oom_kill.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. * Copyright (C) 2010 Google, Inc.
  8. * Rewritten by David Rientjes
  9. *
  10. * The routines in this file are used to kill a process when
  11. * we're seriously out of memory. This gets called from __alloc_pages()
  12. * in mm/page_alloc.c when we really run out of memory.
  13. *
  14. * Since we won't call these routines often (on a well-configured
  15. * machine) this file will double as a 'coding guide' and a signpost
  16. * for newbie kernel hackers. It features several pointers to major
  17. * kernel subsystems and hints as to where to find out what things do.
  18. */
  19. #include <linux/oom.h>
  20. #include <linux/mm.h>
  21. #include <linux/err.h>
  22. #include <linux/gfp.h>
  23. #include <linux/sched.h>
  24. #include <linux/swap.h>
  25. #include <linux/timex.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/cpuset.h>
  28. #include <linux/export.h>
  29. #include <linux/notifier.h>
  30. #include <linux/memcontrol.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/security.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/freezer.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/ratelimit.h>
  37. #include <linux/kthread.h>
  38. #include <linux/init.h>
  39. #include <linux/show_mem_notifier.h>
  40. #include <linux/mmu_notifier.h>
  41. #include <asm/tlb.h>
  42. #include "internal.h"
  43. #define CREATE_TRACE_POINTS
  44. #include <trace/events/oom.h>
  45. int sysctl_panic_on_oom;
  46. int sysctl_oom_kill_allocating_task;
  47. int sysctl_oom_dump_tasks = 1;
  48. DEFINE_MUTEX(oom_lock);
  49. #ifdef CONFIG_NUMA
  50. /**
  51. * has_intersects_mems_allowed() - check task eligiblity for kill
  52. * @start: task struct of which task to consider
  53. * @mask: nodemask passed to page allocator for mempolicy ooms
  54. *
  55. * Task eligibility is determined by whether or not a candidate task, @tsk,
  56. * shares the same mempolicy nodes as current if it is bound by such a policy
  57. * and whether or not it has the same set of allowed cpuset nodes.
  58. */
  59. static bool has_intersects_mems_allowed(struct task_struct *start,
  60. const nodemask_t *mask)
  61. {
  62. struct task_struct *tsk;
  63. bool ret = false;
  64. rcu_read_lock();
  65. for_each_thread(start, tsk) {
  66. if (mask) {
  67. /*
  68. * If this is a mempolicy constrained oom, tsk's
  69. * cpuset is irrelevant. Only return true if its
  70. * mempolicy intersects current, otherwise it may be
  71. * needlessly killed.
  72. */
  73. ret = mempolicy_nodemask_intersects(tsk, mask);
  74. } else {
  75. /*
  76. * This is not a mempolicy constrained oom, so only
  77. * check the mems of tsk's cpuset.
  78. */
  79. ret = cpuset_mems_allowed_intersects(current, tsk);
  80. }
  81. if (ret)
  82. break;
  83. }
  84. rcu_read_unlock();
  85. return ret;
  86. }
  87. #else
  88. static bool has_intersects_mems_allowed(struct task_struct *tsk,
  89. const nodemask_t *mask)
  90. {
  91. return true;
  92. }
  93. #endif /* CONFIG_NUMA */
  94. /*
  95. * The process p may have detached its own ->mm while exiting or through
  96. * use_mm(), but one or more of its subthreads may still have a valid
  97. * pointer. Return p, or any of its subthreads with a valid ->mm, with
  98. * task_lock() held.
  99. */
  100. struct task_struct *find_lock_task_mm(struct task_struct *p)
  101. {
  102. struct task_struct *t;
  103. rcu_read_lock();
  104. for_each_thread(p, t) {
  105. task_lock(t);
  106. if (likely(t->mm))
  107. goto found;
  108. task_unlock(t);
  109. }
  110. t = NULL;
  111. found:
  112. rcu_read_unlock();
  113. return t;
  114. }
  115. /*
  116. * order == -1 means the oom kill is required by sysrq, otherwise only
  117. * for display purposes.
  118. */
  119. static inline bool is_sysrq_oom(struct oom_control *oc)
  120. {
  121. return oc->order == -1;
  122. }
  123. static inline bool is_memcg_oom(struct oom_control *oc)
  124. {
  125. return oc->memcg != NULL;
  126. }
  127. /* return true if the task is not adequate as candidate victim task. */
  128. static bool oom_unkillable_task(struct task_struct *p,
  129. struct mem_cgroup *memcg, const nodemask_t *nodemask)
  130. {
  131. if (is_global_init(p))
  132. return true;
  133. if (p->flags & PF_KTHREAD)
  134. return true;
  135. /* When mem_cgroup_out_of_memory() and p is not member of the group */
  136. if (memcg && !task_in_mem_cgroup(p, memcg))
  137. return true;
  138. /* p may not have freeable memory in nodemask */
  139. if (!has_intersects_mems_allowed(p, nodemask))
  140. return true;
  141. return false;
  142. }
  143. /**
  144. * oom_badness - heuristic function to determine which candidate task to kill
  145. * @p: task struct of which task we should calculate
  146. * @totalpages: total present RAM allowed for page allocation
  147. *
  148. * The heuristic for determining which task to kill is made to be as simple and
  149. * predictable as possible. The goal is to return the highest value for the
  150. * task consuming the most memory to avoid subsequent oom failures.
  151. */
  152. unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
  153. const nodemask_t *nodemask, unsigned long totalpages)
  154. {
  155. long points;
  156. long adj;
  157. if (oom_unkillable_task(p, memcg, nodemask))
  158. return 0;
  159. p = find_lock_task_mm(p);
  160. if (!p)
  161. return 0;
  162. /*
  163. * Do not even consider tasks which are explicitly marked oom
  164. * unkillable or have been already oom reaped or the are in
  165. * the middle of vfork
  166. */
  167. adj = (long)p->signal->oom_score_adj;
  168. if (adj == OOM_SCORE_ADJ_MIN ||
  169. test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
  170. in_vfork(p)) {
  171. task_unlock(p);
  172. return 0;
  173. }
  174. /*
  175. * The baseline for the badness score is the proportion of RAM that each
  176. * task's rss, pagetable and swap space use.
  177. */
  178. points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
  179. atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
  180. task_unlock(p);
  181. /* Normalize to oom_score_adj units */
  182. adj *= totalpages / 1000;
  183. points += adj;
  184. /*
  185. * Never return 0 for an eligible task regardless of the root bonus and
  186. * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
  187. */
  188. return points > 0 ? points : 1;
  189. }
  190. enum oom_constraint {
  191. CONSTRAINT_NONE,
  192. CONSTRAINT_CPUSET,
  193. CONSTRAINT_MEMORY_POLICY,
  194. CONSTRAINT_MEMCG,
  195. };
  196. /*
  197. * Determine the type of allocation constraint.
  198. */
  199. static enum oom_constraint constrained_alloc(struct oom_control *oc)
  200. {
  201. struct zone *zone;
  202. struct zoneref *z;
  203. enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
  204. bool cpuset_limited = false;
  205. int nid;
  206. if (is_memcg_oom(oc)) {
  207. oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
  208. return CONSTRAINT_MEMCG;
  209. }
  210. /* Default to all available memory */
  211. oc->totalpages = totalram_pages + total_swap_pages;
  212. if (!IS_ENABLED(CONFIG_NUMA))
  213. return CONSTRAINT_NONE;
  214. if (!oc->zonelist)
  215. return CONSTRAINT_NONE;
  216. /*
  217. * Reach here only when __GFP_NOFAIL is used. So, we should avoid
  218. * to kill current.We have to random task kill in this case.
  219. * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
  220. */
  221. if (oc->gfp_mask & __GFP_THISNODE)
  222. return CONSTRAINT_NONE;
  223. /*
  224. * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
  225. * the page allocator means a mempolicy is in effect. Cpuset policy
  226. * is enforced in get_page_from_freelist().
  227. */
  228. if (oc->nodemask &&
  229. !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
  230. oc->totalpages = total_swap_pages;
  231. for_each_node_mask(nid, *oc->nodemask)
  232. oc->totalpages += node_spanned_pages(nid);
  233. return CONSTRAINT_MEMORY_POLICY;
  234. }
  235. /* Check this allocation failure is caused by cpuset's wall function */
  236. for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
  237. high_zoneidx, oc->nodemask)
  238. if (!cpuset_zone_allowed(zone, oc->gfp_mask))
  239. cpuset_limited = true;
  240. if (cpuset_limited) {
  241. oc->totalpages = total_swap_pages;
  242. for_each_node_mask(nid, cpuset_current_mems_allowed)
  243. oc->totalpages += node_spanned_pages(nid);
  244. return CONSTRAINT_CPUSET;
  245. }
  246. return CONSTRAINT_NONE;
  247. }
  248. static int oom_evaluate_task(struct task_struct *task, void *arg)
  249. {
  250. struct oom_control *oc = arg;
  251. unsigned long points;
  252. if (oom_unkillable_task(task, NULL, oc->nodemask))
  253. goto next;
  254. /*
  255. * This task already has access to memory reserves and is being killed.
  256. * Don't allow any other task to have access to the reserves unless
  257. * the task has MMF_OOM_SKIP because chances that it would release
  258. * any memory is quite low.
  259. */
  260. if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
  261. if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
  262. goto next;
  263. goto abort;
  264. }
  265. /*
  266. * If task is allocating a lot of memory and has been marked to be
  267. * killed first if it triggers an oom, then select it.
  268. */
  269. if (oom_task_origin(task)) {
  270. points = ULONG_MAX;
  271. goto select;
  272. }
  273. points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
  274. if (!points || points < oc->chosen_points)
  275. goto next;
  276. /* Prefer thread group leaders for display purposes */
  277. if (points == oc->chosen_points && thread_group_leader(oc->chosen))
  278. goto next;
  279. select:
  280. if (oc->chosen)
  281. put_task_struct(oc->chosen);
  282. get_task_struct(task);
  283. oc->chosen = task;
  284. oc->chosen_points = points;
  285. next:
  286. return 0;
  287. abort:
  288. if (oc->chosen)
  289. put_task_struct(oc->chosen);
  290. oc->chosen = (void *)-1UL;
  291. return 1;
  292. }
  293. /*
  294. * Simple selection loop. We choose the process with the highest number of
  295. * 'points'. In case scan was aborted, oc->chosen is set to -1.
  296. */
  297. static void select_bad_process(struct oom_control *oc)
  298. {
  299. if (is_memcg_oom(oc))
  300. mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
  301. else {
  302. struct task_struct *p;
  303. rcu_read_lock();
  304. for_each_process(p)
  305. if (oom_evaluate_task(p, oc))
  306. break;
  307. rcu_read_unlock();
  308. }
  309. oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
  310. }
  311. /**
  312. * dump_tasks - dump current memory state of all system tasks
  313. * @memcg: current's memory controller, if constrained
  314. * @nodemask: nodemask passed to page allocator for mempolicy ooms
  315. *
  316. * Dumps the current memory state of all eligible tasks. Tasks not in the same
  317. * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
  318. * are not shown.
  319. * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
  320. * swapents, oom_score_adj value, and name.
  321. */
  322. void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
  323. {
  324. struct task_struct *p;
  325. struct task_struct *task;
  326. pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
  327. rcu_read_lock();
  328. for_each_process(p) {
  329. if (oom_unkillable_task(p, memcg, nodemask))
  330. continue;
  331. task = find_lock_task_mm(p);
  332. if (!task) {
  333. /*
  334. * This is a kthread or all of p's threads have already
  335. * detached their mm's. There's no need to report
  336. * them; they can't be oom killed anyway.
  337. */
  338. continue;
  339. }
  340. pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
  341. task->pid, from_kuid(&init_user_ns, task_uid(task)),
  342. task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
  343. atomic_long_read(&task->mm->nr_ptes),
  344. mm_nr_pmds(task->mm),
  345. get_mm_counter(task->mm, MM_SWAPENTS),
  346. task->signal->oom_score_adj, task->comm);
  347. task_unlock(task);
  348. }
  349. rcu_read_unlock();
  350. }
  351. static void dump_header(struct oom_control *oc, struct task_struct *p)
  352. {
  353. nodemask_t *nm = (oc->nodemask) ? oc->nodemask : &cpuset_current_mems_allowed;
  354. pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
  355. current->comm, oc->gfp_mask, &oc->gfp_mask,
  356. nodemask_pr_args(nm), oc->order,
  357. current->signal->oom_score_adj);
  358. if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
  359. pr_warn("COMPACTION is disabled!!!\n");
  360. cpuset_print_current_mems_allowed();
  361. dump_stack();
  362. if (oc->memcg)
  363. mem_cgroup_print_oom_info(oc->memcg, p);
  364. else {
  365. show_mem(SHOW_MEM_FILTER_NODES);
  366. show_mem_call_notifiers();
  367. }
  368. if (sysctl_oom_dump_tasks)
  369. dump_tasks(oc->memcg, oc->nodemask);
  370. }
  371. /*
  372. * Number of OOM victims in flight
  373. */
  374. static atomic_t oom_victims = ATOMIC_INIT(0);
  375. static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
  376. static bool oom_killer_disabled __read_mostly;
  377. #define K(x) ((x) << (PAGE_SHIFT-10))
  378. /*
  379. * task->mm can be NULL if the task is the exited group leader. So to
  380. * determine whether the task is using a particular mm, we examine all the
  381. * task's threads: if one of those is using this mm then this task was also
  382. * using it.
  383. */
  384. bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
  385. {
  386. struct task_struct *t;
  387. for_each_thread(p, t) {
  388. struct mm_struct *t_mm = READ_ONCE(t->mm);
  389. if (t_mm)
  390. return t_mm == mm;
  391. }
  392. return false;
  393. }
  394. #ifdef CONFIG_MMU
  395. /*
  396. * OOM Reaper kernel thread which tries to reap the memory used by the OOM
  397. * victim (if that is possible) to help the OOM killer to move on.
  398. */
  399. static struct task_struct *oom_reaper_th;
  400. static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
  401. static struct task_struct *oom_reaper_list;
  402. static DEFINE_SPINLOCK(oom_reaper_lock);
  403. static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
  404. {
  405. struct mmu_gather tlb;
  406. struct vm_area_struct *vma;
  407. bool ret = true;
  408. /*
  409. * We have to make sure to not race with the victim exit path
  410. * and cause premature new oom victim selection:
  411. * __oom_reap_task_mm exit_mm
  412. * mmget_not_zero
  413. * mmput
  414. * atomic_dec_and_test
  415. * exit_oom_victim
  416. * [...]
  417. * out_of_memory
  418. * select_bad_process
  419. * # no TIF_MEMDIE task selects new victim
  420. * unmap_page_range # frees some memory
  421. */
  422. mutex_lock(&oom_lock);
  423. if (!down_read_trylock(&mm->mmap_sem)) {
  424. ret = false;
  425. trace_skip_task_reaping(tsk->pid);
  426. goto unlock_oom;
  427. }
  428. /*
  429. * If the mm has notifiers then we would need to invalidate them around
  430. * unmap_page_range and that is risky because notifiers can sleep and
  431. * what they do is basically undeterministic. So let's have a short
  432. * sleep to give the oom victim some more time.
  433. * TODO: we really want to get rid of this ugly hack and make sure that
  434. * notifiers cannot block for unbounded amount of time and add
  435. * mmu_notifier_invalidate_range_{start,end} around unmap_page_range
  436. */
  437. if (mm_has_notifiers(mm)) {
  438. up_read(&mm->mmap_sem);
  439. schedule_timeout_idle(HZ);
  440. goto unlock_oom;
  441. }
  442. /*
  443. * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
  444. * work on the mm anymore. The check for MMF_OOM_SKIP must run
  445. * under mmap_sem for reading because it serializes against the
  446. * down_write();up_write() cycle in exit_mmap().
  447. */
  448. if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
  449. up_read(&mm->mmap_sem);
  450. trace_skip_task_reaping(tsk->pid);
  451. goto unlock_oom;
  452. }
  453. trace_start_task_reaping(tsk->pid);
  454. /*
  455. * Tell all users of get_user/copy_from_user etc... that the content
  456. * is no longer stable. No barriers really needed because unmapping
  457. * should imply barriers already and the reader would hit a page fault
  458. * if it stumbled over a reaped memory.
  459. */
  460. set_bit(MMF_UNSTABLE, &mm->flags);
  461. for (vma = mm->mmap ; vma; vma = vma->vm_next) {
  462. if (!can_madv_dontneed_vma(vma))
  463. continue;
  464. /*
  465. * Only anonymous pages have a good chance to be dropped
  466. * without additional steps which we cannot afford as we
  467. * are OOM already.
  468. *
  469. * We do not even care about fs backed pages because all
  470. * which are reclaimable have already been reclaimed and
  471. * we do not want to block exit_mmap by keeping mm ref
  472. * count elevated without a good reason.
  473. */
  474. if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
  475. tlb_gather_mmu(&tlb, mm, vma->vm_start, vma->vm_end);
  476. unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
  477. NULL);
  478. tlb_finish_mmu(&tlb, vma->vm_start, vma->vm_end);
  479. }
  480. }
  481. pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  482. task_pid_nr(tsk), tsk->comm,
  483. K(get_mm_counter(mm, MM_ANONPAGES)),
  484. K(get_mm_counter(mm, MM_FILEPAGES)),
  485. K(get_mm_counter(mm, MM_SHMEMPAGES)));
  486. up_read(&mm->mmap_sem);
  487. trace_finish_task_reaping(tsk->pid);
  488. unlock_oom:
  489. mutex_unlock(&oom_lock);
  490. return ret;
  491. }
  492. #define MAX_OOM_REAP_RETRIES 10
  493. static void oom_reap_task(struct task_struct *tsk)
  494. {
  495. int attempts = 0;
  496. struct mm_struct *mm = tsk->signal->oom_mm;
  497. /* Retry the down_read_trylock(mmap_sem) a few times */
  498. while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
  499. schedule_timeout_idle(HZ/10);
  500. if (attempts <= MAX_OOM_REAP_RETRIES)
  501. goto done;
  502. pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
  503. task_pid_nr(tsk), tsk->comm);
  504. debug_show_all_locks();
  505. done:
  506. tsk->oom_reaper_list = NULL;
  507. /*
  508. * Hide this mm from OOM killer because it has been either reaped or
  509. * somebody can't call up_write(mmap_sem).
  510. */
  511. set_bit(MMF_OOM_SKIP, &mm->flags);
  512. /* Drop a reference taken by wake_oom_reaper */
  513. put_task_struct(tsk);
  514. }
  515. static int oom_reaper(void *unused)
  516. {
  517. while (true) {
  518. struct task_struct *tsk = NULL;
  519. wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
  520. spin_lock(&oom_reaper_lock);
  521. if (oom_reaper_list != NULL) {
  522. tsk = oom_reaper_list;
  523. oom_reaper_list = tsk->oom_reaper_list;
  524. }
  525. spin_unlock(&oom_reaper_lock);
  526. if (tsk)
  527. oom_reap_task(tsk);
  528. }
  529. return 0;
  530. }
  531. void wake_oom_reaper(struct task_struct *tsk)
  532. {
  533. if (!oom_reaper_th)
  534. return;
  535. /* move the lock here to avoid scenario of queuing
  536. * the same task by both OOM killer and LMK.
  537. */
  538. spin_lock(&oom_reaper_lock);
  539. /* mm is already queued? */
  540. if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) {
  541. spin_unlock(&oom_reaper_lock);
  542. return;
  543. }
  544. get_task_struct(tsk);
  545. tsk->oom_reaper_list = oom_reaper_list;
  546. oom_reaper_list = tsk;
  547. spin_unlock(&oom_reaper_lock);
  548. trace_wake_reaper(tsk->pid);
  549. wake_up(&oom_reaper_wait);
  550. }
  551. static int __init oom_init(void)
  552. {
  553. oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
  554. if (IS_ERR(oom_reaper_th)) {
  555. pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
  556. PTR_ERR(oom_reaper_th));
  557. oom_reaper_th = NULL;
  558. }
  559. return 0;
  560. }
  561. subsys_initcall(oom_init)
  562. #else
  563. static inline void wake_oom_reaper(struct task_struct *tsk)
  564. {
  565. }
  566. #endif /* CONFIG_MMU */
  567. /**
  568. * mark_oom_victim - mark the given task as OOM victim
  569. * @tsk: task to mark
  570. *
  571. * Has to be called with oom_lock held and never after
  572. * oom has been disabled already.
  573. *
  574. * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
  575. * under task_lock or operate on the current).
  576. */
  577. static void mark_oom_victim(struct task_struct *tsk)
  578. {
  579. struct mm_struct *mm = tsk->mm;
  580. WARN_ON(oom_killer_disabled);
  581. /* OOM killer might race with memcg OOM */
  582. if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
  583. return;
  584. /* oom_mm is bound to the signal struct life time. */
  585. if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
  586. atomic_inc(&tsk->signal->oom_mm->mm_count);
  587. set_bit(MMF_OOM_VICTIM, &mm->flags);
  588. }
  589. /*
  590. * Make sure that the task is woken up from uninterruptible sleep
  591. * if it is frozen because OOM killer wouldn't be able to free
  592. * any memory and livelock. freezing_slow_path will tell the freezer
  593. * that TIF_MEMDIE tasks should be ignored.
  594. */
  595. __thaw_task(tsk);
  596. atomic_inc(&oom_victims);
  597. trace_mark_victim(tsk->pid);
  598. }
  599. /**
  600. * exit_oom_victim - note the exit of an OOM victim
  601. */
  602. void exit_oom_victim(void)
  603. {
  604. clear_thread_flag(TIF_MEMDIE);
  605. if (!atomic_dec_return(&oom_victims))
  606. wake_up_all(&oom_victims_wait);
  607. }
  608. /**
  609. * oom_killer_enable - enable OOM killer
  610. */
  611. void oom_killer_enable(void)
  612. {
  613. oom_killer_disabled = false;
  614. }
  615. /**
  616. * oom_killer_disable - disable OOM killer
  617. * @timeout: maximum timeout to wait for oom victims in jiffies
  618. *
  619. * Forces all page allocations to fail rather than trigger OOM killer.
  620. * Will block and wait until all OOM victims are killed or the given
  621. * timeout expires.
  622. *
  623. * The function cannot be called when there are runnable user tasks because
  624. * the userspace would see unexpected allocation failures as a result. Any
  625. * new usage of this function should be consulted with MM people.
  626. *
  627. * Returns true if successful and false if the OOM killer cannot be
  628. * disabled.
  629. */
  630. bool oom_killer_disable(signed long timeout)
  631. {
  632. signed long ret;
  633. /*
  634. * Make sure to not race with an ongoing OOM killer. Check that the
  635. * current is not killed (possibly due to sharing the victim's memory).
  636. */
  637. if (mutex_lock_killable(&oom_lock))
  638. return false;
  639. oom_killer_disabled = true;
  640. mutex_unlock(&oom_lock);
  641. ret = wait_event_interruptible_timeout(oom_victims_wait,
  642. !atomic_read(&oom_victims), timeout);
  643. if (ret <= 0) {
  644. oom_killer_enable();
  645. return false;
  646. }
  647. return true;
  648. }
  649. static inline bool __task_will_free_mem(struct task_struct *task)
  650. {
  651. struct signal_struct *sig = task->signal;
  652. /*
  653. * A coredumping process may sleep for an extended period in exit_mm(),
  654. * so the oom killer cannot assume that the process will promptly exit
  655. * and release memory.
  656. */
  657. if (sig->flags & SIGNAL_GROUP_COREDUMP)
  658. return false;
  659. if (sig->flags & SIGNAL_GROUP_EXIT)
  660. return true;
  661. if (thread_group_empty(task) && (task->flags & PF_EXITING))
  662. return true;
  663. return false;
  664. }
  665. /*
  666. * Checks whether the given task is dying or exiting and likely to
  667. * release its address space. This means that all threads and processes
  668. * sharing the same mm have to be killed or exiting.
  669. * Caller has to make sure that task->mm is stable (hold task_lock or
  670. * it operates on the current).
  671. */
  672. static bool task_will_free_mem(struct task_struct *task)
  673. {
  674. struct mm_struct *mm = task->mm;
  675. struct task_struct *p;
  676. bool ret = true;
  677. /*
  678. * Skip tasks without mm because it might have passed its exit_mm and
  679. * exit_oom_victim. oom_reaper could have rescued that but do not rely
  680. * on that for now. We can consider find_lock_task_mm in future.
  681. */
  682. if (!mm)
  683. return false;
  684. if (!__task_will_free_mem(task))
  685. return false;
  686. /*
  687. * This task has already been drained by the oom reaper so there are
  688. * only small chances it will free some more
  689. */
  690. if (test_bit(MMF_OOM_SKIP, &mm->flags))
  691. return false;
  692. if (atomic_read(&mm->mm_users) <= 1)
  693. return true;
  694. /*
  695. * Make sure that all tasks which share the mm with the given tasks
  696. * are dying as well to make sure that a) nobody pins its mm and
  697. * b) the task is also reapable by the oom reaper.
  698. */
  699. rcu_read_lock();
  700. for_each_process(p) {
  701. if (!process_shares_mm(p, mm))
  702. continue;
  703. if (same_thread_group(task, p))
  704. continue;
  705. ret = __task_will_free_mem(p);
  706. if (!ret)
  707. break;
  708. }
  709. rcu_read_unlock();
  710. return ret;
  711. }
  712. static void oom_kill_process(struct oom_control *oc, const char *message)
  713. {
  714. struct task_struct *p = oc->chosen;
  715. unsigned int points = oc->chosen_points;
  716. struct task_struct *victim = p;
  717. struct task_struct *child;
  718. struct task_struct *t;
  719. struct mm_struct *mm;
  720. unsigned int victim_points = 0;
  721. static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  722. DEFAULT_RATELIMIT_BURST);
  723. bool can_oom_reap = true;
  724. /*
  725. * If the task is already exiting, don't alarm the sysadmin or kill
  726. * its children or threads, just set TIF_MEMDIE so it can die quickly
  727. */
  728. task_lock(p);
  729. if (task_will_free_mem(p)) {
  730. mark_oom_victim(p);
  731. wake_oom_reaper(p);
  732. task_unlock(p);
  733. put_task_struct(p);
  734. return;
  735. }
  736. task_unlock(p);
  737. if (__ratelimit(&oom_rs))
  738. dump_header(oc, p);
  739. pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
  740. message, task_pid_nr(p), p->comm, points);
  741. /*
  742. * If any of p's children has a different mm and is eligible for kill,
  743. * the one with the highest oom_badness() score is sacrificed for its
  744. * parent. This attempts to lose the minimal amount of work done while
  745. * still freeing memory.
  746. */
  747. read_lock(&tasklist_lock);
  748. /*
  749. * The task 'p' might have already exited before reaching here. The
  750. * put_task_struct() will free task_struct 'p' while the loop still try
  751. * to access the field of 'p', so, get an extra reference.
  752. */
  753. get_task_struct(p);
  754. for_each_thread(p, t) {
  755. list_for_each_entry(child, &t->children, sibling) {
  756. unsigned int child_points;
  757. if (process_shares_mm(child, p->mm))
  758. continue;
  759. /*
  760. * oom_badness() returns 0 if the thread is unkillable
  761. */
  762. child_points = oom_badness(child,
  763. oc->memcg, oc->nodemask, oc->totalpages);
  764. if (child_points > victim_points) {
  765. put_task_struct(victim);
  766. victim = child;
  767. victim_points = child_points;
  768. get_task_struct(victim);
  769. }
  770. }
  771. }
  772. put_task_struct(p);
  773. read_unlock(&tasklist_lock);
  774. p = find_lock_task_mm(victim);
  775. if (!p) {
  776. put_task_struct(victim);
  777. return;
  778. } else if (victim != p) {
  779. get_task_struct(p);
  780. put_task_struct(victim);
  781. victim = p;
  782. }
  783. /* Get a reference to safely compare mm after task_unlock(victim) */
  784. mm = victim->mm;
  785. atomic_inc(&mm->mm_count);
  786. /*
  787. * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
  788. * the OOM victim from depleting the memory reserves from the user
  789. * space under its control.
  790. */
  791. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
  792. mark_oom_victim(victim);
  793. pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  794. task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
  795. K(get_mm_counter(victim->mm, MM_ANONPAGES)),
  796. K(get_mm_counter(victim->mm, MM_FILEPAGES)),
  797. K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
  798. task_unlock(victim);
  799. /*
  800. * Kill all user processes sharing victim->mm in other thread groups, if
  801. * any. They don't get access to memory reserves, though, to avoid
  802. * depletion of all memory. This prevents mm->mmap_sem livelock when an
  803. * oom killed thread cannot exit because it requires the semaphore and
  804. * its contended by another thread trying to allocate memory itself.
  805. * That thread will now get access to memory reserves since it has a
  806. * pending fatal signal.
  807. */
  808. rcu_read_lock();
  809. for_each_process(p) {
  810. if (!process_shares_mm(p, mm))
  811. continue;
  812. if (same_thread_group(p, victim))
  813. continue;
  814. if (is_global_init(p)) {
  815. can_oom_reap = false;
  816. set_bit(MMF_OOM_SKIP, &mm->flags);
  817. pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
  818. task_pid_nr(victim), victim->comm,
  819. task_pid_nr(p), p->comm);
  820. continue;
  821. }
  822. /*
  823. * No use_mm() user needs to read from the userspace so we are
  824. * ok to reap it.
  825. */
  826. if (unlikely(p->flags & PF_KTHREAD))
  827. continue;
  828. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
  829. }
  830. rcu_read_unlock();
  831. if (can_oom_reap)
  832. wake_oom_reaper(victim);
  833. mmdrop(mm);
  834. put_task_struct(victim);
  835. }
  836. #undef K
  837. /*
  838. * Determines whether the kernel must panic because of the panic_on_oom sysctl.
  839. */
  840. static void check_panic_on_oom(struct oom_control *oc,
  841. enum oom_constraint constraint)
  842. {
  843. if (likely(!sysctl_panic_on_oom))
  844. return;
  845. if (sysctl_panic_on_oom != 2) {
  846. /*
  847. * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
  848. * does not panic for cpuset, mempolicy, or memcg allocation
  849. * failures.
  850. */
  851. if (constraint != CONSTRAINT_NONE)
  852. return;
  853. }
  854. /* Do not panic for oom kills triggered by sysrq */
  855. if (is_sysrq_oom(oc))
  856. return;
  857. dump_header(oc, NULL);
  858. panic("Out of memory: %s panic_on_oom is enabled\n",
  859. sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
  860. }
  861. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  862. int register_oom_notifier(struct notifier_block *nb)
  863. {
  864. return blocking_notifier_chain_register(&oom_notify_list, nb);
  865. }
  866. EXPORT_SYMBOL_GPL(register_oom_notifier);
  867. int unregister_oom_notifier(struct notifier_block *nb)
  868. {
  869. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  870. }
  871. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  872. /**
  873. * out_of_memory - kill the "best" process when we run out of memory
  874. * @oc: pointer to struct oom_control
  875. *
  876. * If we run out of memory, we have the choice between either
  877. * killing a random task (bad), letting the system crash (worse)
  878. * OR try to be smart about which process to kill. Note that we
  879. * don't have to be perfect here, we just have to be good.
  880. */
  881. bool out_of_memory(struct oom_control *oc)
  882. {
  883. unsigned long freed = 0;
  884. enum oom_constraint constraint = CONSTRAINT_NONE;
  885. if (oom_killer_disabled)
  886. return false;
  887. if (!is_memcg_oom(oc)) {
  888. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  889. if (freed > 0)
  890. /* Got some memory back in the last second. */
  891. return true;
  892. }
  893. /*
  894. * If current has a pending SIGKILL or is exiting, then automatically
  895. * select it. The goal is to allow it to allocate so that it may
  896. * quickly exit and free its memory.
  897. */
  898. if (task_will_free_mem(current)) {
  899. mark_oom_victim(current);
  900. wake_oom_reaper(current);
  901. return true;
  902. }
  903. /*
  904. * The OOM killer does not compensate for IO-less reclaim.
  905. * pagefault_out_of_memory lost its gfp context so we have to
  906. * make sure exclude 0 mask - all other users should have at least
  907. * ___GFP_DIRECT_RECLAIM to get here.
  908. */
  909. if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
  910. return true;
  911. /*
  912. * Check if there were limitations on the allocation (only relevant for
  913. * NUMA and memcg) that may require different handling.
  914. */
  915. constraint = constrained_alloc(oc);
  916. if (constraint != CONSTRAINT_MEMORY_POLICY)
  917. oc->nodemask = NULL;
  918. check_panic_on_oom(oc, constraint);
  919. if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
  920. current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
  921. current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
  922. get_task_struct(current);
  923. oc->chosen = current;
  924. oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
  925. return true;
  926. }
  927. select_bad_process(oc);
  928. /* Found nothing?!?! Either we hang forever, or we panic. */
  929. if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
  930. dump_header(oc, NULL);
  931. panic("Out of memory and no killable processes...\n");
  932. }
  933. if (oc->chosen && oc->chosen != (void *)-1UL) {
  934. oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
  935. "Memory cgroup out of memory");
  936. /*
  937. * Give the killed process a good chance to exit before trying
  938. * to allocate memory again.
  939. */
  940. schedule_timeout_killable(1);
  941. }
  942. return !!oc->chosen;
  943. }
  944. /*
  945. * The pagefault handler calls here because it is out of memory, so kill a
  946. * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
  947. * killing is already in progress so do nothing.
  948. */
  949. void pagefault_out_of_memory(void)
  950. {
  951. struct oom_control oc = {
  952. .zonelist = NULL,
  953. .nodemask = NULL,
  954. .memcg = NULL,
  955. .gfp_mask = 0,
  956. .order = 0,
  957. };
  958. if (mem_cgroup_oom_synchronize(true))
  959. return;
  960. if (!mutex_trylock(&oom_lock))
  961. return;
  962. out_of_memory(&oc);
  963. mutex_unlock(&oom_lock);
  964. }