123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- /* Software floating-point emulation.
- Basic one-word fraction declaration and manipulation.
- Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Richard Henderson ([email protected]),
- Jakub Jelinek ([email protected]),
- David S. Miller ([email protected]) and
- Peter Maydell ([email protected]).
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Library General Public License as
- published by the Free Software Foundation; either version 2 of the
- License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Library General Public License for more details.
- You should have received a copy of the GNU Library General Public
- License along with the GNU C Library; see the file COPYING.LIB. If
- not, write to the Free Software Foundation, Inc.,
- 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
- #ifndef __MATH_EMU_OP_1_H__
- #define __MATH_EMU_OP_1_H__
- #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f=0
- #define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f)
- #define _FP_FRAC_SET_1(X,I) (X##_f = I)
- #define _FP_FRAC_HIGH_1(X) (X##_f)
- #define _FP_FRAC_LOW_1(X) (X##_f)
- #define _FP_FRAC_WORD_1(X,w) (X##_f)
- #define _FP_FRAC_ADDI_1(X,I) (X##_f += I)
- #define _FP_FRAC_SLL_1(X,N) \
- do { \
- if (__builtin_constant_p(N) && (N) == 1) \
- X##_f += X##_f; \
- else \
- X##_f <<= (N); \
- } while (0)
- #define _FP_FRAC_SRL_1(X,N) (X##_f >>= N)
- /* Right shift with sticky-lsb. */
- #define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz)
- #define __FP_FRAC_SRS_1(X,N,sz) \
- (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \
- ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
- #define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f)
- #define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f)
- #define _FP_FRAC_DEC_1(X,Y) (X##_f -= Y##_f)
- #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f)
- /* Predicates */
- #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0)
- #define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
- #define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs)
- #define _FP_FRAC_CLEAR_OVERP_1(fs,X) (X##_f &= ~_FP_OVERFLOW_##fs)
- #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f)
- #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f)
- #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f)
- #define _FP_ZEROFRAC_1 0
- #define _FP_MINFRAC_1 1
- #define _FP_MAXFRAC_1 (~(_FP_WS_TYPE)0)
- /*
- * Unpack the raw bits of a native fp value. Do not classify or
- * normalize the data.
- */
- #define _FP_UNPACK_RAW_1(fs, X, val) \
- do { \
- union _FP_UNION_##fs _flo; _flo.flt = (val); \
- \
- X##_f = _flo.bits.frac; \
- X##_e = _flo.bits.exp; \
- X##_s = _flo.bits.sign; \
- } while (0)
- #define _FP_UNPACK_RAW_1_P(fs, X, val) \
- do { \
- union _FP_UNION_##fs *_flo = \
- (union _FP_UNION_##fs *)(val); \
- \
- X##_f = _flo->bits.frac; \
- X##_e = _flo->bits.exp; \
- X##_s = _flo->bits.sign; \
- } while (0)
- /*
- * Repack the raw bits of a native fp value.
- */
- #define _FP_PACK_RAW_1(fs, val, X) \
- do { \
- union _FP_UNION_##fs _flo; \
- \
- _flo.bits.frac = X##_f; \
- _flo.bits.exp = X##_e; \
- _flo.bits.sign = X##_s; \
- \
- (val) = _flo.flt; \
- } while (0)
- #define _FP_PACK_RAW_1_P(fs, val, X) \
- do { \
- union _FP_UNION_##fs *_flo = \
- (union _FP_UNION_##fs *)(val); \
- \
- _flo->bits.frac = X##_f; \
- _flo->bits.exp = X##_e; \
- _flo->bits.sign = X##_s; \
- } while (0)
- /*
- * Multiplication algorithms:
- */
- /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
- multiplication immediately. */
- #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \
- do { \
- R##_f = X##_f * Y##_f; \
- /* Normalize since we know where the msb of the multiplicands \
- were (bit B), we know that the msb of the of the product is \
- at either 2B or 2B-1. */ \
- _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits); \
- } while (0)
- /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
- #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \
- do { \
- _FP_W_TYPE _Z_f0, _Z_f1; \
- doit(_Z_f1, _Z_f0, X##_f, Y##_f); \
- /* Normalize since we know where the msb of the multiplicands \
- were (bit B), we know that the msb of the of the product is \
- at either 2B or 2B-1. */ \
- _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits); \
- R##_f = _Z_f0; \
- } while (0)
- /* Finally, a simple widening multiply algorithm. What fun! */
- #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \
- do { \
- _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \
- \
- /* split the words in half */ \
- _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
- _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
- _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
- _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
- \
- /* multiply the pieces */ \
- _z_f0 = _xl * _yl; \
- _a_f0 = _xh * _yl; \
- _a_f1 = _xl * _yh; \
- _z_f1 = _xh * _yh; \
- \
- /* reassemble into two full words */ \
- if ((_a_f0 += _a_f1) < _a_f1) \
- _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \
- _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \
- _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \
- _FP_FRAC_ADD_2(_z, _z, _a); \
- \
- /* normalize */ \
- _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits); \
- R##_f = _z_f0; \
- } while (0)
- /*
- * Division algorithms:
- */
- /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
- division immediately. Give this macro either _FP_DIV_HELP_imm for
- C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
- choose will depend on what the compiler does with divrem4. */
- #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
- do { \
- _FP_W_TYPE _q, _r; \
- X##_f <<= (X##_f < Y##_f \
- ? R##_e--, _FP_WFRACBITS_##fs \
- : _FP_WFRACBITS_##fs - 1); \
- doit(_q, _r, X##_f, Y##_f); \
- R##_f = _q | (_r != 0); \
- } while (0)
- /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
- that may be useful in this situation. This first is for a primitive
- that requires normalization, the second for one that does not. Look
- for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */
- #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \
- do { \
- _FP_W_TYPE _nh, _nl, _q, _r, _y; \
- \
- /* Normalize Y -- i.e. make the most significant bit set. */ \
- _y = Y##_f << _FP_WFRACXBITS_##fs; \
- \
- /* Shift X op correspondingly high, that is, up one full word. */ \
- if (X##_f < Y##_f) \
- { \
- R##_e--; \
- _nl = 0; \
- _nh = X##_f; \
- } \
- else \
- { \
- _nl = X##_f << (_FP_W_TYPE_SIZE - 1); \
- _nh = X##_f >> 1; \
- } \
- \
- udiv_qrnnd(_q, _r, _nh, _nl, _y); \
- R##_f = _q | (_r != 0); \
- } while (0)
- #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
- do { \
- _FP_W_TYPE _nh, _nl, _q, _r; \
- if (X##_f < Y##_f) \
- { \
- R##_e--; \
- _nl = X##_f << _FP_WFRACBITS_##fs; \
- _nh = X##_f >> _FP_WFRACXBITS_##fs; \
- } \
- else \
- { \
- _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
- _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
- } \
- udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \
- R##_f = _q | (_r != 0); \
- } while (0)
-
-
- /*
- * Square root algorithms:
- * We have just one right now, maybe Newton approximation
- * should be added for those machines where division is fast.
- */
-
- #define _FP_SQRT_MEAT_1(R, S, T, X, q) \
- do { \
- while (q != _FP_WORK_ROUND) \
- { \
- T##_f = S##_f + q; \
- if (T##_f <= X##_f) \
- { \
- S##_f = T##_f + q; \
- X##_f -= T##_f; \
- R##_f += q; \
- } \
- _FP_FRAC_SLL_1(X, 1); \
- q >>= 1; \
- } \
- if (X##_f) \
- { \
- if (S##_f < X##_f) \
- R##_f |= _FP_WORK_ROUND; \
- R##_f |= _FP_WORK_STICKY; \
- } \
- } while (0)
- /*
- * Assembly/disassembly for converting to/from integral types.
- * No shifting or overflow handled here.
- */
- #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f)
- #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r)
- /*
- * Convert FP values between word sizes
- */
- #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S) \
- do { \
- D##_f = S##_f; \
- if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs) \
- { \
- if (S##_c != FP_CLS_NAN) \
- _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs), \
- _FP_WFRACBITS_##sfs); \
- else \
- _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs)); \
- } \
- else \
- D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs; \
- } while (0)
- #endif /* __MATH_EMU_OP_1_H__ */
|