page_ext.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434
  1. #include <linux/mm.h>
  2. #include <linux/mmzone.h>
  3. #include <linux/bootmem.h>
  4. #include <linux/page_ext.h>
  5. #include <linux/memory.h>
  6. #include <linux/vmalloc.h>
  7. #include <linux/kmemleak.h>
  8. #include <linux/page_owner.h>
  9. #include <linux/page_idle.h>
  10. /*
  11. * struct page extension
  12. *
  13. * This is the feature to manage memory for extended data per page.
  14. *
  15. * Until now, we must modify struct page itself to store extra data per page.
  16. * This requires rebuilding the kernel and it is really time consuming process.
  17. * And, sometimes, rebuild is impossible due to third party module dependency.
  18. * At last, enlarging struct page could cause un-wanted system behaviour change.
  19. *
  20. * This feature is intended to overcome above mentioned problems. This feature
  21. * allocates memory for extended data per page in certain place rather than
  22. * the struct page itself. This memory can be accessed by the accessor
  23. * functions provided by this code. During the boot process, it checks whether
  24. * allocation of huge chunk of memory is needed or not. If not, it avoids
  25. * allocating memory at all. With this advantage, we can include this feature
  26. * into the kernel in default and can avoid rebuild and solve related problems.
  27. *
  28. * To help these things to work well, there are two callbacks for clients. One
  29. * is the need callback which is mandatory if user wants to avoid useless
  30. * memory allocation at boot-time. The other is optional, init callback, which
  31. * is used to do proper initialization after memory is allocated.
  32. *
  33. * The need callback is used to decide whether extended memory allocation is
  34. * needed or not. Sometimes users want to deactivate some features in this
  35. * boot and extra memory would be unneccessary. In this case, to avoid
  36. * allocating huge chunk of memory, each clients represent their need of
  37. * extra memory through the need callback. If one of the need callbacks
  38. * returns true, it means that someone needs extra memory so that
  39. * page extension core should allocates memory for page extension. If
  40. * none of need callbacks return true, memory isn't needed at all in this boot
  41. * and page extension core can skip to allocate memory. As result,
  42. * none of memory is wasted.
  43. *
  44. * When need callback returns true, page_ext checks if there is a request for
  45. * extra memory through size in struct page_ext_operations. If it is non-zero,
  46. * extra space is allocated for each page_ext entry and offset is returned to
  47. * user through offset in struct page_ext_operations.
  48. *
  49. * The init callback is used to do proper initialization after page extension
  50. * is completely initialized. In sparse memory system, extra memory is
  51. * allocated some time later than memmap is allocated. In other words, lifetime
  52. * of memory for page extension isn't same with memmap for struct page.
  53. * Therefore, clients can't store extra data until page extension is
  54. * initialized, even if pages are allocated and used freely. This could
  55. * cause inadequate state of extra data per page, so, to prevent it, client
  56. * can utilize this callback to initialize the state of it correctly.
  57. */
  58. static struct page_ext_operations *page_ext_ops[] = {
  59. &debug_guardpage_ops,
  60. #ifdef CONFIG_PAGE_OWNER
  61. &page_owner_ops,
  62. #endif
  63. #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
  64. &page_idle_ops,
  65. #endif
  66. };
  67. static unsigned long total_usage;
  68. static unsigned long extra_mem;
  69. static bool __init invoke_need_callbacks(void)
  70. {
  71. int i;
  72. int entries = ARRAY_SIZE(page_ext_ops);
  73. bool need = false;
  74. for (i = 0; i < entries; i++) {
  75. if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
  76. page_ext_ops[i]->offset = sizeof(struct page_ext) +
  77. extra_mem;
  78. extra_mem += page_ext_ops[i]->size;
  79. need = true;
  80. }
  81. }
  82. return need;
  83. }
  84. static void __init invoke_init_callbacks(void)
  85. {
  86. int i;
  87. int entries = ARRAY_SIZE(page_ext_ops);
  88. for (i = 0; i < entries; i++) {
  89. if (page_ext_ops[i]->init)
  90. page_ext_ops[i]->init();
  91. }
  92. }
  93. static unsigned long get_entry_size(void)
  94. {
  95. return sizeof(struct page_ext) + extra_mem;
  96. }
  97. static inline struct page_ext *get_entry(void *base, unsigned long index)
  98. {
  99. return base + get_entry_size() * index;
  100. }
  101. #if !defined(CONFIG_SPARSEMEM)
  102. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  103. {
  104. pgdat->node_page_ext = NULL;
  105. }
  106. struct page_ext *lookup_page_ext(struct page *page)
  107. {
  108. unsigned long pfn = page_to_pfn(page);
  109. unsigned long index;
  110. struct page_ext *base;
  111. base = NODE_DATA(page_to_nid(page))->node_page_ext;
  112. #if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING)
  113. /*
  114. * The sanity checks the page allocator does upon freeing a
  115. * page can reach here before the page_ext arrays are
  116. * allocated when feeding a range of pages to the allocator
  117. * for the first time during bootup or memory hotplug.
  118. *
  119. * This check is also necessary for ensuring page poisoning
  120. * works as expected when enabled
  121. */
  122. if (unlikely(!base))
  123. return NULL;
  124. #endif
  125. index = pfn - round_down(node_start_pfn(page_to_nid(page)),
  126. MAX_ORDER_NR_PAGES);
  127. return get_entry(base, index);
  128. }
  129. static int __init alloc_node_page_ext(int nid)
  130. {
  131. struct page_ext *base;
  132. unsigned long table_size;
  133. unsigned long nr_pages;
  134. nr_pages = NODE_DATA(nid)->node_spanned_pages;
  135. if (!nr_pages)
  136. return 0;
  137. /*
  138. * Need extra space if node range is not aligned with
  139. * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
  140. * checks buddy's status, range could be out of exact node range.
  141. */
  142. if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
  143. !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
  144. nr_pages += MAX_ORDER_NR_PAGES;
  145. table_size = get_entry_size() * nr_pages;
  146. base = memblock_virt_alloc_try_nid_nopanic(
  147. table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  148. BOOTMEM_ALLOC_ACCESSIBLE, nid);
  149. if (!base)
  150. return -ENOMEM;
  151. NODE_DATA(nid)->node_page_ext = base;
  152. total_usage += table_size;
  153. return 0;
  154. }
  155. void __init page_ext_init_flatmem(void)
  156. {
  157. int nid, fail;
  158. if (!invoke_need_callbacks())
  159. return;
  160. for_each_online_node(nid) {
  161. fail = alloc_node_page_ext(nid);
  162. if (fail)
  163. goto fail;
  164. }
  165. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  166. invoke_init_callbacks();
  167. return;
  168. fail:
  169. pr_crit("allocation of page_ext failed.\n");
  170. panic("Out of memory");
  171. }
  172. #else /* CONFIG_FLAT_NODE_MEM_MAP */
  173. struct page_ext *lookup_page_ext(struct page *page)
  174. {
  175. unsigned long pfn = page_to_pfn(page);
  176. struct mem_section *section = __pfn_to_section(pfn);
  177. #if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING)
  178. /*
  179. * The sanity checks the page allocator does upon freeing a
  180. * page can reach here before the page_ext arrays are
  181. * allocated when feeding a range of pages to the allocator
  182. * for the first time during bootup or memory hotplug.
  183. *
  184. * This check is also necessary for ensuring page poisoning
  185. * works as expected when enabled
  186. */
  187. if (!section->page_ext)
  188. return NULL;
  189. #endif
  190. return get_entry(section->page_ext, pfn);
  191. }
  192. static void *__meminit alloc_page_ext(size_t size, int nid)
  193. {
  194. gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
  195. void *addr = NULL;
  196. addr = alloc_pages_exact_nid(nid, size, flags);
  197. if (addr) {
  198. kmemleak_alloc(addr, size, 1, flags);
  199. return addr;
  200. }
  201. if (node_state(nid, N_HIGH_MEMORY))
  202. addr = vzalloc_node(size, nid);
  203. else
  204. addr = vzalloc(size);
  205. return addr;
  206. }
  207. static int __meminit init_section_page_ext(unsigned long pfn, int nid)
  208. {
  209. struct mem_section *section;
  210. struct page_ext *base;
  211. unsigned long table_size;
  212. section = __pfn_to_section(pfn);
  213. if (section->page_ext)
  214. return 0;
  215. table_size = get_entry_size() * PAGES_PER_SECTION;
  216. base = alloc_page_ext(table_size, nid);
  217. /*
  218. * The value stored in section->page_ext is (base - pfn)
  219. * and it does not point to the memory block allocated above,
  220. * causing kmemleak false positives.
  221. */
  222. kmemleak_not_leak(base);
  223. if (!base) {
  224. pr_err("page ext allocation failure\n");
  225. return -ENOMEM;
  226. }
  227. /*
  228. * The passed "pfn" may not be aligned to SECTION. For the calculation
  229. * we need to apply a mask.
  230. */
  231. pfn &= PAGE_SECTION_MASK;
  232. section->page_ext = (void *)base - get_entry_size() * pfn;
  233. total_usage += table_size;
  234. return 0;
  235. }
  236. #ifdef CONFIG_MEMORY_HOTPLUG
  237. static void free_page_ext(void *addr)
  238. {
  239. if (is_vmalloc_addr(addr)) {
  240. vfree(addr);
  241. } else {
  242. struct page *page = virt_to_page(addr);
  243. size_t table_size;
  244. table_size = get_entry_size() * PAGES_PER_SECTION;
  245. BUG_ON(PageReserved(page));
  246. kmemleak_free(addr);
  247. free_pages_exact(addr, table_size);
  248. }
  249. }
  250. static void __free_page_ext(unsigned long pfn)
  251. {
  252. struct mem_section *ms;
  253. struct page_ext *base;
  254. ms = __pfn_to_section(pfn);
  255. if (!ms || !ms->page_ext)
  256. return;
  257. base = get_entry(ms->page_ext, pfn);
  258. free_page_ext(base);
  259. ms->page_ext = NULL;
  260. }
  261. static int __meminit online_page_ext(unsigned long start_pfn,
  262. unsigned long nr_pages,
  263. int nid)
  264. {
  265. unsigned long start, end, pfn;
  266. int fail = 0;
  267. start = SECTION_ALIGN_DOWN(start_pfn);
  268. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  269. if (nid == -1) {
  270. /*
  271. * In this case, "nid" already exists and contains valid memory.
  272. * "start_pfn" passed to us is a pfn which is an arg for
  273. * online__pages(), and start_pfn should exist.
  274. */
  275. nid = pfn_to_nid(start_pfn);
  276. VM_BUG_ON(!node_state(nid, N_ONLINE));
  277. }
  278. for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
  279. if (!pfn_present(pfn))
  280. continue;
  281. fail = init_section_page_ext(pfn, nid);
  282. }
  283. if (!fail)
  284. return 0;
  285. /* rollback */
  286. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  287. __free_page_ext(pfn);
  288. return -ENOMEM;
  289. }
  290. static int __meminit offline_page_ext(unsigned long start_pfn,
  291. unsigned long nr_pages, int nid)
  292. {
  293. unsigned long start, end, pfn;
  294. start = SECTION_ALIGN_DOWN(start_pfn);
  295. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  296. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  297. __free_page_ext(pfn);
  298. return 0;
  299. }
  300. static int __meminit page_ext_callback(struct notifier_block *self,
  301. unsigned long action, void *arg)
  302. {
  303. struct memory_notify *mn = arg;
  304. int ret = 0;
  305. switch (action) {
  306. case MEM_GOING_ONLINE:
  307. ret = online_page_ext(mn->start_pfn,
  308. mn->nr_pages, mn->status_change_nid);
  309. break;
  310. case MEM_OFFLINE:
  311. offline_page_ext(mn->start_pfn,
  312. mn->nr_pages, mn->status_change_nid);
  313. break;
  314. case MEM_CANCEL_ONLINE:
  315. offline_page_ext(mn->start_pfn,
  316. mn->nr_pages, mn->status_change_nid);
  317. break;
  318. case MEM_GOING_OFFLINE:
  319. break;
  320. case MEM_ONLINE:
  321. case MEM_CANCEL_OFFLINE:
  322. break;
  323. }
  324. return notifier_from_errno(ret);
  325. }
  326. #endif
  327. void __init page_ext_init(void)
  328. {
  329. unsigned long pfn;
  330. int nid;
  331. if (!invoke_need_callbacks())
  332. return;
  333. for_each_node_state(nid, N_MEMORY) {
  334. unsigned long start_pfn, end_pfn;
  335. start_pfn = node_start_pfn(nid);
  336. end_pfn = node_end_pfn(nid);
  337. /*
  338. * start_pfn and end_pfn may not be aligned to SECTION and the
  339. * page->flags of out of node pages are not initialized. So we
  340. * scan [start_pfn, the biggest section's pfn < end_pfn) here.
  341. */
  342. for (pfn = start_pfn; pfn < end_pfn;
  343. pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
  344. if (!pfn_valid(pfn))
  345. continue;
  346. /*
  347. * Nodes's pfns can be overlapping.
  348. * We know some arch can have a nodes layout such as
  349. * -------------pfn-------------->
  350. * N0 | N1 | N2 | N0 | N1 | N2|....
  351. *
  352. * Take into account DEFERRED_STRUCT_PAGE_INIT.
  353. */
  354. if (early_pfn_to_nid(pfn) != nid)
  355. continue;
  356. if (init_section_page_ext(pfn, nid))
  357. goto oom;
  358. }
  359. }
  360. hotplug_memory_notifier(page_ext_callback, 0);
  361. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  362. invoke_init_callbacks();
  363. return;
  364. oom:
  365. panic("Out of memory");
  366. }
  367. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  368. {
  369. }
  370. #endif