put_fs_root(gang[i]);
  3248. }
  3249. root_objectid++;
  3250. }
  3251. /* release the uncleaned roots due to error */
  3252. for (; i < ret; i++) {
  3253. if (gang[i])
  3254. btrfs_put_fs_root(gang[i]);
  3255. }
  3256. return err;
  3257. }
  3258. int btrfs_commit_super(struct btrfs_root *root)
  3259. {
  3260. struct btrfs_trans_handle *trans;
  3261. mutex_lock(&root->fs_info->cleaner_mutex);
  3262. btrfs_run_delayed_iputs(root);
  3263. mutex_unlock(&root->fs_info->cleaner_mutex);
  3264. wake_up_process(root->fs_info->cleaner_kthread);
  3265. /* wait until ongoing cleanup work done */
  3266. down_write(&root->fs_info->cleanup_work_sem);
  3267. up_write(&root->fs_info->cleanup_work_sem);
  3268. trans = btrfs_join_transaction(root);
  3269. if (IS_ERR(trans))
  3270. return PTR_ERR(trans);
  3271. return btrfs_commit_transaction(trans, root);
  3272. }
  3273. void close_ctree(struct btrfs_root *root)
  3274. {
  3275. struct btrfs_fs_info *fs_info = root->fs_info;
  3276. int ret;
  3277. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3278. /* wait for the qgroup rescan worker to stop */
  3279. btrfs_qgroup_wait_for_completion(fs_info, false);
  3280. /* wait for the uuid_scan task to finish */
  3281. down(&fs_info->uuid_tree_rescan_sem);
  3282. /* avoid complains from lockdep et al., set sem back to initial state */
  3283. up(&fs_info->uuid_tree_rescan_sem);
  3284. /* pause restriper - we want to resume on mount */
  3285. btrfs_pause_balance(fs_info);
  3286. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3287. btrfs_scrub_cancel(fs_info);
  3288. /* wait for any defraggers to finish */
  3289. wait_event(fs_info->transaction_wait,
  3290. (atomic_read(&fs_info->defrag_running) == 0));
  3291. /* clear out the rbtree of defraggable inodes */
  3292. btrfs_cleanup_defrag_inodes(fs_info);
  3293. cancel_work_sync(&fs_info->async_reclaim_work);
  3294. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3295. /*
  3296. * If the cleaner thread is stopped and there are
  3297. * block groups queued for removal, the deletion will be
  3298. * skipped when we quit the cleaner thread.
  3299. */
  3300. btrfs_delete_unused_bgs(root->fs_info);
  3301. ret = btrfs_commit_super(root);
  3302. if (ret)
  3303. btrfs_err(fs_info, "commit super ret %d", ret);
  3304. }
  3305. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3306. btrfs_error_commit_super(root);
  3307. kthread_stop(fs_info->transaction_kthread);
  3308. kthread_stop(fs_info->cleaner_kthread);
  3309. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3310. btrfs_free_qgroup_config(fs_info);
  3311. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3312. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3313. percpu_counter_sum(&fs_info->delalloc_bytes));
  3314. }
  3315. btrfs_sysfs_remove_mounted(fs_info);
  3316. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3317. btrfs_free_fs_roots(fs_info);
  3318. btrfs_put_block_group_cache(fs_info);
  3319. btrfs_free_block_groups(fs_info);
  3320. /*
  3321. * we must make sure there is not any read request to
  3322. * submit after we stopping all workers.
  3323. */
  3324. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3325. btrfs_stop_all_workers(fs_info);
  3326. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3327. free_root_pointers(fs_info, 1);
  3328. iput(fs_info->btree_inode);
  3329. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3330. if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
  3331. btrfsic_unmount(root, fs_info->fs_devices);
  3332. #endif
  3333. btrfs_close_devices(fs_info->fs_devices);
  3334. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3335. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3336. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3337. percpu_counter_destroy(&fs_info->bio_counter);
  3338. bdi_destroy(&fs_info->bdi);
  3339. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3340. btrfs_free_stripe_hash_table(fs_info);
  3341. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3342. root->orphan_block_rsv = NULL;
  3343. lock_chunks(root);
  3344. while (!list_empty(&fs_info->pinned_chunks)) {
  3345. struct extent_map *em;
  3346. em = list_first_entry(&fs_info->pinned_chunks,
  3347. struct extent_map, list);
  3348. list_del_init(&em->list);
  3349. free_extent_map(em);
  3350. }
  3351. unlock_chunks(root);
  3352. }
  3353. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3354. int atomic)
  3355. {
  3356. int ret;
  3357. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3358. ret = extent_buffer_uptodate(buf);
  3359. if (!ret)
  3360. return ret;
  3361. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3362. parent_transid, atomic);
  3363. if (ret == -EAGAIN)
  3364. return ret;
  3365. return !ret;
  3366. }
  3367. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3368. {
  3369. struct btrfs_root *root;
  3370. u64 transid = btrfs_header_generation(buf);
  3371. int was_dirty;
  3372. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3373. /*
  3374. * This is a fast path so only do this check if we have sanity tests
  3375. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3376. * outside of the sanity tests.
  3377. */
  3378. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3379. return;
  3380. #endif
  3381. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3382. btrfs_assert_tree_locked(buf);
  3383. if (transid != root->fs_info->generation)
  3384. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3385. buf->start, transid, root->fs_info->generation);
  3386. was_dirty = set_extent_buffer_dirty(buf);
  3387. if (!was_dirty)
  3388. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3389. buf->len,
  3390. root->fs_info->dirty_metadata_batch);
  3391. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3392. /*
  3393. * Since btrfs_mark_buffer_dirty() can be called with item pointer set
  3394. * but item data not updated.
  3395. * So here we should only check item pointers, not item data.
  3396. */
  3397. if (btrfs_header_level(buf) == 0 &&
  3398. btrfs_check_leaf_relaxed(root, buf)) {
  3399. btrfs_print_leaf(root, buf);
  3400. ASSERT(0);
  3401. }
  3402. #endif
  3403. }
  3404. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3405. int flush_delayed)
  3406. {
  3407. /*
  3408. * looks as though older kernels can get into trouble with
  3409. * this code, they end up stuck in balance_dirty_pages forever
  3410. */
  3411. int ret;
  3412. if (current->flags & PF_MEMALLOC)
  3413. return;
  3414. if (flush_delayed)
  3415. btrfs_balance_delayed_items(root);
  3416. ret = __percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3417. BTRFS_DIRTY_METADATA_THRESH,
  3418. root->fs_info->dirty_metadata_batch);
  3419. if (ret > 0) {
  3420. balance_dirty_pages_ratelimited(
  3421. root->fs_info->btree_inode->i_mapping);
  3422. }
  3423. }
  3424. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3425. {
  3426. __btrfs_btree_balance_dirty(root, 1);
  3427. }
  3428. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3429. {
  3430. __btrfs_btree_balance_dirty(root, 0);
  3431. }
  3432. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3433. {
  3434. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3435. return btree_read_extent_buffer_pages(root, buf, parent_transid);
  3436. }
  3437. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3438. int read_only)
  3439. {
  3440. struct btrfs_super_block *sb = fs_info->super_copy;
  3441. u64 nodesize = btrfs_super_nodesize(sb);
  3442. u64 sectorsize = btrfs_super_sectorsize(sb);
  3443. int ret = 0;
  3444. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3445. btrfs_err(fs_info, "no valid FS found");
  3446. ret = -EINVAL;
  3447. }
  3448. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
  3449. btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
  3450. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3451. ret = -EINVAL;
  3452. }
  3453. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3454. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3455. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3456. ret = -EINVAL;
  3457. }
  3458. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3459. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3460. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3461. ret = -EINVAL;
  3462. }
  3463. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3464. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3465. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3466. ret = -EINVAL;
  3467. }
  3468. /*
  3469. * Check sectorsize and nodesize first, other check will need it.
  3470. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3471. */
  3472. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3473. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3474. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3475. ret = -EINVAL;
  3476. }
  3477. /* Only PAGE SIZE is supported yet */
  3478. if (sectorsize != PAGE_SIZE) {
  3479. btrfs_err(fs_info,
  3480. "sectorsize %llu not supported yet, only support %lu",
  3481. sectorsize, PAGE_SIZE);
  3482. ret = -EINVAL;
  3483. }
  3484. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3485. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3486. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3487. ret = -EINVAL;
  3488. }
  3489. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3490. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3491. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3492. ret = -EINVAL;
  3493. }
  3494. /* Root alignment check */
  3495. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3496. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3497. btrfs_super_root(sb));
  3498. ret = -EINVAL;
  3499. }
  3500. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3501. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3502. btrfs_super_chunk_root(sb));
  3503. ret = -EINVAL;
  3504. }
  3505. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3506. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3507. btrfs_super_log_root(sb));
  3508. ret = -EINVAL;
  3509. }
  3510. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3511. btrfs_err(fs_info,
  3512. "dev_item UUID does not match fsid: %pU != %pU",
  3513. fs_info->fsid, sb->dev_item.fsid);
  3514. ret = -EINVAL;
  3515. }
  3516. /*
  3517. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3518. * done later
  3519. */
  3520. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3521. btrfs_err(fs_info, "bytes_used is too small %llu",
  3522. btrfs_super_bytes_used(sb));
  3523. ret = -EINVAL;
  3524. }
  3525. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3526. btrfs_err(fs_info, "invalid stripesize %u",
  3527. btrfs_super_stripesize(sb));
  3528. ret = -EINVAL;
  3529. }
  3530. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3531. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3532. btrfs_super_num_devices(sb));
  3533. if (btrfs_super_num_devices(sb) == 0) {
  3534. btrfs_err(fs_info, "number of devices is 0");
  3535. ret = -EINVAL;
  3536. }
  3537. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3538. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3539. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3540. ret = -EINVAL;
  3541. }
  3542. /*
  3543. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3544. * and one chunk
  3545. */
  3546. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3547. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3548. btrfs_super_sys_array_size(sb),
  3549. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3550. ret = -EINVAL;
  3551. }
  3552. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3553. + sizeof(struct btrfs_chunk)) {
  3554. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3555. btrfs_super_sys_array_size(sb),
  3556. sizeof(struct btrfs_disk_key)
  3557. + sizeof(struct btrfs_chunk));
  3558. ret = -EINVAL;
  3559. }
  3560. /*
  3561. * The generation is a global counter, we'll trust it more than the others
  3562. * but it's still possible that it's the one that's wrong.
  3563. */
  3564. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3565. btrfs_warn(fs_info,
  3566. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3567. btrfs_super_generation(sb),
  3568. btrfs_super_chunk_root_generation(sb));
  3569. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3570. && btrfs_super_cache_generation(sb) != (u64)-1)
  3571. btrfs_warn(fs_info,
  3572. "suspicious: generation < cache_generation: %llu < %llu",
  3573. btrfs_super_generation(sb),
  3574. btrfs_super_cache_generation(sb));
  3575. return ret;
  3576. }
  3577. static void btrfs_error_commit_super(struct btrfs_root *root)
  3578. {
  3579. mutex_lock(&root->fs_info->cleaner_mutex);
  3580. btrfs_run_delayed_iputs(root);
  3581. mutex_unlock(&root->fs_info->cleaner_mutex);
  3582. down_write(&root->fs_info->cleanup_work_sem);
  3583. up_write(&root->fs_info->cleanup_work_sem);
  3584. /* cleanup FS via transaction */
  3585. btrfs_cleanup_transaction(root);
  3586. }
  3587. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3588. {
  3589. struct btrfs_ordered_extent *ordered;
  3590. spin_lock(&root->ordered_extent_lock);
  3591. /*
  3592. * This will just short circuit the ordered completion stuff which will
  3593. * make sure the ordered extent gets properly cleaned up.
  3594. */
  3595. list_for_each_entry(ordered, &root->ordered_extents,
  3596. root_extent_list)
  3597. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3598. spin_unlock(&root->ordered_extent_lock);
  3599. }
  3600. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3601. {
  3602. struct btrfs_root *root;
  3603. struct list_head splice;
  3604. INIT_LIST_HEAD(&splice);
  3605. spin_lock(&fs_info->ordered_root_lock);
  3606. list_splice_init(&fs_info->ordered_roots, &splice);
  3607. while (!list_empty(&splice)) {
  3608. root = list_first_entry(&splice, struct btrfs_root,
  3609. ordered_root);
  3610. list_move_tail(&root->ordered_root,
  3611. &fs_info->ordered_roots);
  3612. spin_unlock(&fs_info->ordered_root_lock);
  3613. btrfs_destroy_ordered_extents(root);
  3614. cond_resched();
  3615. spin_lock(&fs_info->ordered_root_lock);
  3616. }
  3617. spin_unlock(&fs_info->ordered_root_lock);
  3618. /*
  3619. * We need this here because if we've been flipped read-only we won't
  3620. * get sync() from the umount, so we need to make sure any ordered
  3621. * extents that haven't had their dirty pages IO start writeout yet
  3622. * actually get run and error out properly.
  3623. */
  3624. btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
  3625. }
  3626. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3627. struct btrfs_root *root)
  3628. {
  3629. struct rb_node *node;
  3630. struct btrfs_delayed_ref_root *delayed_refs;
  3631. struct btrfs_delayed_ref_node *ref;
  3632. int ret = 0;
  3633. delayed_refs = &trans->delayed_refs;
  3634. spin_lock(&delayed_refs->lock);
  3635. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3636. spin_unlock(&delayed_refs->lock);
  3637. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3638. return ret;
  3639. }
  3640. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3641. struct btrfs_delayed_ref_head *head;
  3642. struct btrfs_delayed_ref_node *tmp;
  3643. bool pin_bytes = false;
  3644. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3645. href_node);
  3646. if (!mutex_trylock(&head->mutex)) {
  3647. atomic_inc(&head->node.refs);
  3648. spin_unlock(&delayed_refs->lock);
  3649. mutex_lock(&head->mutex);
  3650. mutex_unlock(&head->mutex);
  3651. btrfs_put_delayed_ref(&head->node);
  3652. spin_lock(&delayed_refs->lock);
  3653. continue;
  3654. }
  3655. spin_lock(&head->lock);
  3656. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3657. list) {
  3658. ref->in_tree = 0;
  3659. list_del(&ref->list);
  3660. atomic_dec(&delayed_refs->num_entries);
  3661. btrfs_put_delayed_ref(ref);
  3662. }
  3663. if (head->must_insert_reserved)
  3664. pin_bytes = true;
  3665. btrfs_free_delayed_extent_op(head->extent_op);
  3666. delayed_refs->num_heads--;
  3667. if (head->processing == 0)
  3668. delayed_refs->num_heads_ready--;
  3669. atomic_dec(&delayed_refs->num_entries);
  3670. head->node.in_tree = 0;
  3671. rb_erase(&head->href_node, &delayed_refs->href_root);
  3672. spin_unlock(&head->lock);
  3673. spin_unlock(&delayed_refs->lock);
  3674. mutex_unlock(&head->mutex);
  3675. if (pin_bytes)
  3676. btrfs_pin_extent(root, head->node.bytenr,
  3677. head->node.num_bytes, 1);
  3678. btrfs_put_delayed_ref(&head->node);
  3679. cond_resched();
  3680. spin_lock(&delayed_refs->lock);
  3681. }
  3682. spin_unlock(&delayed_refs->lock);
  3683. return ret;
  3684. }
  3685. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3686. {
  3687. struct btrfs_inode *btrfs_inode;
  3688. struct list_head splice;
  3689. INIT_LIST_HEAD(&splice);
  3690. spin_lock(&root->delalloc_lock);
  3691. list_splice_init(&root->delalloc_inodes, &splice);
  3692. while (!list_empty(&splice)) {
  3693. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3694. delalloc_inodes);
  3695. list_del_init(&btrfs_inode->delalloc_inodes);
  3696. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3697. &btrfs_inode->runtime_flags);
  3698. spin_unlock(&root->delalloc_lock);
  3699. btrfs_invalidate_inodes(btrfs_inode->root);
  3700. spin_lock(&root->delalloc_lock);
  3701. }
  3702. spin_unlock(&root->delalloc_lock);
  3703. }
  3704. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3705. {
  3706. struct btrfs_root *root;
  3707. struct list_head splice;
  3708. INIT_LIST_HEAD(&splice);
  3709. spin_lock(&fs_info->delalloc_root_lock);
  3710. list_splice_init(&fs_info->delalloc_roots, &splice);
  3711. while (!list_empty(&splice)) {
  3712. root = list_first_entry(&splice, struct btrfs_root,
  3713. delalloc_root);
  3714. list_del_init(&root->delalloc_root);
  3715. root = btrfs_grab_fs_root(root);
  3716. BUG_ON(!root);
  3717. spin_unlock(&fs_info->delalloc_root_lock);
  3718. btrfs_destroy_delalloc_inodes(root);
  3719. btrfs_put_fs_root(root);
  3720. spin_lock(&fs_info->delalloc_root_lock);
  3721. }
  3722. spin_unlock(&fs_info->delalloc_root_lock);
  3723. }
  3724. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3725. struct extent_io_tree *dirty_pages,
  3726. int mark)
  3727. {
  3728. int ret;
  3729. struct extent_buffer *eb;
  3730. u64 start = 0;
  3731. u64 end;
  3732. while (1) {
  3733. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3734. mark, NULL);
  3735. if (ret)
  3736. break;
  3737. clear_extent_bits(dirty_pages, start, end, mark);
  3738. while (start <= end) {
  3739. eb = btrfs_find_tree_block(root->fs_info, start);
  3740. start += root->nodesize;
  3741. if (!eb)
  3742. continue;
  3743. wait_on_extent_buffer_writeback(eb);
  3744. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3745. &eb->bflags))
  3746. clear_extent_buffer_dirty(eb);
  3747. free_extent_buffer_stale(eb);
  3748. }
  3749. }
  3750. return ret;
  3751. }
  3752. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3753. struct extent_io_tree *pinned_extents)
  3754. {
  3755. struct btrfs_fs_info *fs_info = root->fs_info;
  3756. struct extent_io_tree *unpin;
  3757. u64 start;
  3758. u64 end;
  3759. int ret;
  3760. bool loop = true;
  3761. unpin = pinned_extents;
  3762. again:
  3763. while (1) {
  3764. /*
  3765. * The btrfs_finish_extent_commit() may get the same range as
  3766. * ours between find_first_extent_bit and clear_extent_dirty.
  3767. * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
  3768. * the same extent range.
  3769. */
  3770. mutex_lock(&fs_info->unused_bg_unpin_mutex);
  3771. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3772. EXTENT_DIRTY, NULL);
  3773. if (ret) {
  3774. mutex_unlock(&fs_info->unused_bg_unpin_mutex);
  3775. break;
  3776. }
  3777. clear_extent_dirty(unpin, start, end);
  3778. btrfs_error_unpin_extent_range(root, start, end);
  3779. mutex_unlock(&fs_info->unused_bg_unpin_mutex);
  3780. cond_resched();
  3781. }
  3782. if (loop) {
  3783. if (unpin == &fs_info->freed_extents[0])
  3784. unpin = &fs_info->freed_extents[1];
  3785. else
  3786. unpin = &fs_info->freed_extents[0];
  3787. loop = false;
  3788. goto again;
  3789. }
  3790. return 0;
  3791. }
  3792. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3793. {
  3794. struct inode *inode;
  3795. inode = cache->io_ctl.inode;
  3796. if (inode) {
  3797. invalidate_inode_pages2(inode->i_mapping);
  3798. BTRFS_I(inode)->generation = 0;
  3799. cache->io_ctl.inode = NULL;
  3800. iput(inode);
  3801. }
  3802. btrfs_put_block_group(cache);
  3803. }
  3804. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3805. struct btrfs_root *root)
  3806. {
  3807. struct btrfs_block_group_cache *cache;
  3808. spin_lock(&cur_trans->dirty_bgs_lock);
  3809. while (!list_empty(&cur_trans->dirty_bgs)) {
  3810. cache = list_first_entry(&cur_trans->dirty_bgs,
  3811. struct btrfs_block_group_cache,
  3812. dirty_list);
  3813. if (!cache) {
  3814. btrfs_err(root->fs_info,
  3815. "orphan block group dirty_bgs list");
  3816. spin_unlock(&cur_trans->dirty_bgs_lock);
  3817. return;
  3818. }
  3819. if (!list_empty(&cache->io_list)) {
  3820. spin_unlock(&cur_trans->dirty_bgs_lock);
  3821. list_del_init(&cache->io_list);
  3822. btrfs_cleanup_bg_io(cache);
  3823. spin_lock(&cur_trans->dirty_bgs_lock);
  3824. }
  3825. list_del_init(&cache->dirty_list);
  3826. spin_lock(&cache->lock);
  3827. cache->disk_cache_state = BTRFS_DC_ERROR;
  3828. spin_unlock(&cache->lock);
  3829. spin_unlock(&cur_trans->dirty_bgs_lock);
  3830. btrfs_put_block_group(cache);
  3831. spin_lock(&cur_trans->dirty_bgs_lock);
  3832. }
  3833. spin_unlock(&cur_trans->dirty_bgs_lock);
  3834. while (!list_empty(&cur_trans->io_bgs)) {
  3835. cache = list_first_entry(&cur_trans->io_bgs,
  3836. struct btrfs_block_group_cache,
  3837. io_list);
  3838. if (!cache) {
  3839. btrfs_err(root->fs_info,
  3840. "orphan block group on io_bgs list");
  3841. return;
  3842. }
  3843. list_del_init(&cache->io_list);
  3844. spin_lock(&cache->lock);
  3845. cache->disk_cache_state = BTRFS_DC_ERROR;
  3846. spin_unlock(&cache->lock);
  3847. btrfs_cleanup_bg_io(cache);
  3848. }
  3849. }
  3850. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3851. struct btrfs_root *root)
  3852. {
  3853. btrfs_cleanup_dirty_bgs(cur_trans, root);
  3854. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3855. ASSERT(list_empty(&cur_trans->io_bgs));
  3856. btrfs_destroy_delayed_refs(cur_trans, root);
  3857. cur_trans->state = TRANS_STATE_COMMIT_START;
  3858. wake_up(&root->fs_info->transaction_blocked_wait);
  3859. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3860. wake_up(&root->fs_info->transaction_wait);
  3861. btrfs_destroy_delayed_inodes(root);
  3862. btrfs_assert_delayed_root_empty(root);
  3863. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3864. EXTENT_DIRTY);
  3865. btrfs_destroy_pinned_extent(root,
  3866. root->fs_info->pinned_extents);
  3867. cur_trans->state =TRANS_STATE_COMPLETED;
  3868. wake_up(&cur_trans->commit_wait);
  3869. /*
  3870. memset(cur_trans, 0, sizeof(*cur_trans));
  3871. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3872. */
  3873. }
  3874. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3875. {
  3876. struct btrfs_transaction *t;
  3877. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3878. spin_lock(&root->fs_info->trans_lock);
  3879. while (!list_empty(&root->fs_info->trans_list)) {
  3880. t = list_first_entry(&root->fs_info->trans_list,
  3881. struct btrfs_transaction, list);
  3882. if (t->state >= TRANS_STATE_COMMIT_START) {
  3883. atomic_inc(&t->use_count);
  3884. spin_unlock(&root->fs_info->trans_lock);
  3885. btrfs_wait_for_commit(root, t->transid);
  3886. btrfs_put_transaction(t);
  3887. spin_lock(&root->fs_info->trans_lock);
  3888. continue;
  3889. }
  3890. if (t == root->fs_info->running_transaction) {
  3891. t->state = TRANS_STATE_COMMIT_DOING;
  3892. spin_unlock(&root->fs_info->trans_lock);
  3893. /*
  3894. * We wait for 0 num_writers since we don't hold a trans
  3895. * handle open currently for this transaction.
  3896. */
  3897. wait_event(t->writer_wait,
  3898. atomic_read(&t->num_writers) == 0);
  3899. } else {
  3900. spin_unlock(&root->fs_info->trans_lock);
  3901. }
  3902. btrfs_cleanup_one_transaction(t, root);
  3903. spin_lock(&root->fs_info->trans_lock);
  3904. if (t == root->fs_info->running_transaction)
  3905. root->fs_info->running_transaction = NULL;
  3906. list_del_init(&t->list);
  3907. spin_unlock(&root->fs_info->trans_lock);
  3908. btrfs_put_transaction(t);
  3909. trace_btrfs_transaction_commit(root);
  3910. spin_lock(&root->fs_info->trans_lock);
  3911. }
  3912. spin_unlock(&root->fs_info->trans_lock);
  3913. btrfs_destroy_all_ordered_extents(root->fs_info);
  3914. btrfs_destroy_delayed_inodes(root);
  3915. btrfs_assert_delayed_root_empty(root);
  3916. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3917. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3918. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3919. return 0;
  3920. }
  3921. static const struct extent_io_ops btree_extent_io_ops = {
  3922. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3923. .readpage_io_failed_hook = btree_io_failed_hook,
  3924. .submit_bio_hook = btree_submit_bio_hook,
  3925. /* note we're sharing with inode.c for the merge bio hook */
  3926. .merge_bio_hook = btrfs_merge_bio_hook,
  3927. };